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We study the time evolution of a one-dimensional system of strongly correlated electrons (a “sample”) that is
suddenly coupled to a smaller, initially empty system (a “nanoprobe”), which can subsequently move along the
system. Our purpose here is to study the role of interactions in this model system when it is far from equilibrium.
We therefore take both the sample and the nanoprobe to be described by a Hubbard model with on-site repulsive
interactions and nearest-neighbor hopping. We compute the behavior of the local particle density and the local
density of states (LDOS) as a function of time using time-dependent matrix product states at quarter and at half
filling, fillings at which the chain realizes a Luttinger liquid or a Mott insulator, respectively. This allows us to
study in detail the oscillation of the particles between the sample and the nanoprobe. While, for noninteracting
systems, the LDOS is time independent, in the presence of interactions, the backflow of electrons to the sample
will lead to nontrivial dynamics in the LDOS. In particular, studying the time-dependent LDOS allows us to
study how the Mott gap closes locally and how this melting of the Mott insulator propagates through the system
in time after such a local perturbation—a behavior that we envisage can be investigated in future experiments on
ultrashort time scales or on optical lattices using microscopy setups.
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I. INTRODUCTION

One very common and interesting scenario in physics oc-
curs when two systems are coupled to one another starting at
a particular point in time and then interact with one another
in a time-dependent way. The salient physical question is how
the two systems then evolve in time. When the two systems
are quantum many-body systems, particularly interesting be-
havior can be expected.

The study of such nonequilibrium correlated systems is
inspired by fundamental issues such as the nature of ther-
malization in closed quantum systems [1—4], by the behavior
found in controlled experimental investigations in cold atomic
gases on optical lattices [5,6], and by the study of mate-
rial properties after a strong photoexcitation, typically in the
context of pump-probe experiments [7—10]. These advanced
time-resolved experimental techniques make it possible to
study a variety of nonequilibrium phenomena, such as the
formation of transient order, light-induced phase transitions,
or hidden states on ultrashort time scales (pico- or femtosec-
onds) [11-24]. One such experimental approach is time- and
angle-resolved photoemission spectroscopy (trARPES) [25],
which provides direct insights into nonequilibrium properties
of spectral functions, e.g., the existence of Floquet states
[26-34], which have been proposed as a means of engineering
certain material properties such as topological states in peri-
odically driven systems [28,31,35].

Typically, trARPES measurements are made in momen-
tum space; in order to gain insights into the behavior of
observables in real space, one would thus need to Fourier
transform the data [36]. For locally restricted excitations,
e.g., ones induced by the tip of a scanning tunneling
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microscope (STM) [37,38], it can be important to investi-
gate the evolution of spectral properties directly in position
space. However, STM experiments typically deal with trans-
port properties in the linear-response regime and hence remain
close to equilibrium (see, e.g., Ref. [39] for a recent re-
view). Here, we go beyond the equilibrium scenario and
ask what happens when the system is perturbed so that it
moves far from equilibrium. We treat this case by comput-
ing the time evolution of the local density of states (LDOS)
when strongly perturbing a strongly correlated system only
locally. We envisage that this quantity will be experimentally
accessible in the future, also on the ultrashort time scales
treated by us here. Experimental realizations of such strong
nonequilibrium scenarios may be realized, for example, in
experiments on optical lattices by studying the dynamics us-
ing single-site microscopes, or in future time-resolved local
spectroscopy experiments using STM [40] or trARPES setups
(see, e.g., Ref. [41], in which local energy landscapes in
a WSe,/MoS; heterostructure are measured using trARPES
techniques).

Inspired by these considerations, we ask the question of
what happens when a small, initially empty, test system (in
the following referred to as a “nanoprobe” or “probe”) is
brought near a sample hosting a strongly correlated state of
matter. We assume a strong coupling between the sample
and the nanoprobe, which also allows for electrons to flow
from the probe back to the sample. This will induce a dy-
namics that is far from the linear-response regime, so that an
equilibrium description does not apply. One important aspect
is to what extent measures from linear-response theory are
useful to describe such a situation. We quantify this by con-
sidering in detail the properties of the LDOS computed from
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time-dependent single-particle propagators. The behavior of
the LDOS is particularly interesting for strongly corre-
lated electrons because the time-evolved LDOS can exhibit
nontrivial features induced by significant electron-electron in-
teraction: whereas the LDOS remains time independent after
the sudden coupling for noninteracting systems (as discussed
later in the paper), this is no longer true for strongly inter-
acting systems, and the behavior of the LDOS can change
significantly in the course of time.

Here we study these aspects on a “standard” model for
strongly correlated physics, namely, the Hubbard model in
one spatial dimension [42,43]. At finite repulsive interaction
strength, this model exhibits Mott-insulating behavior [44]
at half filling and is a Luttinger liquid [45] otherwise. Our
setup allows us to study and compare the time evolution of
the LDOS in the two qualitatively different phases by tuning
the initial filling.

The remainder of the paper is organized as follows: In
Sec. II, we describe the model, the quantities that we study,
and the methods that we use. In particular, in Sec. I A,
we describe the setup of our model system and the time-
dependent coupling between sample and nanoprobe. In
Sec. II B, we discuss the observables we compute, in par-
ticular the time-dependent LDOS. Section II C describes our
matrix-product-state (MPS) approach to simulating the dy-
namics of the system as well as the exact solution for the
U =0 case. In Sec. III we present our results for both the
stationary and the moving nanoprobe. Finally, we discuss and
summarize our findings in Sec. IV. In addition, Appendix A
describes estimates of the accuracy of our calculations by
comparing to the exact results at U = 0, and Appendix B con-
tains additional results for a higher nanoprobe velocity, v = 1.
Appendix C provides a theoretical estimate of the velocity of
the light-cone-like perturbation in the local electron density
in the sample that occurs after it is coupled to the probe; this
estimate is based on the exactly calculated charge velocity of
the one-dimensional Hubbard model. We also provide Supple-
mental Material [46] containing additional details on the issue
of convergence of the TDVP-based time-dependent density
matrix renormalization group (DMRG) calculations for the
interacting system as well as an elucidation of the origin
and form of oscillations in the LDOS for the noninteracting
system, as seen in Sec. III.

II. MODEL, OBSERVABLES, AND METHODS

A. Model

We study the one-dimensional Hubbard model [42,43],
which, at time ¢ = 0, is suddenly coupled to a set of initially
empty interacting sites, which represent the nanoprobe, as
depicted in Fig. 1. This system is modeled by the Hamiltonian
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FIG. 1. Schematic depiction of the setup. Blue sites are in the
sample and red sites in the nanoprobe. The tunneling strength
t, and the on-site Hubbard U have each the same values in the
sample and the probe, respectively. The tunneling strength #; between
sample and nanoprobe is finite only at times ¢ > 0. The nanoprobe
can move to the right with a constant speed v > 0 relative to the
sample.

with

w(t, i, j)=00¢)|0(vt—i+j+ 5 +1

. . L—-L,
—®<vt—z+]+ 5 —1)}, )

where ®(x) is the Heaviside function, ¢ the time, and we take
the lattice constant to be 1. We designate the number of sites
in the sample L and the number of sites in the nanoprobe
L,. Here index i € {1, ..., L} runs over sites in the sample
and index j € {1, ..., L,} over sites in the probe. We work
in the canonical ensemble with a fixed number of particles
N. In Hamiltonian (1), we assume open boundary conditions.
The function w(¢, i, j) causes each site of the nanoprobe to
be coupled to the two nearest sites in the sample only for
all times t > 0. The operator cf"; represents the annihilation
(creation) operator for an electron with spin o on lattice site
i,and n; , = czocm is the electron density for spin o at site
i. Here 1, is the hopping amplitude inside the sample and
inside the nanoprobe; in the following, we work in units in
which #, = 1 and take /i = 1. The coupling 1] is the hopping
amplitude between sample and probe. The parameter U > 0
denotes the strength of the repulsive on-site interaction be-
tween the electrons, which we assume to be the same in the
sample and in the probe. If not stated explicitly otherwise,
we take U = 4, a value corresponding to the bandwidth of
the sample at U = 0. In the following, we will also study the
situation in which the nanoprobe moves with a constant speed
v over the sample. For speeds v > 0, the hoppings between
the nanoprobe and the sample are adjusted in time according
to the function w(t, i, j) which leads to a sequence of quantum
quenches.

B. Observables
1. Local particle density (n;)

In all cases, we compute the time evolution of the lo-
cal particle density n;(t) = (¥ (¢)|n;|¥(¢)). Due to the strong
tunneling between sample and nanoprobe, we expect the back-
flow of electrons to lead to nontrivial behavior in this quantity.
Furthermore, coupling the nanoprobe to the sample is a local
quench, so that we expect that a perturbation will propagate
through the sample, leading to a light-cone-like signature in
n;(t). Note that for the Mott insulator at half filling, the flow
of electrons from the sample to the nanoprobe will move the
sample away from half filling, so that it should then lose
the properties of a Mott insulator in the course of time. In
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particular, this should affect the Mott gap, which is visible in
the LDOS.

2. Time-dependent local density of states

We calculate the time evolution of the energy-resolved
LDOS at position i, D, (¢, w, i), as the Fourier transform of
the retarded two-time Green’s function (see, e.g., Ref. [47] for
a similar approach to computing the nonequilibrium single-
particle spectral function):

1
V2

xe”%k@4t+rlc;xﬂn}, 3)

D, (t, w, i):Re[ /00 O(t)dtW(r)

where the operator cf;) (¢) is the annihilation (creation) opera-
tor for an electron with spin o at position i in the Heisenberg
picture evolved with the full, time-dependent Hamiltonian
H(t) at time ¢, and {-, -} denotes the usual anticommutator.
Note that alternative ways of computing momentum- and
energy-resolved time-dependent spectral functions that avoid
carrying out a Fourier transform to frequency space do exist;
see, e.g., Ref. [48]. Here, however, we study the local spectral
properties using the more direct definition of the LDOS based
on linear-response theory, Eq. (3), and compare the results to
the equilibrium expectations, giving us a quantitative measure
for how strongly our time-dependent LDOS deviates from the
linear-response regime.

As discussed further below, we can compute the two-time
Green’s function up to a restricted maximal time Tp,, SO that
it is necessary to regularize the integral by introducing either a
damping term e~ "" or a windowing function in order to avoid
ringing effects caused by a sudden cutoff of the data at T =
Tmax [49]. We find here that applying the Hann window, which
is defined as

W (T) = O(tmax — 7)) sin? [ —— + ),
2Tmax 2

leads to the best results.

Note that, at equilibrium (linear-response theory), the time
evolution of ¢!”)(r) is carried out using the Hamiltonian of
the unperturbea system, so that time-translation invariance
can be used to reduce the time dependence of the Green’s
function to one time variable. Since time-translation invari-
ance is absent out of equilibrium (e.g., in the quench we
perform here at time ¢ = 0), we need to treat the full time
dependence of the two-time Green’s function. Here we use a
relative-time representation of the retarded two-time Green’s
function, i.e., ({cm(t + 1), c;T(t)}). This has two helpful
aspects.

(i) We can interpret the variable ¢ as the waiting time after
switching on the coupling between the nanoprobe and the
sample and ask for the behavior of the LDOS at this waiting
time.

(ii) It makes the numerical evaluation of this quantity
easier.

This is the case because, due to the Heaviside function
®(t), we only need to compute the Green’s function for
T > 0. Rather than this relative-time representation, one could
instead use the so-called Wigner representation (see, e.g.,

Ref. [50]), for which, however, one would also need to com-
pute expectation values at further points in time, increasing
the computational cost. According to Ref. [50], the results
in both representations do not differ significantly, so that we
choose to work in the relative-time representation for the sake
of efficiency.

Due to the limitations of the numerical approaches, we
have evaluated the integral numerically using a time step dt =
0.01 up to times Tmax = S (except that we take T« = 20 for
the U = 0 case, which can be treated exactly). However, we
discretize @ at 2000 equally spaced points between wpi, =
—10 and wnax = 10 by interpolation using zero padding. Note
that, at equilibrium, the LDOS defined in this way can be
expressed as a Lehmann representation with positive weights,
so that an interpretation as a spectral weight is natural. How-
ever, this is no longer possible in the nonequilibrium case,
and negative weights can, in principle, appear [51]. As dis-
cussed further below, we observe negative weights only at
short times, at which the system is strongly out of equilibrium,
but, at later times, negative weights seem to be absent, so that
an interpretation of the results in terms of spectral weights
is possible. Similarly, in nonequilibrium situations, one needs
to be careful about identifying the occupied and unoccupied
parts of the LDOS: at equilibrium, one usually introduces
the lesser and the greater parts of the LDOS, B (w, i) and
B (w, i) [52], which indicate the populated and empty states
on lattice site i, respectively. Out of equilibrium, one can
generalize these functions as follows:

B> (t, w, i)

— Re [\/;_n O T drwme (el e, + r))],

“

B> (t,w, i)

1 Tmax

ZRe[m g

dt W (1) (¢, . (t + r)cf,r,(t»}-

&)

Note that, due to the lack of a Lehmann representation, both
quantities can become negative. Furthermore, linear-response
theory requires time-translation invariance in order to interpret
these quantities as occupied or empty parts of the spectrum,
respectively. Here, due to the nonequilibrium setup, we do not
have this symmetry when going to negative 7, so that we can
only expect these quantities to represent the occupied (empty)
part of the LDOS approximately. We will come back to this
interesting aspect in Sec. III A 4, where we discuss how to
estimate the occupied states in D (7, w, i) at lattice site i by
comparing to (n; ,)(t).

3. Nonegquilibrium occupation energy

At equilibrium, the LDOS is obtained as

D (w, i) = Re[\/;_n /_: O(t)dt W(z)e"
x (fe; , (D)™, CZG(O)”°}>], (6)
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where Hj indicates that the time evolution of the operators
is carried out using the unperturbed Hamiltonian, and, due to
time-translation invariance, only one time variable needs to be
treated. Integrating the equilibrium LDOS Di'(w, i) in energy
up to the Fermi level Er will yield the local particle density
(ni), so that the LDOS below Efr can be interpreted as the
occupied part. The Fermi energy Er is hence the value of the
energy of the highest populated state in the system. Similarly,
at equilibrium, one can introduce

B> (w, i)

[o.¢]

N Re[ \/;_n / AT (e <c1(,(0>”°c,,(,<r>”°>} )
as the lesser part of the LDOS. Note that By “!(w, i) does
not have weights for energies higher than Ep, so that
[, doB; Y w, i) = (n;,). Hence, By *(w,i) represents
the occupied part of the LDOS. Out of equilibrium, however,
one needs to be more careful. A simple way to identify the
populated states is to assume that only the lowest-energy
parts of the nonequilibrium LDOS D, (¢, w, i) are occupied.
Integrating D, (¢, w, i) at site i at fixed waiting time 7 up to
a certain energy, which we call E,, should give the same
result as (n; ,)(t). The value Ey(t) can then be interpreted
as the nonequilibrium generalization of Er. We define E,.
implicitly via

| [Eoecltsd)

¢ wonton —maw. ®

CJo
with the normalization C = ffooo dw Dy (t, w,i). In the fol-
lowing, spin-flip symmetry is present; thus, for simplicity, we
only discuss the ¢ =1 component of both the LDOS and the
particle density.

Furthermore, we can compare the expectation value for
the number of particles as obtained from the energy integral
f dw B3 (t, w, i) at fixed ¢ and i with the directly computed
expectation value (n, ;)(¢), which, in equilibrium, is identical,
as discussed above. Differences from this expectation value
can be considered to be a measure of how far away from equi-
librium the system is. As discussed further below, significant
deviations are obtained at short times in particular, indicating
strong nonequilibrium behavior, while, at later times, both
quantities agree to within a few percent. The time evolution
of E,(t) also indicates how particles are redistributed in
the course of time, in particular, for the cases in which the
LDOS is changing in time due to the strong interactions in the
system.

C. MPS-based methods
1. Initial state preparation and time evolution

All calculations for the interacting system have been per-
formed at U = 4 using a DMRG algorithm [53,54] within the
MPS framework [55,56], which is available in the SYMMPS
toolkit [57].

The general procedure is as follows. For U = 4, we calcu-
late the ground state on a system with L = 50 sample lattice
sites and L, = 5 nanoprobe sites for the quarter- and half-
filled samples, with N =26 and 50 particles, respectively.
(We take N = 26 rather than N = 25 particles for quarter

filling so that the number of spin-up and spin-down particles
is equal.) Initially, the nanoprobe is not yet coupled to the
system, i.e., t;, = 0. To ensure a state with zero occupation
at time ¢ = 0 in the nanoprobe, we add a small repulsive
electrostatic potential ) jeprobe Hj(j,4 +nj ) on these sites.
We then perform a ground-state search with a maximum bond
dimension of x = 2500 and a maximum discarded weight
of § = 10~'* with a total of 50 sweeps. This allows us to
approximate the ground state of the system with an absolute
error in the ground-state energy of 3.0 x 107 in the quarter-
filled case, compared to the exact value known from the Bethe
ansatz [43,58]. The absolute error in the ground-state energy
in the half-filled case is even smaller, 1.7 x 1077,

At time r = 0, the electrostatic potential in the nanoprobe
is then set to zero, and it is immediately coupled to the sys-
tem with the full hopping strength, ¢, = ,. We compute the
subsequent time evolution of the total system using the time-
dependent variational principle (TDVP) in its two-site version
using MPS [59,60]. This allows us to treat systems with arbi-
trary coupling ranges and to adjust the bond dimension in the
course of the time evolution, keeping track of the growth of
entanglement with time. It is known that the TDVP can have
substantial problems with product initial states. Alternatively,
one could use the matrix product operator (MPO) WII time-
evolution algorithm [60,61], which does not suffer from such
problems. Here we have tested both algorithms, comparing
with exact diagonalization for systems with three particles,
and we find that the errors of the TDVP for the given setup
are an order of magnitude smaller than those of the MPO WII
algorithm. The MPO WII has a maximum absolute error of
~4 x 10™* in n;(¢) for this test case, whereas the TDVP algo-
rithm reaches a maximum error of ~35 x 107>. In addition, in
Appendix A, we compare the time evolution of the half-filled
case at U = 0 as obtained from MPS with that of the exact
solution (see Sec. II C 3). As shown there, the absolute errors
grow in time. For v = 0, we find that the absolute errors in
(nis)(t) are < 0.05 at later times, and the absolute errors in
the LDOS are < 0.015, while for the moving probe the errors
in the LDOS are even smaller, although the absolute errors in
(ni+)(t) can be as high as ~0.1 at isolated points. Hence, we
believe that our results are sufficiently accurate to extract the
essential physical behavior.

We set the threshold for the discarded weight during the
time evolution to § = 107! and the maximum bond dimen-
sion to xmax = 2500. The time step size is §t = 0.01 for all
results presented. As discussed in Appendix A, the resulting
discarded weight at later times is rather large, almost 107%;
however, due to the high computational cost, we do not fur-
ther increase the bond dimension or carry out calculations to
longer times.

We perform the time evolution so that, for all waiting times,
the integration time is 7,,,x = 5 after the waiting time (i.e.,
for waiting time ¢ = 5, we perform the simulations up to
times t + Tmax = 10). In this way, all the presented results at
different waiting times have the same resolution in w.

For a finite speed v > 0 of the probe, the Hamiltonian is
explicitly time dependent. In principle, more accurate results
can be obtained by applying more elaborate discretization
schemes on the time variable, such as commutator-free ex-
ponential time propagators [62]. However, in our case, due
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to the structure of the function w(¢, i, j) in the Hamiltonian
(1), the time dependence of H is not continuous, but comes
in steps at points in time determined by the value of v. The
time evolution for v > 0 is, therefore, realized as a sequence
of quantum quenches, for which the usual methods (here the
TDVP) perform well.

2. Swap operator

For the case of the moving nanoprobe, i.e., v > 0, the
hopping terms to the sample become longer range with time,
which leads to larger entanglement between the two parts
of the system and hence makes the MPS description less
accurate. In our case, we have only nearest-neighbor and
next-nearest-neighbor hopping at time ¢ = 0; it is useful to
keep the hopping as short range as possible in the course of
the time evolution. We address this by introducing the swap
operator (see Ref. [63] for the usage of swap operators for
time-evolution algorithms),

P = 1_[ [1 - (C;G - C:—H,c)(ci.a - Ci—"—lyg)]’ (9)
o="{

which is applied at the points in time when the probe, accord-
ing to the function w(z, 7, j), Eq. (2), couples to new sites in
the sample. In this way, the site labeling is adapted so that the
hopping terms for all times treated are either nearest-neighbor
or next-nearest-neighbor terms, thus minimizing the entangle-
ment growth in the course of time.

3. Solution for U = 0

In the noninteracting case, U = 0, we can solve the system
exactly by diagonalizing the Hubbard Hamiltonian (1) for a
single particle. In doing this, we add an additional chem-
ical potential of u = 10% to the sites of the nanoprobe so
that the wave-function amplitude is vanishingly small there.
This ensures that the initial many-body state has zero par-
ticle density on the nanoprobe before the coupling between
nanoprobe and sample is turned on at ¢ = 0. This then yields
the single-particle wave functions ¢; ,(0), where i denotes the
lattice site and n refers to the nth excited state for a single
particle, with n = 1 being the single-particle ground state.
The time-dependent state |1;(¢)) is then easily obtained by

applying the time-evolution operator e~":
Ny N,
Vi) = [ Y inlt)e) o + D dinlt)c) | ]10),
n=1 n=1

where ¢;,(t) = e H¢; ,(0) are the time-evolved single-
particle states. The time-dependent LDOS D, (¢, w, i)
can then be calculated via the transformation c;4(t) =
> @iw(t)cy 4. Note that n refers to the single-particle
states for the decoupled system; n’, however, refers to the
single-particle eigenstates after coupling the nanoprobe to the
Hubbard chain. Inserting this expression into Eq. (3) leads to
a simple expression for the two-time Green’s function:

(e gt +1) ¢l 0N =) ¢t +T)¢f, (). (10)

This expression is independent of the number of particles in
the system, as particles and holes lead to the same contribution

for the LDOS in the U = 0 case. Furthermore, at v =0, i.e.,
for a time-independent Hamiltonian, the LDOS of the nonin-
teracting system is time independent because the dependence
on ¢ in Eq. (10) vanishes for ¢~ (+7) ¢t — ¢=iHT Note that
Eq. (10) can be calculated accurately to arbitrarily long times,
so that, in contrast to the MPS results at finite U, we can obtain
much better resolution in w.

III. RESULTS

In this section, we present representative results for the
time evolution of our setup. We organize the discussion by
first considering a stationary nanoprobe, i.e., one that does not
move over the sample, v = 0, then going on to a relatively
slow nanoprobe with v = 0.55. We have also carried out cal-
culations at a higher velocity, v = 1, which are presented in
Appendix B; we will also describe the salient aspects of the
behavior relative to that of v = 0.55 in the main text. For all
values of v, we first discuss the behavior of the noninteracting
case, U = 0, then present results for the interacting case,
taking the Hubbard interaction to have intermediate strength,
U = 4. For all cases, we take a system with L = 50 sample
sites with L, = 5 initially empty probe sites and treat two
values of the band filling, quarter filling with N = 26 particles
and half filling with N = 50 particles. We present the results
for the time evolution of the local particle density in the
sample and in the nanoprobe as well as the LDOS at three
fixed positions: in the sample far away from the nanoprobe,
site iy = 13; in the sample directly under the nanoprobe, site
iy = 26; and in the center of the nanoprobe, site i, = 3. All
results are obtained for samples with L = 50 lattice sites and
nanoprobes with L, = 5 lattice sites.

A. Resting nanoprobe: v = 0

We first consider the case in which the nanoprobe does
not move, i.e., v = 0. As soon as the tunneling between the
system and the nanoprobe is turned on at time 7 = 0, the
system evolves nontrivially in time as it undergoes a quantum
quench. As the tunneling will also be turned on at t = 0 for
the cases of a moving nanoprobe, the v = 0 behavior will
provide a basis for the interpretation of the moving cases.
Since the nanoprobe initially holds no particles, particles will
begin tunneling from the system to the nanoprobe at r = 0.

1. Noninteracting case U = 0

We start with the noninteracting case, U = 0. In Fig. 2(a),
we display the expectation value of the local particle den-
sity n;(¢) for the quarter-filled system as a color density plot
plotted as a function of position and time. As can be seen in
the plot, at time ¢ = 0, the nanoprobe is completely empty
of particles. After the tunneling to the system is turned on
(t > 0), the particles begin to tunnel back and forth, leading
to oscillations in time in the local particle density in both
the nanoprobe and in the region of the system in its vicin-
ity. These oscillations are somewhat spatially inhomogeneous
both in the system and in the nanoprobe, with the strongest
fluctuations of particle density occurring near the center of
the nanoprobe. As time progresses, the time dependence in
local particle density spreads out in time. In particular, a “light
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FIG. 2. Exact results for the nanoprobe model with L = 50 sam-
ple sites and L, = 5 nanoprobe sites for the system initially at quarter
filling, i.e., N = 26, with U = 0 and nanoprobe velocity v = 0. Here
(a) depicts the expectation value of the local particle density, (n;), as
a color density plot as a function of lattice site i and time ¢, and (b),
(c), and (d) plot the LDOS for the lattice sites iy = 13, i; = 26, and
i, = 3, respectively, as a function of the frequency w. Note that the
LDOS is rigorously time independent for U = 0 when v = 0. The

cone” that spreads out across the sample at constant speed
¢ ~ 1.6, which we have estimated by roughly fitting the wave-
front, is evident. See Appendix C for additional discussion of
the fitting as well as a theoretical estimate of the light-cone
velocity based on the velocity of charge excitations u, in the
system. In Figs. 2(b)-2(d), we display the LDOS D, (t, w, x)
for this case at sites i; = 13 and 26 in the sample and i, = 3
in the nanoprobe. Sites iy = 26 and i, = 3 are directly next
to each other and become directly linked by hopping terms
as soon as the coupling between probe and sample is turned
on. For U = 0 and a speed of v = 0, the LDOS is time in-
dependent for all sites after the coupling is turned on. This is
to be expected because the Hamiltonian is time independent
for t+ > 0 in this case, and there is no scattering between the
electrons; see also the discussion in Sec. II C 3. Thus, we
display the LDOS for time ¢ = 0 only. For iy = 13, Fig. 2(b),
we observe peaks at w &~ —2 and 2, with an oscillating and
nonvanishing LDOS in between the peaks. A discussion of
the origin and form of the oscillations in the LDOS can be
found in the Supplemental Material [46].

At sample site i; = 26 and probe site i, = 3, which are
adjacent to one another, we can see that the LDOS for both
sites have peaks that are largely at the same w positions, with
only the amplitudes differing somewhat. In contrast to the
LDOS for i; = 13, there is a major peak at w &~ —4 for these
two sites. Regarding the occupation energies, we find that
Eoc.(t) is essentially time independent on lattice site iy = 13,
indicating no (or only very little) redistribution of particles
on the time scale considered. This is to be expected, as the
light-cone-like perturbation in #;(¢) reaches this position only
at later times, ¢+ > 5, which are not shown. At site iy = 26,
Eocc(t) is initially close to the equilibrium Fermi energy at
site iy = 13. After the nanoprobe is coupled to the sample,
Eoc.(t) begins to oscillate, almost reaching the left edge of the
LDOS (i.e., the lattice site is nearly completely depleted) at
time ¢ = 4. The occupation energy at site i, = 3 inside the
nanoprobe is not defined at time ¢+ = O because the system
is empty. However, after the probe is coupled to the sam-
ple, Eocc(t) begins to oscillate, similarly to the value on site
iy = 26, which is directly coupled to this lattice site of the
nanoprobe. The oscillations of Ey () on these two sites have
approximately opposite phase, indicating strong tunneling of
particles between the two lattice sites. This is to be expected,
since at U = 0 there is no scattering between the particles,
which could lead to equilibration of local observables on short
time scales.

2. Interacting case at quarter filling

We now turn on the Hubbard interaction to U = 4, staying
with quarter filling and resting nanoprobe, v = 0; see Fig. 3.
As can be seen by comparing Fig. 3(a) with Fig. 2(a), the
oscillation in local particle density between the system and
the nanoprobe is more damped than in the U = 0 case. Again,
a light cone that spreads out over the system with the speed

occupation energy Eo.(¢) is shown as an inset for each of the three
lattice sites as a function of ¢ and is also shown at five indicated times
as vertical lines in the LDOS.
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FIG. 3. MPS results for (a) the local particle density and the
LDOS for (b) is = 13, (c) i; = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 4, quarter filling, i.e., N = 26, and v = 0.

¢ & 1.6 is clearly evident. This value of ¢ is consistent with
the theoretical estimate in Appendix C. Examining the LDOS
for site i; = 13 (well to the left of the nanoprobe), we obtain

U=0N=50v=0

(ni)
-

1.2

1.0

0.8

0.6

0.4

0.2

0.0

FIG. 4. Exact results for the local particle density plotted as in
Fig. 2 for U = 0, half filling, i.e., N = 50, and v = 0. The occupation
energy Eo.(¢) is shown as an inset for sites iy = 26 and i, = 3. The
LDOS in this case is not explicitly shown, as it is the same as in
Fig. 2.

a double-peak structure, and an additional separated satellite
peak at higher w. Again, as in Fig. 2(b), Eo.(t) is essentially
time independent on this lattice site on the time scales shown.
As before, this is to be expected from the light-cone signal in
n;(t), which reaches this position only after the times shown.

For lattice sites i; = 26, Fig. 2(c), and i, = 3, Fig. 2(d), the
overall structure of the LDOS is similar at all times. However,
in contrast to the noninteracting case, the LDOS is time depen-
dent at both sites. This is due to the interactions between the
electrons. Interestingly, at the later times treated by us, they
seem to settle to a stationary value, and the change in time is
smaller than at the beginning of the evolution. Again, Eqc(#)
changes significantly in time on both sites and oscillates with
the period of the oscillations of the local densities on these
sites. The phase of the oscillation again shows a tendency to
be opposite on both sites, but the electron-electron interaction
now induces a damping.

Note that, as discussed in Sec. II, the resolution in w is
significantly lower than for the U = 0 case, so that finer
structures are not resolvable. In addition, on general grounds,
the interaction U leads to self-energy contributions, which
tend to broaden out peaks in spectral functions relative to the
noninteracting case.

3. Interacting case at half filling

‘We now consider the effect of changing the initial filling of
the system to half filling. Figure 4 depicts the time evolution of
the local particle density for the noninteracting (U = 0) half-
filled system. In contrast to the quarter-filled case, Fig. 2(a),
we can see that the oscillatory behavior is now spread across
the whole nanoprobe rather than being concentrated in its
center. As discussed in Sec. II C 3, the LDOS for the U =0
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case is independent of band filling. However, E,.. changes in
time, as shown in Fig. 2.

At finite interaction, U = 4, Fig. 5(a) shows that the oscil-
lations in the local particle density between the sample and
the nanoprobe are also present, but are heavily damped. The
large damping is not unexpected, as the system is insulating
for U = 4 and half filling, inhibiting charge transport.

In the LDOS at i; = 13, Fig. 5(b), we observe two peaks,
which, at the beginning of the time evolution, have essentially
the same height. The splitting between the peaks is consistent
with the size of the Mott-Hubbard gap at this value of U,
which, according to the Bethe ansatz, is A ~ 1.29 [44]. How-
ever, note that the weight of the LDOS in Fig. 5 does not go to
zero in the gap region. This is because of the limited resolution
of our calculations; see Sec. II. As in the previously discussed
cases, the LDOS and E,.. on this site initially show only
very weak time dependence, while at + =5 a clear change
is visible. We associate this onset of change with the arrival
of the light cone, which induces a change of the number of
particles on this site, and hence a change of the LDOS and
Eocc.

For iy =26 and i, = 3, Figs. 5(c) and 5(d), we obtain a
continuous LDOS with a smaller peak at energies below Eo.
and a higher peak at energies larger than E,... On both sites,
the LDOS changes in time, while, at later times, the changes
become smaller. The overall structure of the LDOS for both
sites and at all times is again comparable, as in the case of
quarter filling. However, the gap is no longer present after the
coupling to the probe is turned on, indicating a melting of the
Mott insulator in this region.

We expect that this melting of the Mott insulator will
propagate through the system and that the gap in the LDOS
will close with the arrival of the light cone on the respective
site. It remains an open question as to whether the shape of
the LDOS at longer times will approach the results on site
iy = 26 also further away from the nanoprobe. Due to the high
computational cost, we do not address this question further in
this paper.

From the insets of Figs. 5(b)-5(d), it can be seen that
Eo.(t) behaves similarly to the previously discussed cases,
but that the damping is much stronger. The behavior on sites
iy =26 and i, = 3 indicates that the amplitudes of the os-
cillations are damped nearly completely to zero on the time
scales that we have been able to treat; in addition, the values
of Eqc(t) at time ¢ = 5 are quite similar, which corresponds
to what we would expect if equilibration takes place. Both
aspects indicate that the LDOS reaches equilibrium on both
adjacent sites on the short time scales treated here. This is
interesting because, in typical materials, the hopping strength
is t, ~ 1eV, which translates to time scales O(1fs), corre-
sponding to one time unit in Fig. 5. Thus, equilibration after
coupling a Mott insulator to a nanoprobe seems to happen on
ultrafast time scales of a few femtoseconds. To further inves-
tigate the equilibration behavior of the Mott-insulating case,
longer times and additional Mott-insulating systems would
need to be treated, which, due to the high computational
expense, is left as a subject for future research.
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FIG. 5. MPS results for (a) the local particle density and the
LDOS for (b) i; = 13, (c) i; = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 4, half filling, i.e., N = 50, and v = 0.
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pectation value of the local densities (n, ,)(t) and the integral over
the lesser spectral function [ dw B (w, x). Left column: half filling,
ie., N =50,U =0, v = 0. Right column: the same at U = 4. (Top
row, relative difference; bottom row, absolute difference.) We define
the absolute difference here as | f dw B (w, x) — (n,,)(t)| and the
relative difference as |(f dw B3 (w,x))/(ns ) (@) — 1].

4. Interpretation of the results as a nonequilibrium LDOS

In the preceding discussion, we have tacitly interpreted our
results as if we were dealing with an equilibrium or near-
equilibrium setup (i.e., have applied linear response), so that
the corresponding Fourier transform of the Green’s function,
Eq. (3), can be rewritten in terms of a Lehmann representa-
tion with explicitly positive weights. Out of equilibrium, the
weights cannot be proven to be positive in general [51], so
that, in principle, negative weights can appear. This makes
it difficult to interpret the corresponding results as a time-
dependent LDOS. However, as can be seen in Figs. 2-5, all of
the weights calculated here are positive, up to small artifacts,
which may be due, at least in part, to the way we compute
the Fourier transform. Hence, for the cases treated so far, it
appears reasonable to interpret the results as time-evolving
LDOS.

This issue can be further investigated by studying the
lesser and greater parts of the LDOS as defined in Egs. (4)
and (5), respectively. In equilibrium, the expectation is that
fda) B> (w, x) = (ny ). Figure 6 shows results for the dis-
crepancy between the two quantities in the out-of-equilibrium
case for both the noninteracting and the interacting, U = 4,
cases at half filling with a resting nanoprobe. The agree-
ment between [ dw Bj (w, x) and the independently computed
expectation values (n,.(t)) at later times is within a few
percent, thus substantiating our interpretation of D, (w, x, t),
as defined in Eq. (3), as a good approximation to the time
evolution of the LDOS for the later times. Interestingly, for
the interacting system, the discrepancy is smaller than for the
noninteracting system. At shorter times, t ~ 1, however, the
discrepancy can become as large as ~30%. This shows that
here the system is in a strongly out-of-equilibrium regime in
which the interpretation of our results as a time-dependent
LDOS must be treated with caution. Note that, in all cases, the

absolute value of the discrepancy is very small; at times ¢ & 1,
however, the small particle numbers lead to a large relative
discrepancy. The discrepancy in the actual values is larger at
small times, and, again, is smaller for the interacting system.

For the case of a moving probe, similar behavior is ob-
tained (see Sec. IIIB and Appendix B). However, as we
will see next, the computed LDOS can, in addition, take on
negative values, in particular, in the strongly out-of-
equilibrium regime at short times.

B. Moving nanoprobe: v > 0

Having explored the behavior when coupling a stationary
nanoprobe to the sample at time ¢t = 0, we now treat cases in
which the nanoprobe is moving at constant speed. As in the
stationary case, we also turn on the coupling between sample
and a nanoprobe at the center of the sample at time ¢ = 0;
subsequently, the nanoprobe moves to the right relative to the
sample with speed v.

A natural scale for the velocities in the system is the
velocity of propagation of disturbances in the local particle
density, i.e., the speed associated with the previously dis-
cussed light cone, ¢ &~ 2. We treat two different velocities,
v = 0.55 (~c/4) and v = 1 (= ¢/2). Here we present the find-
ings for v = 0.55 in detail and complement the discussion by
highlighting the similarities and differences with the case of
the higher velocity of v = 1, for which we present additional
results in Appendix B.

In the following, we will use the resting case, v =0, as a
reference, highlighting the similarities and differences of the
behavior in the two moving cases. For all velocities v > 0,
we find that there are stronger wavefronts to the left of the
right-moving nanoprobe and weaker ones to its right; see, e.g.,
Fig. 7(a) for v = 0.55, U = 0, and quarter filling. Note that
the slope of the wavefronts is still consistent with a constant
speed ¢ ~ 1.6 for the light cone. The effect of the movement
of the probe is that particles “leak out” of the nanoprobe in the
wake of its motion. The speed of v = 0.55 is an interesting
case because, for this speed, we find that these “wake” effects
are particularly pronounced, in contrast to the v = 1 case
(see Appendix B). For v = 0.55, the motion of the probe is
spatiotemporally commensurate with the oscillations of the
particle density, which leads to constructive interference to
the left of the moving probe. Therefore, the wavefronts are
very pronounced for this particular velocity, as can be seen
in Fig. 7(a). Strong oscillations in the local particle density
between the nanoprobe and the system are still present, but,
for the moving nanoprobe, they are mostly concentrated at its
trailing edge rather than its center as in the stationary case.

The LDOS for this case is displayed in Figs. 7(b)-7(d), for
the same three sites as before, i; = 13, iy = 26, and i, = 3.
Note that the LDOS is now, in general, time dependent, also
forU = 0. Asatv = 0, the LDOS at site i; = 13 is essentially
time independent due to the fact that the nanoprobe is moving
away from this site so that, at the times treated, the wake
caused by the moving nanoprobe has not yet reached it. At
site iy = 26, Fig. 7(c), the evolution of the LDOS differs
significantly from that of the resting case, Fig. 2(c). One
marked feature is that the results can now take on substantially
negative values, in particular, for times ¢ < 3. However, at
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FIG. 7. Exact results for (a) the local particle density and the
LDOS for (b) iy = 13, (c) i; = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 0, quarter filling, i.e., N = 26, and v = 0.55.

later times, the discrepancy between (n;,) and f dw B (w)
is only a few percent, a behavior similar to that of the case
of the stationary nanoprobe. Note that i; = 26 is a stationary

point in the center of the sample and therefore becomes de-
coupled from the nanoprobe at time ~6.4, which is shorter
than the time interval over which we perform the Fourier
transform from ¢ to w. For the faster moving case, v =1
(see Appendix B), site iy = 26 already decouples from the
nanoprobe at times ¢ ~ 3.5, so that the LDOS, Fig. 13(b),
takes on, approximately, the decoupled equilibrium form, i.e.,
that of Fig. 2(b), fort > 4.

The LDOS at i, = 3, Fig. 7(d), is essentially time inde-
pendent, despite the fast motion of the nanoprobe, a behavior
also found in the v = 1 case; see Appendix B. The structure
and the positions of the peaks are roughly the same as for
the resting nanoprobe, Fig. 3(d). Regarding E,..(t), we see
a similar behavior to that of the resting case for iy = 13 and
i, = 3. However, Eu.(t) appears to increase with time for
iy = 26, unlike in the resting case.

Turning on the interaction to U = 4 in the quarter-filled
case with v = 0.55, Fig. 8, we see that (n;(¢)) has similar fea-
tures to that of the U = 0 case, Fig. 7(a). Note, however, that
now the oscillation is significantly more damped. As before,
the LDOS at site iy = 13, Fig. 8(b), is approximately time
independent since the light cone has not reached this position
on the time scales treated by us. Comparing the LDOS on site
iy = 26 to the resting case, v = 0, we observe that the overall
picture is comparable, but that there are now more changes
in time in the relevant energy region; notably, at t = 3, a dip
evolves between two peaks at w &~ —2.5 and 1. However, this
dip disappears at later times. It is notable that—in contrast to
the noninteracting case—the LDOS takes on (up to minimal
effects) only positive values for all values of w shown. As
discussed in Sec. IIT A 4, the discrepancy of the occupations
is only a few percent, so that, again, interpreting the spectrum
as a quasiequilibrium LDOS seems to be justified. For i, = 3,
Fig. 8(d), there is only weak time dependence. The results are
very similar to the ones for v = 0, with only minor qualitative
differences. This is interesting, as it indicates that the motion
of the nanoprobe seems to not significantly affect the time
evolution of the LDOS on its sites. This similarity of the
LDOS on site i, = 3 to the v = 0 case remains present when
the nanoprobe velocity is higher, v = 1; see Appendix B.

The time-dependent behavior of Ey.(f) for v = 0.55, de-
picted in the insets of Figs. 8(b)—8(d), is very similar to that of
the resting case, Figs. 3(b)-3(d), However, for iy = 26, Eyc.(¢)
appears to settle to a stationary value within the simulation
time, in contrast to the v = 0 case. This difference in behavior
is due to the fact that the probe moves away from this po-
sition so that local observables equilibrate faster than when
the probe is resting. At site i, = 3, however, Eq.(t) keeps
changing in time, as might be expected because the nanoprobe
continues to move over the sample.

We continue examining probe velocity v = 0.55, but now
increase the initial band filling to half filling, first taking
U = 0. Figure 9 displays the U = 0 local particle density. As
can be seen by comparing with Fig. 7(a), the wavefronts to
the left of the nanoprobe are even more pronounced than in
the quarter-filled case. Furthermore, there is an even stronger
buildup of local particle density inside the probe. At larger
times, the local particle density rapidly changes over to being
concentrated at the leading edge of the nanoprobe. Note that
the buildup of local density is even stronger in the v = 1 case,
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FIG. 8. MPS results for (a) the local particle density and the
LDOS for (b) ig = 13, (c) iy = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 4, quarter filling, i.e., N = 26, and v = 0.55.

with it being concentrated at the trailing edge of the probe for
times up to ¢ ~ 7; see Appendix B.
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FIG. 9. Exact results for the local particle density, plotted as
in Fig. 2, for U = 0, half filling, i.e., N = 50, and v = 0.55. The
occupation energy E..(¢) is shown as an inset for sites iy = 26 and
i, = 3. The LDOS in this case is not explicitly shown, as it is the
same as in Fig. 7.

We now consider the interacting case, U = 4, Fig. 10,
remaining at half filling and v = 0.55. As in the half-filled,
interacting, v = 0 case, Fig. 5(a), we see once again that the
oscillation between the nanoprobe and the system is heavily
damped. We notice that there is a lower particle density to-
wards the left of the probe inside the light cone, consistent
with the probe moving to the right. For higher probe velocity,
v =1 (see Appendix B), the local particle density behaves
similarly, except that the oscillations in particle density in the
sample are less strong, as the probe moves more quickly over
the sample.

Examining the LDOS, first at site iy = 13, Fig. 10(b), we
can again see the peaks at w =~ 0 and 4 for i; = 13 and a gap at
w =~ 2, similar to the v = 0 case, Fig. 5(b). The movement of
the probe causes the peak at w = 4 to shrink slightly for later
times ¢, a feature also found at higher probe velocity v = 1
(see Appendix B). In the LDOS at site i; = 26, Fig. 10(c), one
can see that the Mott gap in the LDOS again disappears due to
coupling to the empty nanoprobe. The LDOS features peaks
at w &~ —2.5 and 2, and only changes slightly with time. At
the latest time that we have reached, t = 5, the LDOS does
show small changes, building up spectral weight between the
two peaks. This is most likely due to the nanoprobe becoming
decoupled from site iy = 26 at r ~ 6.4, which is within the
time interval over which the Fourier transform is carried out.
This effect is not yet noticeable at ¢ = 4, probably because the
Hann window that we apply weights times closer to the lower
bound of the integral more strongly. At the initial time, t = 0,
the LDOS at probe site i, = 3, Fig. 10(d), exhibits peaks at
w~ —4 and 2. For t > 1, both peaks diminish slightly, and
the LDOS is shifted a small amount towards larger w values.
The LDOS then appears to settle in to this slightly altered
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FIG. 10. MPS results for (a) the local particle density and the
LDOS for (b) iy = 13, (c) i, = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 4, half filling, i.e., N = 50, and v = 0.55.

shape for all times ¢ > 1. Interestingly, this form closely
resembles that of the iy = 26 LDOS [cf. Fig. 10(c)], which

seems reasonable because the two sites are directly connected
via a hopping term.

Examining the behavior of Ey.(#) [insets of Figs. 10(b)—
10(d)], it appears to be heavily damped in time, similarly as in
the stationary (v = 0) half-filled system, Figs. 5(b)-5(d). For
i =26 and i, = 3, E,(t) seems to settle to approximately
the same value, which is slightly larger than zero.

IV. DISCUSSION AND SUMMARY

In this paper, we have investigated the coupling of an
empty nanoprobe to a one-dimensional system of correlated
electrons for two different fillings, half filling and quarter
filling, treating the case of a stationary nanoprobe as well as
that of a moving one. We have taken both the sample and
the nanoprobe to have intermediate local Coulomb interac-
tion strength, U = 4, and have contrasted the behavior with
that of the noninteracting, U = 0, case. In all scenarios that
we have studied, the coupling between the sample and the
nanoprobe, consisting of nearest-neighbor hopping terms be-
tween proximate lattice sites of the sample and corresponding
sites of the nanoprobe, is suddenly turned on. Using an MPS
formulation of the DMRG and treating the time dependence
using an TDVP scheme, we have studied the time-dependent
behavior of the local particle density (n;)(¢) and of the LDOS
D, (t, w, x), as defined by Eq. (3).

As areference system, we take the noninteracting case with
a stationary nanoprobe. Turning on the hopping between the
sample and the empty nanoprobe at r = 0 induces long-lived
oscillations in the local particle density (n;)(¢) in the sites in
the probe and in the sample in the vicinity of the nanoprobe.
As can be shown rigorously, the LDOS for this system is time
independent. However, the occupation energy E(t), defined
by Eq. (8), which is a measure of the local chemical potential,
oscillates in time, with opposing phases of oscillation on the
site on the nanoprobe and the proximate site on the sample
due to the strong tunneling between them, reflecting the oscil-
lations in the local particle density.

For systems with finite interaction strength, U = 4, oscilla-
tions in the local particle density are still present, but become
more strongly damped, especially at half filling. At both quar-
ter and half filling, the LDOS is no longer time independent,
but does evolve towards a stationary form at longer times;
this holds for both stationary and moving nanoprobes. The
oscillations in E(¢) are, in general, still present, but are more
strongly damped than for U = 0, indicating that the system
seems to already attain local equilibrium on the short time
scales that we have been able to treat here. This damping
is somewhat stronger for the half-filled case than for the
quarter-filled one, reflecting the reduced charge mobility in
the initially Mott insulating phase, consistent with the stronger
damping in the local particle density.

For the initially half-filled sample, the gap in the LDOS
in the sample site situated at the center of the nanoprobe
closes immediately upon suddenly coupling the sample and
probe, indicating the local breakdown of the Mott insulator.
However, for sample sites further away from the nanoprobe,
some time is required before the perturbation induced by
coupling the two subsystems reaches the observation po-
sition. In this way, one observes a “melting” of the Mott
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insulator that propagates through the system with time. For the
quarter-filled sample, the LDOS is clearly metallic far from
the nanoprobe, where it remains stationary, in the sample un-
der the nanoprobe, where there is moderate change with time,
and in the nanoprobe, where there are only small changes with
time once the connection between sample and probe is turned
on.

For a moving nanoprobe, the local environment in the
sample, in particular, the local particle density, changes
as the nanoprobe moves over it. Note, however, that changes
in the sample propagate outwards with a velocity given by
the light cone, which is significantly larger than the speed of
movement of the nanoprobe and can be clearly seen in the
time and space dependence of the local particle density. The
primary effect of the movement of the nanoprobe is to reduce
backflow effects into the sample, as the back-tunneling from
the probe to the sample is spread over different sample sites as
the probe moves. The behavior of the LDOS is similar to that
of the case of a resting nanoprobe. Interestingly, on the sites
of the moving probe, the LDOS behaves essentially as if the
probe were at rest. On the sites in the sample, the behavior of
the LDOS is similar to that in the stationary case, up to times
at which the site initially under the nanoprobe is no longer
under the influence of the nanoprobe because it moves far
enough away.

These features of the cases with a moving nanoprobe re-
main qualitatively the same when the speed of the nanoprobe
is increased. The exceptions are that for the slower nanoprobe
velocity, v = 0.55, there are interference effects in the local
particle density due to commensuration of spatial and tem-
poral oscillations of the local particle density that are not
present at the higher nanoprobe speed, v = 1. In addition,
the decoupling of the nanoprobe from sample sites initially
under the nanoprobe occurs on shorter time scales for the fast
nanoprobe velocity, so that quasiequilibration of the LDOS
occurs sooner on such sites.

We remark that the nonequilibrium LDOS that we have
computed [Eq. (3)] is not restricted to be strictly positive
semidefinite. Negative values are incompatible with the in-
terpretation as spectral weights that one is used to for an
equilibrium LDOS. However, we, in fact, find that negative
weights only occur in very few cases (most markedly, in the
U = 0 case with a moving nanoprobe), and, for these cases,
only at short times. In these cases, we also find that there
is a discrepancy between the local particle density directly
calculated as (n;,)(¢) and that obtained from f dw B ().
We characterize this anomalous short time behavior as being
strongly nonequilibrium. Thus, the general picture is that the
discrepancies in the local particle density and the appearance
of negative values of the LDOS disappear at later times (es-
pecially in the interacting system), which is consistent with
reaching an equilibrium state, so that a description in terms
of standard linear-response theory is applicable. It is inter-
esting to see that this happens on the very short time scales
treated by us; for a typical material, the hopping strength
t, ~ 0.5-1eV. Since the units of our time scale are #/1,
this implies that our calculations typically reach ~5-10fs,
which lies in the ultrafast regime of even highly time-resolved
experimental techniques such as pump-probe experiments.
Developing such time-resolved local spectroscopy with STM

—— N=26 v=0
—— N=50 v=0
—— N=26 v=0.55
—— N=50v=0.55
—— N=26 v=1
641 —— N=50v=1

discarded weight

FIG. 11. Maximum discarded weight § during a TDVP time step
as a function of the evolution time 7 for U = 4, with L = 50 sample
sites and L, = 5 nanoprobe sites and initial filling and probe speed
as indicated in the legend.

is an ongoing challenge [40]. However, one can envisage that
similar scenarios to the ones proposed here could be stud-
ied using single-site microscopes in experiments on optical
lattices, which realize the Hubbard model [64—-68]. In either
case, it will be interesting to study how the states developing
on the ultrashort time scales treated by us here affect the
behavior at the later times accessible to these experiments.

It would therefore be interesting to also study the time
evolution of the LDOS and other dynamical quantities for
other strongly correlated systems. For example, investigat-
ing a similar scenario to the one treated here in correlated
charge density wave (CDW) insulators could allow one to
study if and how the melting of a CDW state propagates
through the system after a local perturbation. Since topolog-
ical phases are either protected by local symmetries (e.g.,
symmetry-protected topological phases in one dimension) or
by long-range entanglement (in particular, in two-dimensional
systems), it would be interesting to study the interplay of
the local perturbation with these protection mechanisms by
studying the time evolution of the LDOS.
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APPENDIX A: NUMERICAL ACCURACY

The truncation error of the time evolution has been found
to be proportional to the square root of the discarded weight:
e~ /5 [60]. In Fig. 11, we find that, for the half-filled
system, the discarded weight for later times reaches just under
S~ 1074, resulting in an error of ~10~2. This level of accu-
racy should be sufficient to discern features of the LDOS that
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dominate its qualitative behavior. Furthermore, as discussed
in Sec. IIC, this level of error is also overshadowed by the
limited resolution of our calculation of the LDOS caused by
the fact that we are only able to carry out the integrals in
Egs. (4) and (5) to tmax = 5.

In Fig. 12(a), it can be seen that the error in the local
particle density (n;) becomes appreciable at times after r ~ 4
in and in the vicinity of the nanoprobe and continues to
grow and spread out as time progresses. The error is thus
concentrated in regions in which the most change in time
takes place. The LDOS far away from the nanoprobe, i; = 13,
Fig. 12(b), shows no significant error, whereas that under and
in the nanoprobe, Figs. 12(c) and 12(d), shows absolute errors
that grow with time, becoming significant at later times. Nev-
ertheless, we consider them to be small enough to ensure that
the qualitative behavior of the LDOS, which is limited anyway
due to taking the maximum time in our Fourier integration,
Egs. (4) and (5), to be tyax = 5, remains unchanged. The
maximum absolute difference in the LDOS at sites iy = 26
and i, = 3 for later times is about 0.014. The largest peaks
that are resolved in the LDOS (for t,,x = 5) are approxi-
mately 0.15 in amplitude. This is an error of about 10% for
the largest peaks and only occurs at later times. Despite this
appreciable error, the accuracy should be sufficient to resolve
the larger peaks in the LDOS. When evaluating the presence
and size of the smallest peaks, however, which reach from
approximately 0.015 to 0.05, one cannot necessarily make a
definite determination. Nevertheless, we emphasize that the
errors at smaller times and for lattice site iy = 13 are almost
negligible and yield more than sufficiently accurate results.
Further details on the numerical accuracy of calculations for
the interacting system, in particular, for the moving probe with
v = 1 and with regard to the bond-dimension dependence, can
be found in the Supplemental Material [46].

APPENDIX B: RESULTSFORv =1

In this Appendix, we present results for a probe velocity of
v = 1 for the same sets of remaining parameters as the results
for v = 0.55 presented in Sec. III B. Note that most of the
features of the v = 1 case are very similar to those of the v =
0.55 case; many of the important differences and similarities
have already been highlighted in Sec. III B. In the following,
we will present v = 1 results for both quarter and half filling
for both U = 0 and 4 and briefly describe salient aspects.

We first treat the case of zero interaction strength, U =
0, and quarter filling. Comparing the local particle density,
Fig. 13(a), with that for the v = 0.55 case, Fig. 7(a), we
observe the same qualitative behavior, albeit with more pro-
nounced wavefronts to the left of the nanoprobe for v = 0.55,
as discussed in Sec. III B. Comparing the LDOS for sample
site iy = 26, Fig. 13(b), to that of the v = 0.55 case, Fig. 7(c),
we can see that the right peak in the LDOS is preserved
throughout the whole time evolution. However, the left peak
in Fig. 7(b) is lost after the coupling of the probe to the system
is turned on at # = 0. Note, however, that this peak is restored
att ~ 3.5 for v = 1, as can be seen in Fig. 13(b). This is due
to the fact that, at this point in time, the probe has traveled far
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FIG. 12. Results of the TDVP time evolution, with L = 50
sample sites and L, = 5 nanoprobe sites, compared to exact diag-
onalization for U = 0 and probe velocity v = 0 at half filling, i.e.,
N = 50. Here (a) depicts the absolute difference in the particle den-
sity (n;), and (b)—(d) depict the absolute difference in the LDOS at
the indicated sites. Note that the maximum integration time Ty, = 5
for both the exact diagonalization and TDVP calculations in order to
make the results comparable.
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FIG. 13. Exact results for the nanoprobe model, with L = 50
sample sites and L, = 5 nanoprobe sites, for the system initially
at quarter filling, i.e., N = 26, with U = 0 and nanoprobe velocity
v = 1. Here (a) depicts the expectation value of the local particle
density (n;) as a color density plot as a function of lattice site i and
time ¢, and (b) plots the LDOS at site i; = 26 as a function of the
frequency w. The occupation energy E,..(t) at site iy = 26 is shown
as a solid line. The dotted line indicates the decoupling of the probe
from lattice site i; = 26 att = 3.5.

enough across the system that site iy = 26 is decoupled from
the probe.

We now turn to the case of intermediate interaction
strength, U = 4, for the quarter-filled system. Comparing the
local particle density, Fig. 14(a), with that for the v = 0.55
case, Fig. 8(a), we again see mostly the same behavior except
that there are more pronounced wavefronts to the left of the
nanoprobe. For the LDOS, comparing Figs. 14(b)-14(d) with
Figs. 8(b)-8(d), we can see that the LDOS at sites iy = 13
and i, =3 are almost unaffected by the change in speed
of the probe. In Fig. 14(c), we again observe that the left
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FIG. 14. MPS results for (a) the local particle density and the
LDOS for (b) iy = 13, (¢) i; = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 4, quarter filling, i.e., N = 26, and v = 1.

peak in the LDOS is restored for times ¢ > 4 for the probe
speed of v =1 due to decoupling of the nanoprobe from
site i; = 26.
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FIG. 15. Exact results for the local particle density, plotted as in
Fig. 2, for U = 0, half filling, i.e., N = 50, and v = 1. The occupa-
tion energy E, () is shown as an inset for sites i; = 26 and i, = 3.
The LDOS in this case is not explicitly shown, as it is the same as in
Fig. 13.

For the U = 0 case in the half-filled system, comparing
Fig. 15 with Fig. 9, the behavior is qualitatively the same
except for the more pronounced wavefronts for v = 0.55, also
seen at quarter filling. One can see that there are more particles
collected in the nanoprobe over time for v = 1; this is due
to the fact that the higher probe speed makes more particles
available to tunnel into the probe.

Finally, for interaction strength U =4 and half filling,
comparing Fig. 16 with the v = 0.55 case, Fig. 10, the lo-
cal particle density, Fig. 16(a), behaves similarly for the two
probe speeds, but again, more particles are collected in the
probe over time for v = 1. In the LDOS, the behavior for
site iy = 13, Fig. 16(b), is essentially unaffected by the probe
speed, showing a double-peak structure characteristic of a
Mott insulator where there is only a slight shift in the rel-
ative weight of the two peaks with time. For site i; = 26,
the behavior at v = 1, Fig. 16(c), is similar to that for v =
0.55, Fig. 10(c), in that the two-peak structure characterizing
the Mott insulator immediately disappears at t = 0, and two
weaker peaks at small times evolve into a structure charac-
terized by one peak. In contrast to v = 0.55, however, a new
two-peak structure with a stronger, broader, left peak emerges
and remains stationary at the two longest times, ¢t = 4.0 and
5.0. Within the nanoprobe at i, = 3, the behavior for v =1,
Fig. 16(d), and v = 0.55, Fig. 10(c), is virtually identical,
showing a two-peak structure without a discernible gap at
small times washing out into a broad structure with vestigial
peaks at larger times.
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FIG. 16. MPS results for (a) the local particle density and the
LDOS for (b) iy = 13, (c) i, = 26, and (d) i, = 3, plotted as in Fig. 2,
for U = 4, half filling, i.e., N = 50, and v = 1.
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FIG. 17. Calculated values for the charge velocity (solid lines)
as well as light cone velocities measured from our numerical (round
points) for nanoprobe velocity v = 0. For U = 0, we take u, = vp =
2t sin(mrn), the Fermi velocity, as the charge velocity, whereas for
U =4, we plot a curve taken from Bethe-ansatz calculations of
Ref. [69] (in particular, Fig. 12). The light-cone velocity is obtained
from fits of the wavefront in the local particle densities of Figs. 2(a),
3(a), 4, and 5(a) above. For these data, we take the value of the filling
n on the abscissa to be the average of the particle density within the
first trough in the wavefront.

APPENDIX C: CHARGE VELOCITY

In this Appendix, we elucidate theoretical estimates of
light-cone velocity and compare with fitted values from the
local particle densities for a nanoprobe velocity v = 0 and
interaction strength U = 0 and 4. As an estimate of the light-
cone velocity, we take the velocity u, of charge excitations
at the Fermi level in the system. For a one-dimensional in-
teracting electron gas, the low-energy charge excitations are
bosonic and have a velocity that is distinct from that of the
low-energy spin excitations. The charge velocity u,, depends
on the bare Fermi velocity and the interaction strength; for
U = 0, both the spin and charge velocities reduce to the Fermi
velocity vg = 2¢ sin(;rn). For the one-dimensional Hubbard
model, u, can be calculated for all n and U using the Bethe
ansatz [69]. These theoretical estimates as well as the light-
cone velocities obtained from fits to the disturbance in the
local density in Figs. 2(a), 3(a), 4, and 5(a) are plotted in
Fig. 17. Note that coupling the system to the probe reduces the
local particle density in the system. We thus adjust the value
of the average particle density (abscissa of the plot) so that it
corresponds to the average value in the first trough within the
light cone. We observe that all data points, except the U = 0
quarter-filled case, align well with the theoretical estimates of
the spreading speed of particles.
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