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Motivated by the recent proposals for unconventional emergent physics in twisted bilayers of nodal su-
perconductors, we study the peculiarities of the Josephson effect at the twisted interface between d-wave
superconductors. We demonstrate that for clean interfaces with a twist angle θ0 in the range 0◦ < θ0 < 45◦,
the critical current can exhibit nonmonotonic temperature dependence with a maximum at a nonzero temperature
as well as a complex dependence on the twist angle at low temperatures. These effects are shown to reflect the
destructive interference between the d-wave order parameters near the nodes at nonzero twist angle. Close to
θ0 = 45◦ we find that the critical current does not vanish due to Cooper pair cotunneling, which can lead to the
transition to a time-reversal breaking superconducting d + id phase, which can be suppressed by the interface
roughness. We provide a comprehensive theoretical analysis of experiments that can reveal this cotunneling
for twisted superconductors close to θ0 = 45◦. In particular, we demonstrate that both the emergence of the
Fraunhofer interference pattern near θ0 = 45◦ and fractional Shapiro steps yield unambiguous evidence of
Cooper pair cotunneling, necessary for topological superconductivity.
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I. INTRODUCTION

Experiments on two-dimensional (2D) materials have
reached an unprecedented level of control and precision. 2D
sheets of atomically thin layers can be isolated via exfoliation
and stacked to make a wide range of devices [1]. This ap-
proach is expected to be applicable to a variety of materials [2]
that can be exfoliated, i.e., have binding energy densities less
than ∼100 meV Å−2. With the development of the “tear and
stack” approach [3], it is now possible to accurately control
the twist angle (to within ∼0.1◦) between sheets of a variety
of 2D materials, such as boron nitride [4,5], graphene [6–14],
and transition-metal dichalcogenides [15–17]. The superlat-
tice generated due to the moiré pattern that is realized due
to the twist downfolds and strongly renormalizes the single-
particle spectrum [18–21]. This approach has successfully led
to the observation of correlated insulators and superconduc-
tors across a wide range of devices ushering in a new era
of “twistronics” [22] or “moiré materials” [23]. Developing
a theoretical description for the resulting single-particle exci-
tations and their instability to interactions has attracted a great
deal of theoretical attention [20,24–37].

The strongly correlated high-temperature cuprate super-
conductors are layered materials with a highly anisotropic
quasi-two-dimensional layered structure [38]. This has re-
cently led to the realization of atomically thin sheets [39–41]
of Bi2Sr2CaCu2O8+x (BSCCO) with superconducting transi-
tion temperatures very close to that measured in bulk samples.

*Contact author: pavel.volkov@uconn.edu

These findings in conjunction with the recent success of moiré
materials [42] have partly motivated theoretical proposals to
twist nodal superconductors, at small [43,44] and large twist
angles [45,46]. In the case of singlet d-wave superconductors,
small twist angles θ0 ≈ 1◦ can possess a magic angle in the
Bogoliubov–de Gennes spectrum that drives strong interac-
tions between the quasiparticles, whereas at large twist angles
(in particular θ0 = 45◦) the free energy of the system is low-
ered by spontaneously generating a phase difference between
the two layers, breaking time reversal symmetry (TRSB).
In this regime, a d + id topological superconducting ground
state is realized with a Josephson current-phase (I − ϕ) rela-
tion between the bilayers that is fundamentally altered [47]
from I ∼ sin ϕ to I ∼ sin 2ϕ.

Recent experiments on exfoliated thin slabs of BSCCO
homojunctions with atomically abrupt interfaces have suc-
cessfully realized twisted devices with a critical current that
strongly depends on the twist angle [48–50]. In these de-
vices, BSCCO was cooled to cryogenic temperatures during
stacking, which preserved the interfacial structure and su-
perconductivity. In contrast, all the previous experimental
attempts to realize superconducting interfaces along the c axis
with BSCCO required annealing at high temperature [51–53]
and yielded varying results on the twist dependence of the crit-
ical current. In particular, the strong suppression of the critical
current (to zero in the lowest order in tunneling [54,55]) has
been observed only in one experiment [52]. On the other hand,
the cryogenically prepared twist junctions [48–50] demon-
strate a dramatic suppression of critical current towards 45◦, as
well as an interesting nonmonotonic dependence of the critical
current. Near 45◦, such twisted junctions exhibit fractional
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Shapiro steps and a modified Fraunhofer pattern [48], indi-
cating that the Josephson current-phase relation is consistent
with the second harmonic.

In a range around 45◦, the twisted BSCCO junctions were
also shown to exhibit a trainable superconducting diode effect
[48,56], demonstrating the emergence of time-reversal broken
superconductivity at the interface. All of these observations
taken together provide the necessary symmetry conditions for
the system to realize topological superconductivity in bilayers
[43,46] or flakes containing a finite number of layers [57,58].
However, to date “smoking gun” experimental evidence of
topology, such as the quantized thermal Hall effect (κxy/T ),
has not been observed.

This experimental breakthrough necessitates the develop-
ment of a detailed theoretical description of the temperature
and twist angle dependence of the critical current as well
as the emergent behavior of twisted nodal superconductor
interfaces in magnetic fields that goes beyond the previous
works [54,55,59]. In particular, a possible nonmonotonic tem-
perature dependence of the critical current or signatures of
a topological phase near θ0 = 45◦, including magnetic field
effects, has not been studied.

In this manuscript, we develop a theoretical description of
the Josephson effect at interfaces between twisted slabs of
nodal superconductors. We use the tunneling Hamiltonian ap-
proach for a detailed study of how the critical current depends
on temperature, twist angle, and magnetic field, including the
effects of interface inhomogeneity and higher-order tunneling
processes. For clean and regular interfaces, we show that the
temperature dependence of the critical current reflects the
Fermi surface geometry and the form of the interlayer tun-
neling, which generally leads to a nonmonotonic dependence
on temperature and twist angle. The presence of nanoscale
inhomogeneities at the twist interface washes out the finer de-
tails, leading to a critical current that goes like Ic ∼ cos(2θ0)
away from θ0 = 45◦. For twist angles close to θ0 = 45◦, the
critical current is mediated by the cotunneling of Cooper pairs
that can lead to the realization of a topological time-reversal
breaking d + id superconducting state with a current-phase
relationship that is given by the second harmonic. For increas-
ing inhomogeneity roughness, we find that the topological
superconducting phase is destroyed and time-reversal symme-
try restored. Using the derived twist angle-dependent critical
current, the effects of a parallel magnetic field are investigated
while incorporating the realistic device geometry used in re-
cent experiments [48]. As a result, we are able to demonstrate
the emergence of the Fraunhofer pattern of the critical current
close to θ0 = 45◦ and show how it can be used to reveal the
current-phase relationship of the twist junction. Lastly, we
study the effects of a microwave drive on the twist junction
and show that the presence of fractional Shapiro steps as
well as the properties of the width of each step can be used
to characterize the contribution of cotunneling, necessary for
topological superconductivity near θ0 = 45◦.

The remainder of the paper is organized as follows.
In Sec. II we discuss the model investigated and general
relations used to compute the current. In Sec. III we study the
effects of Fermi surface geometry and momentum-dependent
tunneling with a clean interface where translational symme-
try is preserved, and in Sec. IV we determine how these

FIG. 1. Twisted interfaces between nodal superconductors. The
schematic shows two finite-thickness flakes of a highly two-
dimensional d-wave superconductor. In the bulk of the flakes,
individual layers (dashed lines) are coupled by a conventional
Josephson tunneling, while at the interface the current-phase relation
can depend on the twist angle θ0.

conclusions are altered by considering momentum relaxation
due to nanoscale inhomogeneities breaking translational sym-
metry at the interface. The computed critical current as a
function of temperature and twist angle is used to determine
the behavior of the critical current in the presence of a mag-
netic field, including emergent Fraunhofer patterns, as well
the structure of Shapiro steps in the presence of microwave
drive in Sec. V. We conclude in Sec. VI.

II. MODEL AND GENERAL RELATIONS

The recent twisted BSCCO Josephson junction experi-
ments [48–50,60] are performed on devices consisting of two
flakes of finite thickness, each consisting of a large number of
BSCCO unit cells along the c axis (Fig. 1). It is established
[61,62] that in bulk BSCCO, the coupling between the super-
conducting order parameters between the neighboring CuO2

bilayers can be well described by a conventional Josephson
coupling. Consequently, when describing twisted flakes of
finite thickness, we will use the effective model of Josephson
coupled layers, where coupling between all the layers except
at the twisted interface reduces to the conventional Josephson
coupling. In the following section, we describe the micro-
scopic approach used to compute the interlayer supercurrent
across the twisted interface and its dependence on the phase
difference of two superconducting bilayers, the temperature
and the twist angle.

A. Effective model at the interface

We start with a model of a superconducting layer with the
second layer twisted at an angle θ0 with respect to the first
one. As we will treat the interlayer tunneling as perturbation,
the Josephson coupling between the layers at the interface
and the neighboring layers within each flake can be evaluated
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independently. We will also neglect the coupling between
layers that are not nearest neighbors assuming the tunneling
to be weak. Finally, we will assume macroscopically large
interfaces, such that the edge contributions to the effects dis-
cussed here can be neglected. A potential contribution of edge
modes in the topological state is one such contribution, which
is expected to be subleading in the junction size. A pair of
superconducting layers are described by the Hamiltonian

Ĥ =
∑
k,s

ξ (k)c†
ks1cks1 + ξ (k̃)c†

ks2cks2 +
∑

k

[�(k, T )

× eiϕc†
k↑1c†

−k↓1 + �(k̃, T )c†
k↑2c†

−k↓2 + H.c.], (1)

where k̃ = Rθ0 k, Rθ0 being a rotation matrix around the z
axis, ξ (k) is the single-particle dispersion, and �(k, T )eiϕ ≡
�1(k, T ) and �(k̃, T ) ≡ �2(k̃, T ) are the superconducting
order parameters in layer one and two, respectively, with ϕ

being the phase difference between the two. For the tunneling
between the two layers, we assume spin-independent single-
particle tunneling and follow the approach of Refs. [19,43,44],
writing the tunneling in momentum space:

Ĥtun =
∑
k,k′,s

t (k, k′)c†
ks1ck′s2 + H.c., (2)

where the rotation is accounted for by (1). Equation (2) rep-
resents the most general form of the tunneling Hamiltonian.
We note that by keeping the tunneling matrix element de-
pendent on momenta in both layers, we can consider both

the situations where the in-plane momentum is conserved
(corresponding to a clean interface) and is not conserved
(due to the moiré quasiperiodicity, roughness, and disorder
at the twisted interface). For a clean system, the tunneling
is momentum-conserving, t (k, k̃′) = t (k + G)δk+G,k̃′ , where
G is a reciprocal-lattice vector [19]. In what follows, we will
ignore the umklapp processes generated by G 	= 0 in the clean
case. These processes can be rigorously ignored for a Fermi
surface being close to the � point [43,44]. While they can be
of the same order close to the Brillouin zone edge, we will
ignore them in the main text for a qualitative assessment of
the tunneling and assess their influence in Appendix E. The
results there show that allowing for such processes does not
significantly change the results if the tunneling decays as a
function of momentum on scales of the order of a reciprocal-
lattice vector |G|, as expected in twisted bilayers that are
weakly bonded (i.e., the lattice constant along the c axis is
larger than in the plane) [19].

To study the Josephson effects in the twisted bilayer,
we use the general expression for the current-phase relation
(CPR) (valid regardless of the tunneling strength) [63]

I (ϕ) = 2e

h̄

dF (T, ϕ)

dϕ
, (3)

where the free energy is given by

F (T, θ0, ϕ) = −T Tr log[Ĝ−1(iεn, k)δk,k′ − t̂ (k, k′)] (4)

and

Ĝ−1(iεn, k) = iεn −
[
ξ (k)τ3 + �(k)[cos ϕτ1 − sin ϕτ2] 0

0 ξ (k̃)τ3 + �(k̃)τ1

]
, t̂ (k, k′) =

[
0 t (k, k′)τ3

t∗(k, k′)τ3 0

]
, (5)

where the matrices act in the layer space.
For the case of weak tunneling, general expressions can be obtained for I (ϕ, θ0, T ) by expanding the free energy in t (k, k′).

The lowest-order term reads

I (2)(ϕ, T, θ0) = 2e

h̄
Tr

[
∂Ĝ

∂ϕ
t̂ Ĝt̂

]
= 4e

h̄
T
∑

εn,k,k′

|t (k, k′)|2�(k)�(k̃′) sin ϕ[
ε2

n + ξ 2(k) + �2(k)
][

ε2
n + ξ 2(k̃′) + �2(k̃′)

] ≡ I (2)
c (T, θ0) sin ϕ, (6)

where k̃′ = Rθ0 k′, and we have introduced the second-order contribution in t to the critical current I (2)
c via the CPR. This result

for the current and the CPR corresponds to the conventional linear response obtained from the Kubo formula. Importantly,
for θ0 = 45◦, the expression in Eq. (6) vanishes by symmetry for a d-wave superconductor. This can be seen by considering
the transformations x → −x or y → −y. Under these mirror symmetries, �(k̃) changes sign while �(k) does not, leading to
I (2)(ϕ, T, 45◦) = 0. Note that this statement is still valid for the actual point group of BSCCO crystals [55]. Therefore, for twists
close to 45◦, the next order in tunneling becomes the leading one. In contrast, higher-order corrections (sixth order and beyond)
will always remain subleading to the fourth-order contribution and will be neglected in what follows.

The next order in the expansion is given by

I (4)(ϕ, T, θ0) = 2e

h̄
Tr

[
∂Ĝ

∂ϕ
t̂ Ĝt̂ Ĝt̂ Ĝt̂

]

= − 8e

h̄
T

∑
εn,k1,k̃2,k3,k̃4

t (k1, k2)t (k2, k3)t (k3, k4)t (k4, k1) sin ϕ[
ε2

n + ξ 2(k1) + �2(k1)
][

ε2
n + ξ 2(k̃2) + �2(k̃2)

]

× �(k1)�(k̃2)
[
ε2

n − ξ (k3)ξ (k̃4) + �(k3)�(k̃4) cos ϕ
]

[
ε2

n + ξ 2(k3) + �2(k3)
][

ε2
n + ξ 2(k̃4) + �2(k̃4)

]
≡ I (4)

1,c (T, θ0) sin ϕ + I (4)
2,c (T, θ0) sin 2ϕ, (7)
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where we assumed time-reversal symmetry in the tunneling
matrix element [t (k, k′) = t∗(k, k′)]. Two features can be
noted in this expression: First, its relative minus sign with
respect to Eq. (6). Second, the dependence on the phase
difference in Eq. (7) contains both first ∼ sin ϕ and second
∼2 sin ϕ cos ϕ = sin 2ϕ harmonic dependence on the phase
difference, which allows us to define the fourth-order contri-
bution in t to the critical current in the first I (4)

1,c and second I (4)
2,c

harmonic CPRs. Note that the pure first harmonic term has
the same properties under mirror symmetries as Eq. (6) and
hence vanishes exactly at θ0 = 45◦. On the other hand, close
to Tc, one observes that the sin 2ϕ term contains an additional
square of the order parameter. Consequently, one can expect
that at θ0 	= 45◦, the conventional ∼ sin ϕ harmonic will be
dominant close to Tc. Finally, one observed that Eqs. (6) and
(7) will depend differently on the overall amplitude of the
tunneling—quadratically and quartically, respectively. This
suggests that the effects of the second-harmonic contribution
(which is quartic in tunneling) will become more important
with increasing tunneling amplitude that may depend on, e.g.,
interface quality or applied pressure.

B. Temperature dependence of the superconducting gap

To study the temperature dependence of the CPR, the tem-
perature dependence of the gap � has to be included. As we
are interested in the qualitative character of this dependence,
we will introduce several simplifying assumptions.

First, we assume a weak coupling between the layers, such
that the influence of the interlayer hopping [43,44] and in-
teraction on the magnitude of the mean-field order parameter
can be neglected. It follows then that the amplitudes of the
order parameters in two layers are independent and equal
to each other, i.e., |�1| = |�2| = �. Note that this does not
necessarily imply that the effects of higher-order interlayer
tunneling are always negligible for the CPR, and the exact
Eqs. (3) and (4) can be used to study those.

The self-consistency equation for the superconducting gap
within a single layer then takes the form

�(T, k) = T
∑
εn,k′

VSC(k, k′)
�(T, k′)

ε2
n + ξ 2(k′) + |�(T, k′)|2 , (8)

where VSC(k, k′) is the intralayer pairing interaction. We will
further simplify it by taking an instantaneous interaction with
a separable form, i.e., VSC(k, k′) = VSC f (k) f (k′), where f (k)
vanishes at the nodes. The solution of (8) is then given by

�(T, k) = �0(T ) f (k). (9)

Finally, we expand ξ (k) and f (k) in Fourier series in the polar
angle in momentum space,

θ = arctan(ky/kx ), (10)

and leave only the lowest harmonics for both. In the rest of
the manuscript, we will only focus on the case of a d-wave
superconductor (that is relevant for twisted BSCCO). In this
case, leaving the lowest angular harmonics only we have
ξ (k) → ξ0(|k|) and

f (k) → f0(|k|) cos 2θ. (11)

The integration in (8) can be carried out around k ≈
kF such that f0(|k|) ≈ f0(kF ). One can then define the
superconducting gap amplitude at the Fermi level

�(T ) ≡ �0(T ) f0(kF ). (12)

Using Eq. (8) at Tc to eliminate VSC in favor of Tc, one arrives
at the equation for �(T ),

∞∑
n=−∞

∫ 2π

0
dθ

⎡
⎢⎣ cos2 2θ√

(2n + 1)2 + |�(T )|2 cos2 2θ

π2T 2

− cos2 2θ

|2n + 1|

⎤
⎥⎦= 0.

(13)

In what follows, we use the numerical solution of Eq. (13)
for the temperature dependence of the gap amplitude. For nu-
merical summation here and in what follows, |n| < |n|max =
20(Tc/T ) + 50, which has been checked to be enough for the
sum to converge.

III. Ic(θ0, T ) FOR COHERENT TUNNELING

In this section, we demonstrate that momentum-conserving
tunneling results in the unconventional twist angle- and tem-
perature dependence of the critical current. In particular, we
show that both the anisotropy of the gap and the Fermi surface
result in strong deviations of the low-temperature Ic(θ0) from
the cos 2θ0 form, which is the lowest harmonic consistent with
d-wave symmetry. These deviations appear much stronger
than those observed in recent experiments [48] at any tem-
perature. Moreover, the sign-changing nature of the gap is
shown to yield a nonmonotonic temperature dependence of Ic

at sufficiently large twist angles, consistent with experimental
observations [48].

A. Circular Fermi surface

We consider first the simplified model on a circular Fermi
surface for ξ (k) = vF (k − k f ) and a d-wave gap symmetry
�(k) = �(T ) cos 2θ . We begin by discussing the lowest-
order term in the expansion of the CPR in t , Eq. (6). In
Fig. 2(a) we present the resulting critical current I (2)

c (T, θ0)
as a function of twist angle for several temperatures. Close to
Tc, one can expand Eq. (6) in the order parameter, resulting
in the lowest order in I (2)

c ∼ ∫ dθ�(θ )�(θ + θ0) ∼ cos 2θ0.
However, at low temperatures [Fig. 2(a)], the twist angle de-
pendence deviates strongly from the cos 2θ0 form expected
near Tc. The reason for this deviation is the higher harmonics
of cos 2θ0 appearing in the denominator of Eq. (6) due to the
development of an anisotropic d-wave gap.

In the region θ0 � 10◦, one also observes that the curve for
T/Tc = 0.25 lies above the one for T = 0. This demonstrates
a decrease of I (2)

c (T, θ0) on cooling, i.e., a nonmonotonic
temperature dependence. We illustrate this in Fig. 2(b), where
indeed I (2)

c (T, θ0) has a maximum at an intermediate temper-
ature. For large twist angles around 45◦, the behavior changes
very little, despite the change of the critical current magnitude
shown in Fig. 2(a). We note that a nonmonotonic temper-
ature dependence has also been predicted for in-plane d/d
junctions [64,65].

Moving towards the next order in the expansion, however,
results in a difficulty. It can be observed that the sums in
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FIG. 2. Second-order approximation of the critical current
I (2)
c (T, θ0 ) in Eq. (6) for a circular Fermi surface. Part (a) displays the

twist angle θ0 dependence of I (2)
c differing strongly from the cos(2θ0)

behavior for various values of the temperature. (b) The temperature
T dependence of I (2)

c for various twist angles that displays a non-
monotonic behavior.

the perturbative expansion at fourth order in Eq. (7) diverge
at θ0 = 0 as ∼1/T for low temperatures in the vicinity of
the Dirac nodes �(k) = 0 and k = kF . This suggests that
close to 0◦ one should use the full expressions, Eqs. (3)
and (4), to evaluate the critical current. The tunneling splits
two Dirac cones in momentum space at θ0 = 0 (due to
bonding/antibonding band formation), and away from θ0 = 0
the spectrum is gapped for ϕ 	= 0 [43,44], indicating that the
divergence is absent in the full formulation. On the other hand,
the full current is a rather complicated function of ϕ which
has to be maximized to obtain the critical current. Here we
take the following approach: away from θ0 = 0, we use the
expansion in Eqs. (6) and (7) to determine ϕmax and use it
in the full expression for the CPR in Eqs. (3) and (4) for
T/Tc � 0.05. At low twist angles, the corrections to the CPR
from higher-order tunneling can still be shown to be small for
weak tunneling [43,44], while at large twist angles Eq. (7) is
not divergent at low T , which justifies taking the perturba-
tive approach to determine ϕmax. Additionally, since the gap
opened by the phase difference [43,44] will generally change
the low-temperature behavior of the gap from T 3, following
from Eq. (13) to an exponential one, we focus on the twist an-
gle dependence at low T . In Fig. 3 we present the twist angle
dependence of the critical current compared to the second-
order expansion result for t/Tc = 0.5 and T/Tc = 0.05. Away
from θ0 = 45◦, one observes almost no difference between the
two, suggesting that the second-order expansion constitutes a
good approximation. However, while Eq. (6) manifestly goes
to zero at θ0 = 45◦ by symmetry, the full critical current does

FIG. 3. The twist angle dependence of the normalized critical
current defined in Eq. (3) for a circular Fermi surface. Here we take
as a representative case t/Tc = 0.5 and T/Tc = 0.05 and show the
data on a log-scale. The dashed line shows the second-order result
(6) at T = 0 for comparison.

not. This yields a qualitative explanation of the observation of
a nonzero critical current at θ0 = 45◦ in the otherwise strongly
angle-dependent results of Refs. [48–50,60].

B. Cupratelike Fermi surface

We now consider the qualitative effects of a noncircular
Fermi surface. In particular, we take a Fermi surface appro-
priate for cuprates that can be deduced from the tight-binding
model dispersion for a square lattice:

ξ (k) = − 2t0(cos kx + cos ky) − 4t ′
0 cos kx cos ky

− 2t ′′
0 (cos 2kx + cos 2ky) − μ, (14)

and a d-wave superconducting gap on the square lattice,

�(k) = �(T )(cos kx − cos ky). (15)

We use the parameters appropriate for BSCCO [66]: t0 =
126 meV, t ′

0 = −36 meV, t ′′
0 = 15 meV, μ = −135 meV, and

we take kBTc = 9 meV. Note that the unit cell of BSCCO con-
tains two CuO2 layers. The resulting twisted double bilayer
structure does not alter qualitatively any of the results, as is
shown in Appendix A; here we focus on the single-layer unit
cell for clarity of presentation. In this subsection, we keep the
tunneling momentum-independent but generalize this below.
For numerical calculation in this and the next section, we
additionally rotated the momenta by −θ0/2 in both layers.

In Fig. 4 we show the twist angle and temperature de-
pendence of I (2)

c (θ0, T ). One observes a very pronounced
deviation from the cos 2θ0 form. In particular, the steep initial
decrease of I (2)

c (θ0, T  Tc) with θ0 resembles the results of
experiments on whisker twist junctions [52]. We note that
unlike Ref. [59], the deviation from the cos 2θ0 form appears
already in the lowest-order tunneling approximation, consis-
tent with previous works [55]. Another feature that is present
in our results is a broad maximum in Ic at around θ0 = 20◦.
As shown in the inset of Fig. 4(a), close to this twist angle, the
Fermi surfaces of the two layers start crossing each other near
the Brillouin zone boundary. The contribution of this region to
Eq. (6) is positive and is maximized when the Fermi surfaces
cross [i.e., ξ (k) = ξ (k̃) = 0], suggesting that the maximum
reflects the appearance of this crossing. A more detailed dis-
cussion of this point is presented in Sec. III C.
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FIG. 4. Second-order approximation of the critical current
I (2)
c (T, θ0 ) in Eq. (6) for a cupratelike Fermi surface with parameters

from BSCCO. (a) Twist angle (θ0) dependence of I (2)
c for various

temperatures (T ) displaying a local maximum near θ0 ≈ 20◦. The
inset shows an overlay of two twisted cupratelike Fermi surfaces
at θ0 = 18◦ corresponding to a broad maximum in I (2)

c at low tem-
peratures. (b) Nonmonotonic temperature dependence of I (2)

c , which
becomes more pronounced near θ0 = 45◦. See Appendix A for how
these conclusions also apply to twisted double bilayers as appropriate
for BSCCO.

Moreover, we find a nonmonotonic temperature de-
pendence of Ic [Fig. 4(b)] that becomes relatively more
pronounced towards θ0 = 45◦ (we note, however, that suf-
ficiently close to θ0 = 45◦, the higher-order terms in t will
become dominant). The nonmonotonicity in this case appears
stronger than for the circular Fermi surface case.

1. Momentum-dependent tunneling

Finally, we address the effects of the momentum depen-
dence of the tunneling. This is indeed relevant for cuprates,
where the dominant tunneling between the dx2−y2 -like orbitals
occurs via intermediate s-like orbitals [67], leading to t (k) ≈
tz(cos kx − cos ky)2 in the bulk of the material. At a twisted
interface, dx2−y2 -like orbitals in the twisted layer are rotated,
leading to

t (k) = tz(cos kx − cos ky)(cos k̃x − cos k̃y). (16)

In Fig. 5 we present the I (2)
c (θ0, T ) computed with the

momentum-dependent tunneling (16). Remarkably, the tem-
perature dependence of I (2)

c is always monotonic in this case,
while the twist angle dependence is quite similar to the case
of a momentum-independent tunneling. Thus, we see that
the temperature and twist angle dependence of the critical
current for a twist junction depends strongly on the Fermi
surface geometry and the form of the tunneling in the coherent

FIG. 5. Second-order approximation of the critical current
I (2)
c (T, θ0 ) in Eq. (6) incorporating the momentum-dependent tunnel-

ing relevant for BSCCO in Eq. (16). As in Fig. 4 we are also taking
a cupratelike Fermi surface with parameters from BSCCO. The
temperature dependence of the normalized I (2)

c no longer displays
the maximum found in Fig. 4(b). The inset shows the twist angle
dependence of I (2)

c that remains qualitatively similar to Fig. 4(a).

(momentum-conserving) tunneling limit. We note that strong
deviations from Ic(θ0) going like ∼ cos 2θ0 are observed for all
models considered, which is in contrast to the recent experi-
ments on cryogenically prepared twist junctions [48–50]. We
also find similar conclusions for a more realistic description of
BSCCO that uses the appropriate bilayer unit cell as described
in Appendix A. As we show in Sec. IV below, in the presence
of weak momentum relaxing effects at the twist junction, the
cos 2θ0 dependence appears clearly.

C. Qualitative assessment of Ic(θ0, T ):
Nodal/antinodal dichotomy

We now present qualitative arguments allowing additional
insight into the results of the previous sections. Let us start
with the nonmonotonic temperature dependence of Secs. III A
and III B. As the gap amplitude, per Eq. (8), is a strictly
monotonic function of temperature, one expects that if the
summand in Eq. (6) was positive for all k, the resulting Ic(T )
would be monotonic. This is not the case, however, at a finite
twist angle. In particular, in between two nodal lines of the
superconducting gap, which were aligned at θ0 = 0, the order
parameter has a different sign for two layers, leading to a
negative contribution to Eq. (6).

This is especially clear in the case of a cupratelike Fermi
surface at a finite twist angle, which is displayed in Fig. 6. As
has been noted above, the contribution to Eq. (6) is enhanced
near the points where Fermi surfaces cross. At low twist angle,
such a crossing occurs in the near-nodal (N) region, where the
order parameter has opposite signs for two layers. For larger
twist angles, an additional crossing appears in the antinodal
(AN) region (close to the Brillouin zone boundary). There, on
the contrary, the order parameters of the two layers have the
same sign. The contributions of these regions to Ic read

δIN
c (T ) ∼ −�N (θ0, T ) tanh �N (θ0,T )

2T∣∣v1,N
F × v2,N

F

∣∣ ,

δIAN
c (T ) ∼ �AN (θ0, T ) tanh �AN (θ0,T )

2T∣∣v1,AN
F × v2,AN

F

∣∣ , (17)
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FIG. 6. Twisted cupratelike Fermi surfaces. Fermi surface
schematic for θ0 = 18◦ with the order parameter sign shown by
color. Solid (dashed) lines correspond to the Fermi surface of the
top (bottom) layer. In the nodal region (purple circle), the order
parameters of the two layers have opposite signs due to twist. This
leads to a negative contribution to the critical current, Eq. (17). In
contrast, in the antinodal region (green circles), the order parameter
has the same sign for both layers.

where v(1,2),(N,AN )
F are the Fermi velocities at the points where

the Fermi surfaces cross, and �N,AN are the gaps in the N
and AN regions. At low twist angles, only the negative nodal
contribution is relevant (there are, of course, also contributions
away from the crossing, which lead to the overall critical
current being positive). It becomes larger in magnitude on
cooling, providing an explanation for the decreasing Ic. Its
magnitude is suppressed at low twist angles due to the small-
ness of the gap at the Fermi surface crossing �N (θ0, T ) ∼ θ0.
This explains why the nonmonotonicity is enhanced by twist.
We note that a similar coexistence of negative and positive
contributions to the critical current from different regions in
momentum space was observed for in-plane d/d junctions
[64].

At larger twist angles, the antinodal crossing appears,
which contributes an enhanced positive correction to Ic. This
is indeed what is seen to occur in Fig. 4(a). At low tem-
peratures, both nodal and antinodal contributions saturate to
finite values. However, �AN (T )/�N (T ) ∼ const > 1; conse-
quently, for temperatures 2�N (0) < T < 2�AN (T = 0), the
tanh in δIAN

c (T ) is already saturated to a constant, while the
tanh in δIN

c (T ) will continue to grow in absolute magnitude on
cooling. Thus for temperatures 2�N (0) < T < 2�AN (0), the
total δIAN

c (T ) + δIN
c (T ) will decrease on cooling, implying a

nonmonotonic Ic(T ).
Finally, the effect of the momentum-dependent tunneling

on the temperature dependence of Ic can be understood from
this picture. Indeed, the tunneling Eq. (16) is very strongly
suppressed in the nodal region, vanishing as θ2

0 for low twist
angles. This suppresses the contribution of the nodal region to
Ic in agreement with it being the source of nonmonotonicity.

FIG. 7. The fourth-order contribution to the critical current at
θ0 = 45◦. Temperature dependence of the cotunneling critical cur-
rent, Eq. (7), for three models with coherent tunneling: circular FS
(blue), cupratelike FS (yellow), and cupratelike FS with momentum-
dependent tunneling (green); the latter two are almost identical.

D. Ic(T ) at θ0 = 45◦ due to cotunneling

As has been shown above (see, e.g., Fig. 3), the second-
order tunneling in Eq. (6) dominates the Josephson effect
apart from in the vicinity of θ0 = 45◦, where the cotunneling
of Cooper pairs in Eq. (7) takes over. We now consider the
temperature dependence of the cotunneling critical current.

In Fig. 7 we present the temperature dependence of the
cotunneling critical current for the three models considered
above. In all of the cases, the dependence is steeper than for
the tunneling critical current [see Figs. 2(b), 4(b), and 5]. On
approach to Tc, the cotunneling critical current is suppressed
much stronger than the tunneling one, as is expected from the
general expression in Eq. (7). This distinct temperature depen-
dence may serve as a qualitative indicator of the presence of a
second harmonic in the CPR.

IV. EFFECTS OF INTERFACE INHOMOGENEITY
ON Ic(θ0, T )

Here we study the consequences of the broken translational
symmetry at the interface due to lattice supermodulations,
moiré quasiperiodicity, atomic scale interface roughness, or
disorder, all of which result in the in-plane momentum not
being conserved during tunneling t (k, k′ 	= k) 	= 0. We will
work in the weak tunneling approximation here, using the
expansion in Eqs. (6) and (7). Several models for t (k, k′)
can be considered. First, for a purely incoherent tunneling
t (k, k′) = t0, corresponding to atomic-scale disorder, such as
in the case of the Ambegaokar-Baratoff formula for s-wave
superconductors [68,69], Eqs. (6) and (7) yield identically
zero due to the d-wave symmetry of the order parameters.
For a superposition of fully coherent and incoherent terms,
t (k, k′) = t0 + t1δk,k′ , it is evident that only t1 will contribute
in the lowest order in Eq. (6). In the recent experiments
[48–50,60], the critical current at the interfaces prepared at
θ0 = 0 was observed to be similar to the one expected between
individual layers in the bulk. That rules out the presence of
strong atomic-scale disorder at the twist interface.

For the more realistic case of weak nanoscale disorder
(such as structural supermodulations [70]), with a lengthscale
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significantly larger than the unit cell size, the tunneling has a
characteristic momentum spread that is smaller than the size
of the Brillouin zone. We consider the case in which tunneling
is not exactly momentum-conserving, modeled with a spread
of σ in typical momentum differences |k − k′|. This can be
implemented by replacing |t (k, k′)|2 with a function with a
width σ (e.g., a Gaussian) denoted |tσ (k, k′)|2 [54,55]. We
choose the normalization such that in the limit σ → 0 we
recover coherent tunneling, i.e., |t (k, k′)|2 = t2

0 δ(k − k′), i.e.,

|tσ (k, k′)|2 = t2
0

2πσ 2
e− |k−k′ |2

2σ2 . (18)

For momenta close to the Fermi surface, one can further split
the constraint on the tunneling momentum into those on the
momentum magnitude and the polar angle in Eq. (10):

|k − k′|2 = (k − k′)2 + 4kk′ sin2 θ − θ ′

2

≈ (k − k′)2 + k2
F (θ − θ ′)2, (19)

where θ (′ ) + 2π ≡ θ (′ ). It follows then that the angular spread
of the tunneling is equal to σ̃ = σ/kF .

Before we proceed with concrete calculations, it is use-
ful to estimate the expected magnitudes. For kF � σ �
�/vF , the second-order current in Eq. (6) is proportional to
t2

σ 4
σ
kF

�( kF
h̄vF

)2, where the second factor arises from limiting
the angle deviation between k and k′ to σ

kF
, and the last one

is just the density of states from two k-integrals. Proceed-
ing in a similar way for the second-harmonic part of (7), it
is proportional to t4

σ 8 ( σ
kF

)3�( kF
h̄vF

)4. Thus the ratio scales as

I4
c (θ = 45◦)/I2

c (θ = 0) ∼ t2

(h̄vF σ )2 . For coherent (momentum-

conserving) tunneling, the estimate is [I4
c (θ = 45◦)/I2

c (θ =
0)]coh ∼ t2/(�EF ) [71]. Given that EF � � is expected to
be by far the largest scale in the problem, inhomogeneity can
in principle increase the tunneling strength at 45◦ relative to
θ = 0. We note, however, that our model of inhomogeneity
effects differs from that in [72], in that in our case the twist
angle remains well-defined and we do not find the formation
of 0 and π regions in real space.

A. Second-order tunneling I(2)

First, we consider the second-order tunneling process with
interfacial disorder at the twist junction. The angular integrals
of k, k′ in Eq. (6) are performed in Appendix B. To make fur-
ther progress analytically, we take ξ (k) = ξ (k) and �(k) =
�(T ) cos 2θ as in Sec. II B and decompose the angular part
of the integrand into a Fourier series utilizing Eq. (19). This
allows for the Fourier series to act as a controlled expansion,
since the contributions from higher-order terms in the series
are being suppressed by powers of e−2σ̃ 2m2

at Fourier order m
and σ̃ = σ/kF ; see Eq. (B2).

For the integral over the magnitude of k, k′ (i.e., k, k′) in
Eq. (6), we consider two limiting cases. For smooth inho-
mogeneity (SI) we assume h̄vF σ 

√
�2(T ) + (πT )2, which

can be valid at all T . This limit corresponds to the inho-
mogeneity lengthscale being longer than the BCS coherence
length of the superconductor. We can then take the limit
σ → 0 in the k, k′ integral [but not in the integrals over angle

θ, θ ′; see Eqs. (B1) and (B5)] to obtain

I (2)
SI (ϕ, T, θ0) ≈At2

0 e−2σ̃ 2[
i(2)
1 (T ) cos(2θ0)

+ i3(T ) cos(6θ0)e−16σ̃ 2]
sin ϕ, (20)

where for simplicity of presentation we have defined the
constant A = ekF

4π3 h̄2vF
, and we introduced the contributions to

the first i(2)
1 (T ) and third harmonics i(2)

3 (T ) of the Fourier
expansion that are evaluated in Appendix B. In the limiting
cases of T ≈ 0 and Tc, we obtain

i(2)
1 (T ) ≈

{
2(log 4 − 1), T → 0,

0.1�2(T )
T 2

c
, T → Tc,

(21)

as well as

i(2)
3 (T ) ≈

{
2(log 4 − 4/3), T → 0,

4 × 10−5 �6(T )
T 6

c
, T → Tc.

(22)

Note that Ic(0) is then independent of �(T ). This suggests that
the qualitative signature of this regime is the independence
of Ic(T = 0) of Tc, the latter being controlled by, e.g., dop-
ing. The resulting dependence of the critical current on the
twist angle is consistent with the form Ic(θ0) ∼ cos(2θ0) as
observed in experiments on BSCCO twist junctions [48–50].

In the opposite limit of rough inhomogeneity (RI),
h̄vF σ �

√
�2(T ) + (πT )2, we get the more usual

Ambegaokar-Baratoff [69] -like expression (see Appendix B)

I (2)
RI (ϕ, T, θ0) ≈ At2

0 e−2σ̃ 2

√
2π h̄vF σ

× (ĩ(2)
1 (T ) cos(2θ0)

+ ĩ(2)
3 (T ) cos(6θ0)e−16σ̃ 2)

sin ϕ, (23)

where the first harmonic is now

ĩ(2)
1 (T ) ≈

{
6.035�(T ), T → 0,

π2

4
�2(T )

Tc
, T → Tc,

(24)

and the third harmonic is given by

ĩ(2)
3 (T ) ≈

{
0.18�(T ), T → 0,

3 × 10−4 �2(T )
Tc

, T → Tc.
(25)

Again, we use the constant A = ekF

4π3 h̄2vF
, and we have in-

troduced distinct contributions to the first ĩ(2)
1 (T ) and third

harmonics ĩ(2)
3 (T ) of the Fourier expansion in the limit of

rough inhomogeneity at the twist interface. Note that the
distinction “rough” does not imply a strong disorder at the
interface, but rather characterizes the lengthscale of the typical
inhomogeneities.

Let us now consider the temperature dependence of the
lowest-order critical current following the cos(2θ0) twist angle
dependence. In Fig. 8(a) we present the temperature depen-
dence of the lowest twist-angle harmonic of the critical current
deduced from (20) and (23) and taking the temperature de-
pendence of the gap from the numerical solution of Eq. (13).
Importantly, in both cases it appears monotonic. These results
suggest that at the level of weak tunneling, the nonmonotonic
temperature dependence of Ic is intimately related to coher-
ence of the tunneling.
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FIG. 8. Effects of weak interfacial inhomogeneities. (a) Tem-
perature dependence of the normalized tunneling critical cur-
rent harmonics normalized to their values at T = 0 for smooth
[i(2)

1 (T )/i(2)
1 (0), i(2)

3 (T )/i(2)
3 (0) in (20)] (blue, “smooth”) and rough

[i(2)′
1 (T )/i(2)′

1 (0), i(2)′
3 (T )/i(2)′

3 (0) in (23)] (yellow, “rough”) interface
inhomogeneity compared to the superconducting coherence length.
(b) Temperature dependence of the second-order critical current
I (2)
c (T, θ0 ) (normalized to its T = 0, θ0 = 0 value) for several val-

ues of the twist angle with two harmonics included in the smooth
interface limit (20) with σ̃ = 0.15. (c) Temperature Tmax(θ0 ) of the
critical current maximum in (b).

In both cases of smooth and rough inhomogeneity, the
cos(6θ0) contribution appears to be strongly suppressed nu-
merically (in addition to the exponential suppression due to
angular spread) by almost an order of magnitude at low T
and by several orders of magnitude close to Tc. The cos(6θ0)
contribution has the same sign as the cos(2θ0) one in both the
clean and rough limit. However, the relative sign of the two
contributions changes with θ0 well before θ0 = 45◦. In the
clean limit, this leads to a clear nonmonotonic temperature
dependence of Ic [Fig. 8(b)], which shows a maximum at a
finite temperature Tmax for θ0 > 18◦ [Fig. 8(c)], close to the
values observed in experiment [48].

To conclude this subsection, we have found that relax-
ing momentum conservation at the twist interface naturally

FIG. 9. The fourth-order contribution to the critical current with
weak interfacial inhomogeneities. Temperature dependence of the
normalized fourth-order critical current harmonics i(4)

1,2(T ), Eq. (28).
i(4)
1 (T ) in the weak roughness limit is normalized to its maximal

value, while the rest are normalized to their values at T = 0.

accounts for the observation of

Ic(θ0, T ) ∼ cos(2θ0) (26)

at low temperatures seen in recent experiments [48–50]. The
high value of the critical current of the twist junction ob-
served in experiment [48] also indicates that the momentum
relaxation arises from nanoscale inhomogeneities, such as the
ones that arise from structural supermodulation [70] and not
atomic-scale disorder. This is consistent with the atomically
sharp interfaces with structural supermodulations observed
using transmission electron microscopy in Ref. [48].

B. Fourth-order tunneling I(4)

Finally, we discuss the fourth-order tunneling contribution
to the critical current. Applying the same expansion in twist
angle harmonics to Eq. (7), we obtain the following result for
the two leading harmonics with a common form to both the SI
and RI regimes:

I (4) = I (4)
1,c (T ) cos 2θ0 sin ϕ + I (4)

2,c (T, θ0) sin 2ϕ, (27)

where the coefficients of the first harmonic I (4)
1,c (T ) and second

harmonic I (4)
2,c (T, θ0) of the CPR are given by

I (4)
1,c (T ) = −et4

0 kF σ 2e−3σ̃ 2

h̄2vF (2π )6
i(4)
1 (T ),

I (4)
2,c (T, θ0) = −et4

0 kF σ 2e−4σ̃ 2

h̄2vF (2π )7

(
cos 4θ0 + 2e−4σ̃ 2)

i(4)
2 (T )

(28)

and the expressions for i(4)
1 (T ) and i(4)

2 (T ) are given in Ap-
pendix B in both the SI and RI regimes; their temperature
dependence is shown in Fig. 9. We find that in the limit of
SI, i(4)

1 is strongly suppressed at low temperatures in contrast
to i(4)

2 , which saturates to a nonzero value. In contrast, in the
opposing limit of a RI we find both contributions survive to
low temperatures.

Several qualitative conclusions can be drawn from (27).
First, the suppression of this term with roughness is much
stronger than for the usual tunneling term due to the additional
factors of σ 2e−σ̃ 2

. Additionally, the twist angle dependence of
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the second harmonic CPR (∼ sin 2ϕ) term is modified due to
disorder via the term cos 4θ0 + 2e−4σ̃ 2

in Eq. (28). This is re-
markable because the formally higher harmonic in the angular
dependence (cos 4θ0) appears more resilient to the inhomo-
geneity that effectively averages over the angle. Qualitatively,
the two contributions arise from the two contributions present
in Eq. (7), �(k2)�(k4) ∝ cos 2(θ2 − θ4) + cos 2(θ2 + θ4 +
2θ0), which can be attributed to a cotunneling of two Cooper
pairs in and out of phase (within one layer). Since θ4 and θ2

are not directly constrained to be close with a direct tunneling
matrix element (only indirectly via θ3, θ4), they can deviate
from one another stronger than the angles between two layers
(e.g., θ1 and θ3), and thus the cos 2(θ2 − θ4) factor leads to a
stronger suppression in the presence of inhomogeneity.

This implies profound consequences for the system close
to θ0 = 45◦: if the disorder strength is sufficiently large, it
is possible to destroy the topological superconducting phase
at θ0 = 45◦ because the cos 4θ0 will then be dominant and
negative, which will change the overall sign of the second
harmonic in the CPR. In that case, the state with a dominant
second harmonic in the CPR would still have a free-energy
minimum at ϕ = 0 [45,46], indicating the absence of a spon-
taneous time-reversal symmetry breaking and the topological
phase. For the Gaussian momentum smearing used here in
Eq. (18), we find that a topological to trivial superconductor
transition occurs at a critical value of the disorder strength
σ̃c ≈ 0.42, which corresponds to an angular spread of around
±24◦ [see Eq. (18)] for incoherent tunneling. Importantly,
such a broad interlayer momentum-dependent tunneling is
inconsistent with the atomically sharp interface observed
experimentally [48]. In summary, for a twist θ = 45◦ and
σ̃ < σ̃c, the ground state is a topological superconductor that
breaks time-reversal symmetry, whereas for σ̃ > σ̃c the super-
conductor is trivial and the time-reversal symmetry is restored
by inhomogeneity.

V. EXPERIMENTAL PROBES OF THE CURRENT-PHASE
RELATION NEAR θ0 = 45◦

In the previous sections, we have discussed the qualitative
features of the dependence of the critical current in twisted
d-wave superconducting interfaces on the twist angle and tem-
perature. We have established that many peculiar effects can
be attributed to the lowest-order tunneling in Eq. (6). How-
ever, near θ0 = 45◦, the higher-order processes in Eq. (7) of
Cooper pair cotunneling start to dominate, changing the CPR
to include the second sin(2ϕ) harmonic. Here, we discuss
how the CPR can be measured experimentally near θ0 = 45◦.
First, we will address the behavior of the twist junctions in a
magnetic field, which results in a coordinate dependence of
the phase difference across the interface ϕ → ϕ(x). We will
consider two distinct device geometries in Fig. 10, where the
setup in Fig. 10(a) is consistent with the experimental layout
of Ref. [48]. Second, we will study the effect of a microwave
drive (in the absence of a static magnetic field), which induces
Shapiro steps due to the phase difference across the twist
junction becoming time-dependent, ϕ → ϕ(τ ). Both of these
setups, as will be shown, allow us to reveal the contribution of
the cotunneling-induced second harmonic in the CPR.

FIG. 10. The two junction geometries considered. The in-line
geometry is shown in (a) [73] and the vertical geometry in (b). The
current (red arrows) is injected along the x-axes in geometry (a) and
along the z-axes in geometry (b). In both cases, the magnetic field
is applied along the y axis; the length of the junctions along y is
denoted D.

We begin by discussing the characteristic lengthscales rele-
vant for a twist junction. Generally, the characteristic variation
of ϕ along the length of the junction is given by the Josephson
length [74]

λJ ∼ 1/
√

jc, (29)

where jc is the critical current density. Near θ0 = 45◦, as
discussed above in Secs. III and IV, the CPR contains two
sinusoidal harmonics: sin ϕ and sin 2ϕ, e.g., see Eqs. (20)
and (27). The first harmonic corresponds to the tunneling
of Cooper pairs that is required to vanish at 45◦ due to
the d-wave nature of the superconductors, while the second
harmonic describes a higher-order process: cotunneling of
Cooper pairs. Correspondingly, we introduce two Joseph-
son lengths λJ1(θ0, T ) ∼ 1/

√| j1
c (θ0, T )| and λJ2(θ0, T ) ∼

1/
√| j2

c (θ0, T )| (the quantitative definitions will be given
below).

Denoting W as the relevant linear junction size (e.g., width
in the direction perpendicular to the applied field), we find
three qualitative regimes, each dominated by the shortest
length scale. We assume j2

c  j1
c (θ = 0) due to the small-

ness of the interlayer tunneling at the interface and λJ1(θ0 =
0, T = 0) < W . Given the result in Secs. III and IV, one can
then identify the position of these regimes in the T -θ0 phase
diagram, as shown in Fig. 11.

Before we move on to the magnetic field effects, it is
important to remark that the device geometry may affect the
Ic measurements in the regime III even without the external
field. For example, let us consider the two device geometries
depicted in Fig. 10. For the vertical geometry in Fig. 10(b), the
critical current is given by jcDW ; however, for an in-line ge-
ometry shown in Fig. 10(a), the critical current would be equal
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FIG. 11. Qualitative phase diagram and the corresponding
Josephson length λJ regimes for the twist junction. The smallest
lengthscale determines the character of spatial variations of the su-
percurrent across the junction: in regime III the current is confined
to within λJ1 of the junction edges [73,74], while in I, II the current
is evenly distributed along the junction length. In regimes III, II the
first harmonic of the CPR dominates whereas region I is controlled
by the second harmonic in the CPR. The boundary between II and
I occurs at the time-reversal symmetry breaking transition into the
topological d + id superconducting phase [46,47].

to 4DλJ jc ∼ √
jc [73,75]. In the latter case, the critical current

is independent of the junction width W and flows mostly along
the junctions edges. In this case, the experimentally observed
temperature and twist angle dependence of the critical current
has to be compared with

√
Ic from Secs. III and IV rather than

with Ic. In contrast to the above, in regimes I and II , where
λJ1,2 � W , the critical current will always be given by jcDW ,
independent of the device geometry [73,74]. In the previ-
ous experiments [76] on intrinsic BSCCO junctions (θ0 = 0),
the crossover to the width-independent regime occurred at
W ≈ 20 µm.

A. Twist junctions in a parallel magnetic field

We consider the Josephson effect at the interface between
two flakes of length L1 and L2 and thicknesses d1 and d2

with an overlap of length W as depicted in Fig. 10. We take
both flakes as well as the overlap region to be of rectangular
shape for simplicity; while the deviations from the rectangular
cross-section can affect the critical current oscillations in a
magnetic field [74], they do so mostly for fields larger than the
first Fraunhofer pattern zero, and thus they are not our main
focus here.

The discrete layered structure of cuprates can play an
important role for magnetic field effects [77]. The relevant
lengthscale for the field variation between layers is [77] s λc

λab
�

µm (where s ≈ 1.5 nm is the interlayer spacing and λc
λab

� 103

[76,78] is the ratio of the penetration depths along the c axes
and ab plane); the overlap regions in the experiments are
generally longer than that (W ∼ 10 µm) resulting in a length-
independent characteristic field [79] HFG

0 = �0
π2s2λc/λab

� 0.1 T
[76]. The characteristic fields observed for the Fraunhofer
patterns near θ0 = 45◦ in recent experiments [48] are less than
100 G (0.01 T), implying that the layered structure of the
flakes is not important. However, even at the lowest fields,
vortices may enter the flakes (the Hc1 values in cuprates are

quite low [78]), creating additional phase distortions at the
junction. Note that the flakes used in the experiments [48]
are typically thinner than λab ∼ 0.2 µm [78,80] by a factor
of order 2–4, which can result in a somewhat enlarged Hc1. In
the derivation below, we will ignore the presence of vortices
in flakes in proximity to the junction, corresponding to suf-
ficiently low fields, i.e., H0 � Hvort ∼ �0

W d1,2
(i.e., there is less

than one vortex in the flakes in proximity to the junction). For
typical W ∼ 10 µm and d ∼ 0.05 − 0.1 µm, Hvort is between
20 and 40 G.

Consequently, limiting our considerations to sufficiently
low fields to ignore the layered structure of the flakes and
vortices, we can use the London equations inside the flakes
to describe the screening of the magnetic field by the su-
perconducting flakes. Note that at the interface between the
two flakes (the twist junction), the continuum approximation
cannot be used, as the phase difference can be large across the
interface; this will be taken into account below.

Inside a single rectangular flake of size d × L, taking the
coordinate origin in its center, the London equations of the
magnetic field H (x, z) take the form

λ2
c

∂2H

∂x2
+ λ2

ab

∂2H

∂z2
= H,

H |z=+(−)d/2 = H0, H |x=±L/2 = H0, (30)

H |z=−(+)d/2 = H0 + Hj (x),

where Hj (x) is the magnetic field inside the twist junction.
The signs for the boundary condition along z are for the case
when the junction is at the bottom (top) of the flake.

The bulk of the flakes produces a Meissner effect in mag-
netic field, generating screening currents that flow through the
junction affecting the phase difference across it,

∂H

∂z
= −4π

c
jx = �0

2πλ2
ab

[
∂�

∂x
(x, z) + 2π

�0
Ax(x, z)

]
, (31)

where � is the phase of the superconducting order parameter.
Subtracting these equations at the top and the bottom of the
interface (and assuming the interface thickness s to be much
smaller than the field variation lengthscale),

∂H

∂z

∣∣∣∣
top

(x) − ∂H

∂z

∣∣∣∣
bottom

(x) = �0

2πλ2
ab

[
∂ϕ

∂x
(x) + 2πs

�0
H (x)

]
,

(32)
where ϕ(x) = �top(x) − �bottom(x) + 2πs

�0
Az(x, z) is the

gauge-invariant phase difference across the junction, and
�0 = π h̄c/|e| is the flux quantum.

1. Fraunhofer patterns close to θ0 = 45◦

For a weak junction, we can ignore the fields generated by
the Josephson current, such that Hj (x) = 0 in Eq. (30).

For L � λc, the solution away from the edges L/2 − |x| �
λc can be taken as x-independent and has the form

HL→∞(z) = H0

cosh z
λab

cosh d
2λab

. (33)

For the full problem in Eq. (30), we use the variable-
separation ansatz as described in Appendix C.
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Using the expression for H (x, z) given in Appendix C, one
can evaluate ϕ(x) directly using Eq. (32) [note that the flakes
in the in-line geometry, Fig. 10(a), are shifted along x]:

−ϕ(x) =C + 2πH0sx

�0

−
∫ x

0
dx′2πλ2

ab

(
∂H

∂z

∣∣∣∣
top

(x′) − ∂H

∂z

∣∣∣∣
bottom

(x′)

)
,

(34)

where 0 < x < W , and C is an arbitrary dimensionless con-
stant. The critical current across the junction is given by
maximizing over the constant C:

Ic(H0, θ0) = max
C

{
D
∫ W

0
dx j1

c (θ0) sin(ϕ) − j2
c sin(2ϕ)

}
,

(35)

where D is the width of the overlap region (i.e., DW is the
junction area). At θ = 45◦, the first harmonic contribution
to the critical current density j1

c (θ0) is required to vanish by
symmetry [55], and it has an approximately linear dependence
on θ − 45◦ close to it [consistent with the lowest-harmonic
j1
c (θ0) = j1

c (0) cos 2θ0 twist angle dependence]. At the same
time, j2

c does not vanish at θ0 = 45◦ and can be approximated
by a constant close to it.

For an order of magnitude estimate, it is convenient to
use the average value of (C4) over x rather than the full
x-dependent function. The averaging is a good approximation
when πW λab

dλc
 1. Furthermore, the relevant dimensionless

parameter for the sum πλab
d can be taken much larger than

1 for flake thicknesses below 100 nm [48], while λab ∼
0.2 µm [78,80]. On the other hand, as is evident from (C4),
for πW λab

dλc
� 1, the inhomogeneities are confined to a region

much smaller than the junction length W and can be neglected.
As is shown below, the same is true if an average over x
is taken. We will further assume that πLλab

dλc
� 1 for in-line

geometry.
The dependence ϕ(x) is then given by

−ϕ(x) ≈ 2πH0deffx

�0
+ C, (36)

where

deff ≡ s + λ2
ab

W

∫ W

0
dx

(
∂H

∂z

∣∣∣∣
top

(x) − ∂H

∂z

∣∣∣∣
bottom

(x)

)

≈ s +
∑
i=1,2

λab tanh
di

2λab
+ δdi,edge, (37)

where δdi,edge depends on the device geometry. For the in-line
device geometry in Fig. 10(a) we have

δd in-line
i,edge ≈ −4di

π2

∞∑
n=0

1

(2n + 1)3

1− exp
(− (2n + 1)W πλab

diλc

)
W πλab

diλc

,

(38)

FIG. 12. Critical current vs flux displaying a Fraunhofer pattern
changing its period due to the second harmonic. Dependence of the
critical current on the flux threading the effective junction is � =
H0W deff for different ratios of the first and second harmonic critical
currents. The topological transition occurs at j1

c = 2 j2
c [for j1,2

c > 0
in Eq. (35)].

whereas for the vertical device geometry in Fig. 10(b) we
obtain

δdvertical
i,edge ≈ −4di

π2

∞∑
n=0

1

(2n + 1)3

tanh
(
(2n + 1)W πλab

2diλc

)
W πλab
2diλc

. (39)

Importantly, for either geometry of the junction we find that
this result depends on only two dimensionless parameters: di

2λab

and W πλab
dλc

, and not on the twist angle. The distinction between
two junction geometries in Fig. 10 is purely quantitative in this
regime, and the discussion below applies to both cases.

For a purely first harmonic current-phase relation [i.e.,
j2
c = 0 in (35)], one obtains then the conventional Fraunhofer

pattern, with the first zero being at a field

H (1)
0 = �0

W deff
, (40)

which allows us to extract the value of deff from the ex-
perimentally observed Fraunhofer pattern. Note that in the
opposite case, j1

c = 0 (i.e., at θ0 = 45◦), the first zero in the
pattern occurs at

H (2)
0 = �0

2W deff
, (41)

which implies a deff value that is twice as small for the same
Fraunhofer pattern. When both j1

c and j2
c are nonzero, the de-

pendence Ic(H ) obtained from Eq. (35) interpolates between
the two limits, as is shown in Fig. 12. Particularly sensitive
are the odd-numbered zeros of the second harmonic pattern,
which are visibly lifted by a nonzero j1

c . In Fig. 13, this lifting
is demonstrated more quantitatively. Indeed, for j1

c � 2 j2
c the

values are almost indistinguishable from those at j2
c = 0. The

resulting pattern does not change under j2
c → − j2

c . As has
been shown in Sec. IV, such a sign reversal can occur as a
result of strong interface inhomogeneity. In this case, the state
at 2| j2

c | > j1
c is topologically trivial and does not break time

reversal, as the free-energy minimum in the absence of field
is at ϕ = 0 [46]. Consequently, while the Fraunhofer pattern
can detect the presence of a second harmonic in CPR, it does
imply directly the topological ground state of the system.
We note that this result follows from the linear dependence
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FIG. 13. Lifting the nodes of the second harmonic Fraunhofer
pattern. Dependence of the critical current at half-integer flux values
on the ratio between j1

c and j2
c .

of the phase on the coordinate x, Eq. (36), and it does not
follow from (35) for arbitrary ϕ(x). On the other hand, a
nonlinear dependence of the phase ϕ on the coordinate x
would also result in deviations from the Fraunhofer pattern.
As the experimental dependencies appear close to the usual
Fraunhofer pattern [48], we assume that (36) holds. This im-
plies that to determine the topological nature of the twisted
system requires additional experimental measurements, e.g.,
the thermal Hall effect [81].

Note that deff can be temperature-dependent via the pene-
tration depths λab/c(T ), which have to diverge at Tc. However,
the dependence on di

2λab(T ) can be neglected, as can be
seen from using the lower bound for λab(0) � 0.21 µm
[78] and thickness d � 100 nm. We find that 0.49di <

di
λab(0)

di
tanh di

2λab(0) � di/2, i.e., a variation below 1%, much
less than the one observed in the experiment [48]. Thus, we
take λab tanh di

2λab
→ di/2 in (37).

While deff can depend on the device geometry and tem-
perature, Fig. 11 suggests that robust evidence of the second
harmonic in CPR can be obtained for a single device with a
twist angle close to θ0 = 45◦. In particular, even if the cotun-
neling contribution, Eq. (7), leading to the second harmonic
in CPR, is dominant at low T , it has to become negligible
with respect to the usual tunneling current close to Tc (i.e., a
transition from I to II occurs on heating). The accompanying
lifting of the odd-numbered nodes in the Fraunhofer pattern on
heating (Fig. 12) represents unambiguous evidence that first
and second harmonic coexist in CPR.

Overall, we have shown that for twisted flakes of d-wave
superconductors, a clear Fraunhofer pattern appears close to
θ0 = 45◦ twist, with features indicating the presence of a sec-
ond harmonic in the CPR. Away from θ0 = 45◦ as discussed
in Appendix C 3, the Fraunhofer pattern will be smeared
progressively due to the importance of the magnetic field
generated by the twist junction itself.

B. Shapiro steps

Another quantity that can be used to study the CPR is
the current-voltage characteristic of the junction under a mi-
crowave drive. A combination of DC and AC current drive
results in the appearance of Shapiro steps in the IV charac-
teristic [74,82], i.e., regions where voltage is independent of
the DC current. In particular, the finite-voltage Shapiro steps

in the presence of a current can determine the periodicity of
the CPR [83,84]. Here, we assume that the magnetic field
is absent and λJ � W such that the spatial variation of the
phase difference across the junction ϕ can be neglected, as
well as the effects of the bulk of the flakes. We will focus
on the regime close to Tc, where the quasiparticle resistance
is low due to the smallness of the gap, and we assume the
capacitance effects to be negligible (i.e., such that the Stewart-
McCumber parameter [82] βc = 2eIcR2C/h̄  1, R and C
being the resistance and capacitance of the junction). In this
limit, the junction dynamics is overdamped (which is reflected
in the absence of hysteresis in the IV characteristic) and is
described by the RSJ model [74,82]:

∂τϕ + I1
c sin ϕ + I2

c sin 2ϕ = I0 + Ir f sin(ωrτ ), (42)

where we used dimensionless parameters τ = 2eR(|I1
c |+|I2

c |)τ
h̄ ,

I1,2
c , I0,rf = I1,2

c , Ic,0,rf/(|I1
c | + |I2

c |). The DC voltage across
the junction can be found from the Josephson relation

V =
〈

h̄

2e
∂τϕ

〉
τ

, (43)

where 〈· · · 〉τ is the value averaged over time for τ � 1.
In Fig. 14, we present the current-voltage characteristics

obtained from Eq. (42) for varying strengths of the AC driving
current Irf and second harmonic of the CPR. In the ab-
sence of the second harmonic, Fig. 14(a), clear Shapiro steps
emerge at Vn = n ∗ h̄ωr/2e as is expected for conventional
Josephson junctions [74,82]. The presence of the second har-
monic, Figs. 14(b) and 14(c), results in the appearance of the
Shapiro steps at half-integer values of the voltage: Vn+1/2 =
(n + 1/2) ∗ h̄ωr/2e. For strongly second harmonic character,
Fig. 14(c), the half-steps appear for all n already at weak
driving. On the other hand, when first and second harmonics
coexist, Fig. 14(b), the lowest half-integer step appears clearly
for sufficiently strong driving and is smaller than the numeri-
cal current discretization step at weaker ones. The half-integer
steps of higher order, however, are visible at weaker drives.

Overall, one observes that the half-integer Shapiro steps
provide a qualitative signature of the second harmonic contri-
bution to CPR for an overdamped junction. At the same time,
the widths of individual steps show a complex dependence of
the amplitude of the AC drive. These features can be under-
stood analytically as explained in Appendix D.

In Fig. 15, we present the widths of the first few Shapiro
steps obtained from Eq. (D2) as a function of v. The width of
the zeroth Shapiro step, Fig. 15(a) (equal to the critical current
of the junction), shows a similar behavior to the Fraunhofer
patterns, Fig. 12, in the sense that the coexistence of two
harmonics leads to the lifting of the nodes in the dependence.
In contrast to that result, actual nodes are observed only when
a single harmonic is strictly dominant, making the absence of
nodes in I0(v) a signature of the coexistence of harmonics.

The first Shapiro step width, Fig. 15(b), displays a qualita-
tively different (nonlinear) behavior at low v for the second
harmonic being dominant. Finally, the width of the half-
integer Shapiro steps, Fig. 15(c), is directly proportional to
|I2

c | and can be used to extract its value.
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FIG. 14. Shapiro steps for a current-driven twist junction with
a two-component CPR. Current-voltage characteristics for vary-
ing strength of the AC driving current Irf for (a) I1

c = 1, I2
c = 0;

(b) I1
c = 0.5, I2

c = 0.5; (c) I1
c = 0, I2

c = 1. When the second har-
monic in CPR is present [(b),(c)], current steps at half-integer values
of voltage develop.

VI. CONCLUSIONS

In this article, we have studied the Josephson effect in
twisted bilayers of nodal superconductors and analyzed exper-
imental setups that can be used to measure the current-phase
characteristics of these devices. We have demonstrated that
one can reveal the fingerprints of the predicted emergent
physics in these systems using widely available experiments.

In particular, the temperature dependence of the critical
current is quite generally expected to have a nonmonotonic
form due to the negative contribution of the near-nodal re-
gion in momentum space. The critical current is strongly
suppressed on increasing the twist angle, with the precise
form reflecting the Fermi surface geometry, momentum de-
pendence of the tunneling, and roughness of the interface.
At θ0 = 45◦, the critical current reaches a nonzero minimum
due to the Cooper pair cotunneling processes. The latter can
lead to the presence of a transition into a topological phase,

FIG. 15. Shapiro step width for a voltage-driven twist junction
with a two-component CPR. Normalized widths of the (a) zeroth,
(b) first, and (c) one-half Shapiro steps as a function of the amplitude
of the AC voltage. The appearance of the first harmonic lifts the
nodes in [(a), (b)], similar to the Fraunhofer pattern in magnetic field,
Fig. 12. The one-half step width is directly related to the magnitude
of the second harmonic in CPR, Eq. (D2).

spontaneously breaking time-reversal symmetry, which can be
suppressed for strong interface roughness.

Dependence of the critical current on magnetic field has
been studied including the effects of the sample geometry and
for finite-thickness flakes forming the junction. At θ0 = 45◦,
we have demonstrated that a clear Fraunhofer pattern with
halved period should be observed; at elevated temperatures
close to θ0 = 45◦ the odd-numbered zeros are lifted, suggest-
ing a robust signature of the coexistence of tunneling and
cotunneling of Cooper pairs. Further away from θ0 = 45◦
the Fraunhofer pattern is shown to vanish due to self-field
effects, and we have calculated the critical current density for
this crossover. Lastly, we demonstrated how the presence of
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half-integer Shapiro steps under microwave drive and their
widths can be used to detect the cotunneling contribution to
the CPR.

Our results reproduce the main features observed in the
recent experiments on twist junctions of high-Tc cuprates
[48–50,60]. This includes the Ic ∼ cos(2θ0) dependence of
the critical current, its nonmonotonic temperature dependence
with a maximum at nonzero temperature, the emergence of a
Fraunhofer-like dependence on magnetic field close to θ0 =
45◦, and fractional Shapiro steps in the presence of a mi-
crowave drive. The latter two signatures appear consistent
with the critical current being dominated by Cooper pair co-
tunneling, necessary for the realization of the topological state
near 45◦.

Note added. Various aspects of the Josephson effect in
twisted cuprates have also been considered in a recent study
[57]. The results in [57] are in agreement with the ones pre-
sented here when there is overlap.
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APPENDIX A: I(2)
c (ϕ, T, θ0 ) FOR A BILAYER UNIT CELL

In Sec. III B we analyzed a model appropriate for BSCCO
including its Fermi surface and momentum-dependent inter-
layer tunneling. However, this model was still a simplification
as it considered twisting of two single CuO2 layers whereas
the unit cell of BSCCO is known to contain two CuO2

planes. Consequently, a twisted bilayer of BSCCO is actually
a twisted double bilayer. Here we demonstrate that the bilayer
unit cell results in observations very similar to those in the
main text, Sec. III B. In Fig. 16(a), a schematic of the four
Fermi surfaces of such a system is given: in addition to the
tunneling at the interface t (k, k′) one has to take into account
the tunneling within each bilayer unit cell, tb(k). We assume
the latter to be momentum-conserving; furthermore, the mo-
mentum dependence of tb(k) for BSCCO is approximately
given by [66]

tb(k) = t0
b (cos kx − cos ky)2/4, (A1)

FIG. 16. Second-order approximation for the critical current
I (2)
c (T, θ0 ) for a bilayer unit cell. (a) Schematic of a twisted double

bilayer: tb(k) is the tunneling within a single bilayer (modeling
the unit cell of BSCCO), while at the interface between twisted
bilayers the tunneling is t (k, k′). Part (b) displays the twist angle θ0

dependence of I (2)
c compared to that for a single-layer unit cell (blue

dashed, Fig. 4) Inset: Fermi surface [cf. Fig. 4(a)] for the twisted
double bilayer at θ0 = 18◦. The crossing of the Fermi surfaces in the
antinodal region occurs at lower twists than in the twisted bilayer.
(c) The temperature T dependence of I (2)

c for various twist angles
that displays a nonmonotonic behavior.

where t0
b = 30 meV. To generalize Eq. (6) to the case of a

double bilayer, we use Eqs. (3) and (4), where

Ĝ−1(iεn, k) =
[

Ĝ−1
b (iεn, ϕ, k) 0

0 Ĝ−1
b (iεn, 0, k̃)

]
,

Ĝ−1
b (iεn, ϕ, k) = iεn −

[
ξ (k)τ3 + �̂(k) tb(k)τ3

tb(k)τ3 ξ (k)τ3 + �̂(k)

]
,

t̂ (k, k′) =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 t (k, k′) 0
0 t∗(k, k′) 0 0
0 0 0 0

⎤
⎥⎥⎥⎦, (A2)

where �̂(k) = �(k)[cos ϕτ1 − sin ϕτ2]. The results of the
calculation of second-order (in t) Josephson critical current
are presented in Fig. 16 (for momentum-independent tunnel-
ing at the interface) and Fig. 17 [for momentum-dependent
tunneling (16) at the interface]. One observes that the results
are quite similar to those in Sec. III B. The only noticeable
difference is that I2

c appears to fall off slower for the dou-
ble bilayer case at low twist angles. This can be explained
by the Fermi surface geometry: due to the bilayer splitting
[Fig. 16(b), inset], the bonding Fermi surfaces in the double
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bilayer cross in the antinodal region at lower θ0 than in the
twisted bilayer case [Fig. 4(a), inset]. As the contribution of
the antinodal region to I2

c is positive (see Sec. III C), this
suggests that I2

c for the double bilayer should be larger at
low twist angles (where the twisted Fermi surfaces have not
crossed yet in the single bilayer), as is observed.

APPENDIX B: EVALUATING THE TUNNELING
CONTRIBUTION IN THE PRESENCE OF INTERFACE

ROUGHNESS

We can now perform the angular integration in Eq. (6). To
do this, we rewrite (6) using Fourier series:

I (2)(ϕ, T, θ0) = 4e sin ϕ

h̄
T
∑
εn

∫
kdk

(2π )2

k′dk′

(2π )2

t2
0

2πσ 2
e− (k−k′ )2

2σ2 I (2)
ang(εn, θ0, k, k′), (B1)

where

I (2)
ang(εn, θ0, k, k′) =

∫
dθdθ ′e− (θ−θ ′ )2

2σ̃2

∑
n

fn(k) cos 2nθ
∑

m

fm(k′) cos 2m(θ ′ + θ0)

= π
√

2πσ̃ 2
∑

m

fm(k) fm(k′)e−2σ̃ 2m2
cos 2mθ0, (B2)

where we assumed σ̃  π and

fm 	=0(k) =
∫

dθ

π

�(k) cos(2mθ )

ε2
n + ξ 2(k) + �2(k)

,

fm=0(k) = 0, (B3)

are the Fourier coefficients of the anomalous Green’s functions. One observes already that the nonconservation of the angular
component of the momentum suppresses the oscillatory behavior of I (2)(ϕ, T, θ0) as a function of θ0. Indeed, in (B2) the high
harmonics (n � 1

σ̃
) are strongly suppressed (the precise form depends, however, on the realization of momentum smearing in

the tunneling).
To make further progress analytically, we take ξ (k) = ξ (k) and �(k) = �(T ) cos 2θ as in Sec. II B and limit ourselves to the

lowest terms in the Fourier series, Eq. (B2). This results in f0(ξ ) = 0 and f2(ξ ) = 0 [see Eq. (B3)] while

f1(ξ ) = 2

�(T )

⎛
⎝1 −

√
ε2 + ξ 2

ε2 + ξ 2 + �2(T )

⎞
⎠,

f3(ξ ) = 2

�3(T )

(
− 4(ε2 + ξ 2) − �2(T ) + [4(ε2 + ξ 2) + 3�2(T )]

√
ε2 + ξ 2

ε2 + ξ 2 + �2(T )

)
. (B4)

For smooth inhomogeneity, we assume h̄vF σ 
√

�2(T ) + (πT )2, which can be valid at all T . We can further simplify the
result by taking the limit σ → 0 in the k, k′ integral [see Eq. (B1)] to obtain

I (2)
SI (T, ϕ, θ0) ≈ et2

0 sin ϕkF

4π3h̄2vF

[
i(2)
1 (T ) cos(2θ0)e−2σ̃ 2 + i3(T ) cos(6θ0)e−18σ̃ 2]

,

i(2)
1 (T ) =T

∑
εn

∫
dξ f 2

1 (ξ ) ≈
{

2(log 4 − 1), T → 0,

0.1�2(T )
T 2

c
, T → Tc,

i(2)
3 (T ) =T

∑
εn

∫
dξ f 2

3 (ξ ) ≈
{

2(log 4 − 4/3), T → 0,

4 × 10−5 �6(T )
T 6

c
, T → Tc.

(B5)

In the opposite limit of rough inhomogeneity, h̄vF σ �
√

�2(T ) + (πT )2, we obtain a result that is consistent with the more
usual Ambegaokar-Baratoff [69] -like expression

I (2)
RI (T, ϕ, θ0) ≈ et2

0 sin ϕkF

4π3h̄2vF

1√
2π h̄vF σ

(
ĩ(2)
1 (T ) cos(2θ0)e−2σ̃ 2 + ĩ(2)

3 (T ) cos(6θ0)e−18σ̃ 2)
,

ĩ(2)
1 (T ) = T

∑
εn

(∫
dξ f1(ξ )

)2

≈
{

6.035�(T ), T → 0,

π2

4
�2(T )

Tc
, T → Tc,

(B6)

ĩ(2)
3 (T ) = T

∑
εn

(∫
dξ f3(ξ )

)2

≈
{

0.18�(T ), T → 0,

3 × 10−4 �2(T )
Tc

, T → Tc.
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In both cases, the cos(6θ0) contribution appears to be strongly suppressed numerically (in addition to the exponential suppression
due to angular spread): by an almost order of magnitude at low T and by several orders of magnitude close to Tc.

We now apply similar calculations to obtain the fourth-order tunneling contribution to the critical current I (4) in Eq. (7). By
applying the same expansion in twist angle harmonics, we obtain the following result for the leading twist-angle harmonics:

I (4) = I (4)
1,c (T ) cos 2θ0 sin ϕ + I (4)

2,c (T, θ0) sin 2ϕ,

I (4)
1,c (T ) = −et4

0 kF σ 2e−3σ̃ 2

h̄2vF (2π )6
i(4)
1 (T ), (B7)

I (4)
2,c (T, θ0) = −et4

0 kF σ 2e−4σ̃ 2

h̄2vF (2π )7

(
cos 4θ0 + 2e−4σ̃ 2)

i(4)
2 (T ),

where

i(4,SI)
1 (T ) = T

∑
εn

∫
dξ f 2

1 (ξ )
(
ε2

n − ξ 2
)
g2

0(ξ ),

i(4,RI)
1 (T ) = T

∑
εn

( ∫
dξ f1(ξ )

)2( ∫
dξεng0(ξ )

)2
2(

√
π h̄vF σ )3

,

i(4,SI)
2 (T ) = T

∑
εn

∫
dξ f 4

1 (ξ ),

i(4,RI)
2 (T ) = T

∑
εn

( ∫
dξ f1(ξ )

)4
2(

√
π h̄vF σ )3

. (B8)

Recall that SI and RI label the smooth and rough inhomogeneity regimes, respectively, and we have introduced

g0(k) =
∫

dθ

2π

1

ε2
n + ξ 2(k) + �2(k)

. (B9)

APPENDIX C: SOLUTION OF THE LONDON EQUATION

1. Without self-field effects

To solve the London equation in Eq. (30) we use the variable-separation ansatz:

H1(x, z) = HL→∞(z) +
∑
n>0

Cn

cosh
(

x
λc

√( (2n+1)πλab

d

)2 + 1
)

cosh
(

L
2λc

√( (2n+1)πλab

d

)2 + 1
) cos

(2n + 1)πz

d
, (C1)

where we use H (x, z) = H (x,−z) and H |z=±d/2 = H0 and H |z=±L/2 = H0. We denote this solution as H1(x, z) to highlight that
the self-field of the twist junction has been neglected. To determine the coefficients Cn we use the boundary conditions at the
ends of the flake H |x=±L/2 = H0:

Cn = 2H0

d

∫ d/2

−d/2
dz

(
1 − cosh z

λab

cosh d
2λab

)
cos

(2n + 1)πz

d
= 4H0(−1)n

(2n + 1)π
− 4H0(−1)n (2n+1)πλ2

ab
d2( (2n+1)πλab

d

)2 + 1
= 4H0(−1)n

(2n + 1)π

1( (2n+1)πλab

d

)2 + 1
,

(C2)

where we used
∫

cosh z cos az = a cosh z sin az+sinh z cos az
a2+1 . Finally, the full solution for H1(x, z) for Hj (x) = 0 is given by

H1(x, z) = H0

cosh z
λab

cosh d
2λab

+ H0

∞∑
n=0

4(−1)n

(2n + 1)π

cos (2n+1)πz
d( (2n+1)πλab

d

)2 + 1

cosh
(

x
λc

√( (2n+1)πλab

d

)2 + 1
)

cosh
(

L
2λc

√( (2n+1)πλab

d

)2 + 1
) . (C3)

The relevant quantity that enters Maxwell’s equations at the junction’s edges is

± ∂H1

∂z
(x)

∣∣∣∣
z=±d/2

= H0

λab
tanh

d

2λab
− 4H0

d

∞∑
n=0

1( (2n+1)πλab

d

)2+1

cosh
(

x
λc

√( (2n+1)πλab

d

)2+1
)

cosh
(

L
2λc

√( (2n+1)πλab

d

)2+1
) . (C4)
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FIG. 17. Second-order approximation for the critical current
I (2)
c (T, θ0 ) for a bilayer unit cell and momentum-dependent tunneling

(16). (a) Displays the twist angle θ0 dependence of I (2)
c compared to

that for a single-layer unit cell (blue dashed, Fig. 4). (b) The tem-
perature T dependence of I (2)

c for various twist angles that displays a
monotonic behavior.

2. Including self-field effects

We can write the solution as H (x, z) = H1(x, z) +
δH (x, z), where H1(x, z) is given by (C3). δH (x, z) satisfies
zero boundary conditions except for the surface of the junc-
tion, where it is equal to Hj (x). The solution can be obtained
by a variable separation ansatz that yields

δH (x, z) =
∑
n 	=0

hn

sinh
(d/2−z)

√
1+λ2

c k2
n

λab

sinh
d
√

1+λ2
c k2

n

λab

sin[kn(x + W/2)],

hn = 1

W

∫ W/2

−W/2
dxHj (x) sin[kn(x + W/2)], (C5)

where kn = πn
W . Next, we need to express the extra field in the

junction via the phase difference (32). In particular, we can
use the result of Sec. V A 1 and include the correction due to
the Josephson self-field as

ϕ(x) → ϕ(x) + δϕ(x),

δϕ(x) ≡
∑
n>0

δϕn cos

(
πnx

W
+ πn

2

)
, (C6)

where ϕ(x) is given by Eqs. (34) and (36). From Eq. (32) we
find

δhn = −�0

2π

knδϕn

s +∑i=1,2 λab

√
1 + k2

nλ
2
c coth

d
√

1+k2
nλ2

c

λab

.

(C7)

3. Away from θ0 = 45◦: Crossover to the long-junction limit

Away from θ0 = 45◦, the critical current density of the
twist junction grows strongly and one cannot ignore the effect
of this current on magnetic field anymore.

To start with a concrete but simple example, we first dis-
cuss the case of two monolayers of a nodal superconductor in
magnetic field (i.e., both flakes in Fig. 10 being monolayers).
The current in the monolayer flowing along x is given by [77]

jx(x, z) = − c�0s′

8π2λ2
ab

(
∂x�1,2(x) + 2π

�0
Ax

)
δ(z − z1,2), (C8)

where s′ is the monolayer thickness and z1,2 is its coordinate
along z (where z1 − z2 = s), and �0 = π h̄c/|e| is the flux
quantum. We denote the magnetic field between the mono-
layers as H0 + Hj (x) (outside it is equal to H0). Integrating
Maxwell’s equation − ∂H

∂z = 4π
c jx across each flake and sub-

tracting the results, we get

Hj (x) = − s′�0

4πλ2
ab

(
∂x(�1 − �2)

+ 2π

�0
[Ax(z = z1) − Ax(z = z2)]

)
. (C9)

Assuming the magnetic field variations occur at a scale much
larger than s, we can further bring this equation to the form

Hj (x) ≈ −
�0
2π

∂xϕ

2λ2
ab

s′ + s
−

H0
s′s

2λ2
ab

1 + s′s
2λ2

ab

, (C10)

where we introduced the gauge-invariant phase difference
across the junction:

ϕ(x) = �1(x) − �2(x) + 2π

�0

∫ z2

z1

Azdz. (C11)

Finally, we can get a closed equation for ϕ(x)
in the case of a twisted monolayers (ml) using
∂H
∂x = − 4π

c [ j (1)
c sin(ϕ) + j (2)

c sin(2ϕ)]:

∂xxϕ = sin(ϕ)

λ2
J1,ml

+ sin(2ϕ)

λ2
J2,ml

,

λ2
J1(2),ml = c|�0|

8π2 j[1(2)]
c

( 2λ2
ab

s′ + s
) . (C12)

For s′ = s, λab � s, and j (1)
c = c|�0|

8π2sλ2
c
, we recover the known

result λ2
J1,ml = s2γ 2/2 [77], where γ = λc/λab. The boundary

conditions for this equation are determined by the external
field and the current in the in-plane geometry.

As has been shown above, the Josephson length for twisted
monolayers λJ1,ml decreases away from θ0 = 45◦ rapidly and
hence the second harmonic term in (C12) can be neglected,
reducing it to the usual equation describing a long Josephson
junction [73]. The solution of this problem is well-known
and we shall not reproduce it here: for λJ1,ml � W while the
critical current is still suppressed by field, no clear Fraunhofer
pattern is expected: in particular, Ic(H ) exhibits no zeros at
finite fields [73].

We can now discuss the case of finite-thickness flakes. To
allow for an analytical closed-form expression, we will focus
on the vertical junction geometry, Fig. 10(b). To include the
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effects of the junction self-field, we will follow an approach
similar to Ref. [85]. In particular, we first solve Eq. (30) for
an arbitrary function Hj (x) and then reexpress the magnetic
field inside the junction via the phase difference ϕ(x) using
Eq. (32). Finally, using ∂H

∂x = j (1)
c sin(ϕ) (we neglect the sec-

ond harmonic here assuming θ0 to be sufficiently far from
θ0 = 45◦), we obtain∫ W/2

−W/2
K (x − x′)∂x′x′ϕ(x′) = 8π2 j (1)

c

c�0
sin[ϕ0(x) + δϕ(x)],

(C13)
where the kernel K (x − x′) is given by

K (x, x′) = 1

W

∑
n>0

cos[kn(x + L/2)] cos[kn(x′ + L/2)]

s +∑i=1,2 λab

√
1 + k2

nλ
2
c coth

d
√

1+k2
nλ2

c

λab

.

(C14)
The expression (C13) can then be analyzed in several limiting
cases. In particular,

K (x, x′) =
⎧⎨
⎩

δ(x−x′ )
s , s � λab,

δ(x−x′ )

s+∑i
λ2

ab
di

, di  λab.
(C15)

For both of these cases, the resulting Josephson length is given
by

λ2
J,fl = c�0

8π2 j (1)
c
(
s +∑i

λ2
ab

di

) . (C16)

Importantly, the reduction of the effective thickness, evident
in Eq. (36), does not show up here in the same way as for
conventional Josephson junctions. Thus, Eq. (C16) implies
that the limit on the critical current density for the observation
of the Fraunhofer pattern is given by

j (1)
c <

c�0

8π2W 2
(
s +∑i

λ2
ab

di

) . (C17)

For d � λab, the problem becomes manifestly nonlocal;
however, Eq. (C16) can be used as an order of magnitude
estimate in this case. For W  λc, on the other hand, the
relevant lengthscale is of the order λ2

J,fl ∼ c�0

j (1)
c λabλc/W

. The crit-

ical value of the Josephson current (for the observation of the
Fraunhofer pattern) is of the order c�0

W λabλc
, smaller than the one

in Eq. (C17) (assuming s  λ2
ab/di) by ∼W λab/(dλc).

APPENDIX D: ADDITIONAL DETAILS
ON SHAPIRO STEPS

To appreciate the details of this effect analytically, we
consider the simplified voltage-driven model [74], where
a time-dependent voltage (instead of current) V (τ ) = V +
v sin ωrτ is driven through the junction. Using the second
Josephson relation, one finds [74]

ϕ(τ ) = ω f τ + v sin ωrτ + ϕ0,

ω f = 2eV

h̄
, v = v

h̄ωr
2e

, (D1)

where ϕ0 is a constant determined by the initial conditions.
Introducing ϕ(τ ) into the two-component Josephson CPR and

FIG. 18. Influence of higher Brillouin zones on the critical cur-
rent. Colored lines represent the second-order critical current in
Eq. (6), with a tunneling that has a smooth momentum cutoff k0,
(E1). The black dashed line is the first Brillouin zone restricted result
from Fig. 4. The results are normalized to I (2)

c,0 —the critical current
value at zero twist and T/Tc = 0.01 in Fig. 4.

using expansion in Bessel functions, we obtain

IJ (t ) = I1
c sin ϕ(τ ) + I2

c sin 2ϕ(τ )

=
∞∑

k=−∞
I1
c Jk (v) sin[(ω f + kωr )τ + ϕ0]

+ I2
c J2k (2v) sin[(2ω f + kωr )τ + 2ϕ0]. (D2)

We now investigate the effects resulting from the coexistence
of two harmonics in the CPR. From Eq. (D2) it follows
that for V = Vn = n ∗ h̄ωr

2e or V = Vn+1/2 = (n + 1/2) ∗ h̄ωr
2e

[i.e., ω f = nωr or (n + 1/2)ωr] terms with k = −2n or
k = −(2n + 1), respectively, yield a time-independent con-
tribution to current. This contribution will add to the DC
quasiparticle current resulting in a finite current step [74]. The
value of this DC Josephson contribution depends on ϕ0; the
full width of the current step is consequently determined by
its maximum value:

δIn = max
ϕ0

∣∣I1
c Jn(v) sin[ϕ0] + I2

c J2n(2v) sin[2ϕ0]
∣∣,

δIn+1/2 = ∣∣I2
c J2n+1(2v)

∣∣. (D3)

Note that this expression is insensitive to the sign of I2
c . As

with the Fraunhofer patterns, this means that this measure
does not distinguish between the signs of I1

c and I2
c being the

same or different.

APPENDIX E: UMKLAPP PROCESSES AND HIGHER
BRILLOUIN ZONES

In this Appendix, we consider the influence of umklapp
processes in the tunneling amplitude, i.e., the influence of
higher Brillouin zones on the critical current I (2)

c in Eq. (6).
To do so systematically, we introduce tunneling with a smooth
momentum cutoff,

t (k, k′) = t0δk,k′
e−k2/k2

0

πk2
0

, (E1)

and we perform the momentum integrals in (6) up to mo-
mentum 10k0 for convergence. We use the dispersion and
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parameters given in Sec. III B with momentum-independent
tunneling.

The results are presented in Fig. 18 for low temperature
T = 0.05Tc as a function of the twist angle θ0. One observes
that for k0 = π , where tunneling roughly covers the first
Brillouin zone, the results are close to the ones obtained by
restricting the tunneling to the first Brillouin zone (black
dashed line).

The main features of the results presented in the main text
remain rather robust even if the tunneling range is changed:

a pronounced decrease of critical current from θ0 = 0◦ to
45◦, where it vanishes. However, the finer features, such
as a “step” at about 20◦, get weak at low k0, whereas a
much stronger suppression (including additional zeros) close
to 45◦ occurs for k0 > π . The latter case is, however, rather
unphysical since the tunneling is expected to decay with
momenta of order 1/c, c being the c-axis lattice constant
[19]. Therefore, we suggest that the additional zeros of the
second-order critical current are unlikely to be realized in real
materials.
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