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Anisotropy in a wire medium resulting from the rectangularity of a unit cell
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This study is focused on the dispersion properties of a wire medium formed by a rectangular lattice of
parallel wires at frequencies close to its plasma frequency. While the effective medium theory predicts isotropic
behavior of transverse magnetic (TM) waves in the structure, numerical simulations reveal noticeable anisotropic
properties. This anisotropy is dependent on the lattice rectangularity and reaches over 6% and over 75% along
and across the wires respectively for thick wires with radii about 20 times smaller than the smallest period. This
conclusion is confirmed by line-of-current approximation theory. The revealed anisotropy effect is observed
when the wavelength at the plasma frequency is comparable to the period of the structure. The effect vanishes in
the case of extremely thin wires. A dispersion relation for TM waves in the vicinity of the � point is obtained in
a closed form. This provides an analytical description of the anisotropy effect.

DOI: 10.1103/PhysRevB.110.L140303

Introduction. Metamaterials refer to artificially created me-
dia engineered to have some particular properties, which do
not appear to be observed in natural materials [1–5]. The
variety of their possible applications has been recently raising
the interest of researchers to their study [6–10]. Wire media
are a class of metamaterials composed of conducting wires
periodically arranged in a host material or in a free space
[11]. Wire media feature strong spatial dispersion, even at low
frequencies [12,13], thus providing subwavelength imaging
[14,15] and radiation control [16,17] among other manipula-
tions of electromagnetic fields, which are uncommon [11].

A simple wire medium is formed by parallel metallic wires
arranged periodically in a perpendicular plane. Most of the
research on this metamaterial [12–19] has been focused on
rectangular/square periodicity, that is, an arrangement of the
wires of radii r0 at the nodes of a rectangular lattice having
period a in the x direction and period b in the y direction. In the
general case a is not equal to b. The geometry of a simple wire
medium formed by a rectangular lattice is shown in Fig. 1.

The square-lattice-based metamaterial (a = b) has been
most amply studied in scholarly literature [20,21] while the
rectangular configuration of the metamaterial (a �= b) has
rarely been included in its scope except for a recent work [19].
It is, however, noteworthy that the authors of Refs. [12,18]
discussed the rectangular lattice of wires and presented an
analytical theory of dispersion for the medium. It is based on
the above theory that the present study analyzes simple wire
media dispersion properties.

The currently reemerging interest in the wire medium with
a rectangular lattice results from the prospects of using this
metameterial for reconfigurable microwave cavities in the
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search for dark matter [22]. While wire medium filled cavities
have already been analytically investigated for the case of a
square lattice [23], this study has not yet been extended to
the case that relies on rectangular lattices for tuning, which is
partly due to the anisotropy emerging in such systems.

Anisotropy effect observed. We consider a simple wire
medium formed by a rectangular lattice with an a × b unit
cell, where b is assumed to be half as large as a. The wires
are assumed to be perfectly electrically conducting (PEC)
and having radii r0 = b/20. We have performed a numerical
simulation by applying the periodic boundary conditions cor-
responding to the wave vector �q = (qx, qy, qz )T for a unit cell
in COMSOL MULTIPHYSICS [24]. The isofrequency contours
obtained for qz = 0 are plotted in Fig. 2 with solid lines.

Figure 2 shows that the contours cross the qx and qy axes
in the points having different coordinates dx and dy (dx �= dy).
In other words, the contours arise from the � point and are
elliptical before the contours reach the edges of the Brillouin
zone at qx = π/a = π/2b. For the obtained contours the ratio
of the ellipse’s semiaxes dx/dy (a contour’s ellipticity) tends to
be ∼1.13 in the vicinity of the � point (ω = ωp + δ, δ → 0).

The electromagnetic anisotropy for a simple wire medium
resulting from the periods of the rectangular lattice changing
still needs to be discussed. However, an analogous [25] acous-
tic task for a two-dimensional array of rigid cylinders was
reported in Ref. [26], where the anisotropy for an acoustic
wave was analytically and numerically shown in the long-
wavelength limit.

The observed contour ellipticity cannot be described by the
dispersion equation derived in Refs. [12,18],

q2 = q2
x + q2

y + q2
z = k2 − k2

p, (1)

that predicts circular contours regardless of the period ratio
a/b. Equation (1) was obtained in Ref. [18] by applying the

2469-9950/2024/110(14)/L140303(5) L140303-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0697-4765
https://orcid.org/0000-0001-5081-5257
https://orcid.org/0000-0002-5107-2763
https://ror.org/03x80pn82
https://ror.org/04txgxn49
https://ror.org/01db6h964
https://ror.org/035v3tr79
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.L140303&domain=pdf&date_stamp=2024-10-07
https://doi.org/10.1103/PhysRevB.110.L140303


SAKHNO, BALAFENDIEV, AND BELOV PHYSICAL REVIEW B 110, L140303 (2024)

FIG. 1. Geometry of a simple wire metamaterial formed by a
rectangular lattice a × b of parallel wires of radii equal to r0.

assumption of a small wave number within the metamaterial
q (qa, qb � π ) and a small vacuum wave number k (ka, kb �
π ) in the original (complete) dispersion equation,

F (q, k, a, b, r0) = 0, (2)

where

F (q, k, a, b, r0)

= 1

π
ln

b

2πr0
+ 1

k(0)
x b

sin k(0)
x a

cos k(0)
x a − cos qxa

+
∑
n �=0

(
1

k(n)
x b

sin k(n)
x a

cos k(n)
x a − cos qxa

− 1

2π |n|
)

= 0. (3)

In Eq. (3), k(n)
x = − j

√
(2πn/b + qy)2 + q2

z − k2 and k =
ω/c. From now on we will refer to Eq. (1) as a “low-k
and q” model. The plasma wave number kp in this model is
expressed as

k2
p = 2π/(ab)

log b
2πr0

+ ∑+∞
n=1

coth πna
b −1

n + πa
6b

. (4)

Equation (4) provides an adequate estimation of the plasma
frequency even for the thick wires (b/r0 = 20) we used in
the simulation above (ωpb/2πc ≈ 0.190 vs 0.185 found in
COMSOL).

The red dashed lines in Fig. 2 refer to the analytical isofre-
quency contours calculated using the dispersion Eq. (2). The
proper correspondence between the numerical and analytical
results (up to the moment when the elliptical contour reaches
the edges of the Brillouin zone) confirms the effect of the
contour ellipticity and confirms the possibility of using Eq. (2)
to explain the elliptical shape of the contours.

We have also verified that a direct numerical solution of
the transcendental Eq. (2) matches the results of the computa-
tional simulation in COMSOL for the wire media with other
ratios a/b � 10 and other wire radii b/r0 � 20. Based on
these results we can suggest that Eq. (2) can be an adequate
substitute for the eigenmode solver in COMSOL for a simple
wire medium composed of thin wires (b/r0 � 20) in the vicin-
ity of the � point.

Analytical model of anisotropy. In Ref. [18] the low-k and q
model [Eq. (1)] was derived from Eq. (2) with the assumption
of the parameters being small: (1) q (qa, qb � π ) and (2) k

FIG. 2. Isofrequency contours obtained numerically via COMSOL

(solid lines) and analytically by solving Eq. (2) (thin dashed lines)
for a metamaterial with a rectangular lattice (a = 2b). The ratio
of the minimal period b to the radii of perfectly conducting wires
is b/r0 = 20. Values on isocontours correspond to ωb/(2πc). The
plasma frequency for the metamaterial is ωpb/(2πc) ≈ 0.185.

(ka, kb � π ). However, this derivation is no longer applicable
if k is comparable to π/a or π/b. For the example provided
in Fig. 2 (a = 2b, b/r0 = 20), the wave number k for the first
eigenmode of the metamaterial is close to the plasma wave
number kp, which is equal to 0.37π/b, a value comparable to
π/b. The low-k and q model not being applicable in this case,
another model has to be developed.

We propose to modify the aforementioned model by keep-
ing the assumption about the small q (qa � π and qb � π )
and removing the condition of a small k, thus obtaining the
low-q model. The expansion of Eq. (2) into a Taylor series
up to the second order of small parameters (qia and qib, i =
x, y, z) results in a more complicated dispersion equation near
the � point:

A(k, a, b)q2
x + B(k, a, b)q2

y + C(k, a, b)q2
z = F0(k, a, b, r0).

(5)

Terms of the first-order and cross terms are equal to zero due
to the symmetry of the metamaterial geometry. Equation (5)
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divided by function F0 results in a classical form of a quadric
surface:

q2
x

d2
x

+ q2
y

d2
y

+ q2
z

d2
z

= 1. (6)

The coefficients of q2
i (i = x, y, z) are the inverse squares of

the ellipsoid semiaxis lengths: dx = √
F0/A, dy = √

F0/B, and
dz = √

F0/C.
The coefficients F0, A, B, and C in Eq. (5) are provided by

the following expressions in a closed form,

F0 = 1

π
ln

b

2πr0
− 1

kb
cot

(
ka

2

)

+ 1

π

∞∑
n=1

[
2π coth

[
a
2bψn(k)

]
ψn(k)

− 1

n

]
, (7)

A = a2

4

[
1

kb
sin−2

(
ka

2

)
cot

(
ka

2

)

+2
∞∑

n=1

1

ψn(k)

cosh
[

a
2bψn(k)

]
sinh3

[
a
2bψn(k)

]
]
, (8)

B = a

2k2b
cot

(
ka

2

)[
1

ka
+ 1

sin ka

]

+
∞∑

n=1

b2

ψ3
n (k)

(
1 − 12(πn)2

ψ2
n (k)

)
coth

( a

2b
ψn(k)

)

+
∞∑

n=1

ab/2

ψ2
n (k)

(
1 − 12(πn)2

ψ2
n (k)

)
sinh−2

( a

2b
ψn(k)

)

−
∞∑

n=1

2a2(πn)2

ψ3
n (k)

cosh
[

a
2bψn(k)

]
sinh3

[
a
2bψn(k)

] , (9)

C = a

2k2b
cot

(
ka

2

)[
1

ka
+ 1

sin ka

]

+
∞∑

n=1

b2

ψ3
n (k)

coth
( a

2b
ψn(k)

)

+
∞∑

n=1

ab/2

ψ2
n (k)

sinh−2
( a

2b
ψn(k)

)
, (10)

where ψn(k) =
√

(2πn)2 − (kb)2.
Since the system under consideration does not change

with the substitutions qx ↔ qy and a ↔ b performed si-
multaneously, the following conditions are required for the
coefficients:

A(k, a, b) = B(k, b, a),

C(k, a, b) = C(k, b, a),

F0(k, a, b, r0) = F0(k, b, a, r0). (11)

These properties are quite hard to see from expressions
(7)–(10), but we have checked them numerically.

Each of the functions F0, A, B, or C can be calculated for
an arbitrary k close to kp and, hence, isofrequency contours in
the low-q model can be plotted without solving Eq. (5) in each
point of the mesh (qx, qy, qz )T . On the other hand, to obtain
the plasma wave number kp we have to find the first root of

FIG. 3. Plasma frequency (obtained in different ways) depen-
dence on b/r0 ratios for different a/b values. Solid lines: plasma
frequencies calculated via COMSOL; dashed lines: those obtained
using Eq. (4). Circle markers were derived using Eq. (12).

the transcendental equation:

F0(kp, a, b, r0) = F (kp, 0, a, b, r0) = 0. (12)

We also compared the performance of Eqs. (4) and (12) to
evaluate the plasma frequency against the numerical results.
A plot of plasma frequency dependencies on the b/r0 ratio
for different a/b relations is shown in Fig. 3. The plasma
frequency was calculated by three different means: (i) Using
COMSOL (the actual plasma frequency), the result is repre-
sented by solid lines in the plot; (ii) using Eq. (4), the result
is shown in dashed lines; and (iii) using Eq. (12), the result
is depicted in circular markers. Equation (12) was shown to
perform perfectly: The results of numerical modeling match
the analytical results. Hereafter the value of b is maintained
fixed to make a unified normalization of all the results.

The greater are the radii of wires r0, the greater is the
deviation of the frequency estimated by Eq. (4) from the actual
value obtained in numerical calculations. Table I provides the
relative errors of the plasma frequency estimations by Eqs. (4)
and (12) for the smallest b/r0 ratio from Fig. 3 (b/r0 = 10)
and different a/b ratios. It is noteworthy that Eq. (12) provides
perfect accuracy of the estimation even for thick wires.

Verification of the analytical model. We have compared the
metamaterial’s anisotropy effects obtained numerically with
those described by the low-q model (6) to verify the ability
of the analytical model to account for these effects. Figure 4

TABLE I. Relative error ξ of the plasma frequency estimations
obtained from Eqs. (4) and (12) for different a/b ratios and the same
wire radii b/r0 = 10.

a/b ω(num)
p b/(2πa) ξ [Eq. (4)] (%) ξ [Eq. (12)] (%)

1 0.3753 6.728 0.535
2 0.2168 5.841 0.128
5 0.0944 7.664 0.016
10 0.0486 8.804 0.005
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FIG. 4. Isofrequency contours near the � point calculated using Eq. (2) (solid lines) and the low-q model [Eq. (5)] (dashed contours) for
different geometries of the metamaterial: (a) a = b, (b) a = 2b, (c) a = 5b, and (d) a = 10b. For all cases b/r0 = 50 was fixed. The plot axes
were normalized by the corresponding kp: (a) 0.489π/b, (b) 0.315π/b, (c) 0.159π/b, and (d) 0.088π/b. Circle markers indicate the contour
points obtained by extracting the contours from numerical simulations.

shows a comparison of the three means of calculating isofre-
quency contours in the xy plane. The first one is solving the
original dispersion Eq. (2) (solid lines in the figure), and the
second one uses the low-q model [Eq. (6), plotted by dashed
lines]. The third calculation was made using the COMSOL

MULTIPHYSICS full-wave simulation [24], and these numerical
results are represented by circle markers in the figure. The
plots are provided in normalized axes.

The numerical results perfectly match the analytics pro-
vided by Eq. (2). Slight inconsistencies of the markers
compared to the solid lines are explained by different mesh
resolutions that were used for numerical and analytical cal-
culations near the � point and by the approximation used for
numerical data to obtain contours.

Figure 4 shows that the low-q model diverges from Eq. (2)
with an increase in the frequency, while the matching is nearly
perfect in the vicinity of the � point for every geometry of
the metamaterial. Therefore, the proposed model perfectly
describes the ellipticity of contours at frequencies slightly
greater than the plasma frequency.

To demonstrate the ability of the low-q model (5) to pre-
dict the ellipticity of contours for different configurations of
the metamaterial, we performed the calculation of dx/dy and
dy/dz ratios for a wide range of geometries (see Fig. 5). The
circle markers in Fig. 5 were calculated in Fig. 5(a) as

√
B/A

using expressions (8) and (9) and in Fig. 5(b) as
√

C/B by
calculating the functions (9) and (10). The solid lines in both
subfigures were obtained by solving Eq. (2) for fixed k three
times: (i) for qx with fixed qy = qz = 0, (ii) for qy with fixed
qx = qz = 0, and (iii) for qz with fixed qx = qy = 0 at k near
kp. These two calculations of ellipticity have been shown to
perfectly correspond to each other in both planes: xy and yz.

It is important to note that for extremely thin wires (b/r0 →
∞) the shape of isofrequency contours tends to be circular.
This is explained by the plasma frequency decreasing with a
decrease of the wire radii (Fig. 3), which makes the low-k
and q model applicable because of ka and kb becoming small
enough. The higher the a/b ratios, the more difficult it is
to achieve a small ka value, hence, the ellipticity for these
geometries tends to 1 for very high b/r0 values.

The results shown in Fig. 5(b) prove to demonstrate the el-
lipticity even for metamaterials with a square lattice, however,
in the yz plane only. The maximum value for the dy/dz ratio

is equal to ∼1.06. The ellipticity in the xy plane [Fig. 5(a)]
achieves a maximal value of ∼1.80 in our simulations for the
case of a rectangular lattice with the a/b ratio equal to 10.

(a)

(b)

FIG. 5. Dependencies of the ellipticity on the b/r0 ratio for dif-
ferent a/b values. (a) Solid lines plotted by calculating of qx/qy,
where qx and qy are the solutions of Eq. (2) for fixed k near kp.
Black dots obtained as

√
B/A, where A(k, a, b) and B(k, a, b) are

the functions defined in Eqs. (8) and (9). (b) The same comparison
between ellipticities in the yz plane obtained via Eq. (2) (solid lines)
and by calculating the C(k, a, b) and B(k, a, b) functions (9) and (10)
(circle markers).
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Conclusion. The present Letter was focused on a simple
wire medium formed by a rectangular lattice of parallel wires.
The research revealed the anisotropy of transverse magnetic
(TM) waves near the � point. To describe the anisotropy we
proposed and tested the low-q model that is applicable for
anisotropy prediction near the Brillouin zone center.

The results of this work are valuable in the context of the
axion search, since a simple wire medium has recently served
as a basis for axion haloscopes [19,22]. An accurate prediction
of the extent of anisotropy in a given rectangular lattice is
crucial for the estimation of the tuning ranges for projects

on the search for dark matter relying on rectangular wire
media for tuning. The tunability of haloscopes is crucial be-
cause of the requirement to cover the frequency range not yet
studied. Hence, the possibility to employ a rectangular-lattice-
based simple wire medium with a precise understanding of
anisotropy dependence on the lattice periods paves the way to
different opportunities for tuning the haloscope.
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