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There has been much recent interest and progress on topological structures of the non-Hermitian Bloch bands.
Here, we study the topological structures of non-Bloch bands of non-Hermitian multiband quantum systems
under open boundary conditions, which has received limited attention in prior studies. Using a continuity
criterion and an efficient sub-generalized Brillouin zone (sub-GBZ) algorithm, we establish a homotopic
characterization—braiding topology, e.g., characterized by the band’s total vorticity—for open-boundary bands
and sub-GBZs. Such topological identification is robust without topological transition and emergent degenerate
points, such as exceptional points. We further analyze the transition’s impact on bands and spectral flows,
including interesting properties unique to open boundaries, and numerically demonstrate our conclusions with
tight-binding model examples. We unveil a crucial insight that open-boundary bands interchange their portions
after encountering certain exceptional points. Our results enrich the foundational understanding of topological
characterizations for generic non-Hermitian quantum systems.
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Introduction. The Bloch band theory is a well-established
cornerstone in solid-state physics [1–7]. In the past few years,
research on non-Hermitian quantum systems has made the
extension of such band theory a major focus [8–18]. For
instance, a non-Bloch band theory has been developed for
one-dimensional (1D) non-Hermitian quantum systems under
open boundary condition (OBC) [19–28] and rapidly veri-
fied in various experimental platforms [29–37]. Superseding
the conventional Brillouin zone (BZ), the non-Bloch band
theory’s generalized Brillouin zone (GBZ) gives rise to the
non-Hermitian skin effect and breaks down the bulk-boundary
correspondence [38–41]. Further generalizations have also
been made to higher dimensions [42–53] and scale-free lo-
calization scenarios [54–59].

Topological concepts such as the braid groups and the
knots [60,61] have had widespread and fruitful applications
in various physics topics. The nodal-line knots of topological
semimetals [62–65] are soon followed by the exceptional-
line knots in non-Hermitian systems [66–79]. Braid and knot
structures also emerge in the three-dimensional (3D) space
spanned by the complex energy and the wave vector of
the Bloch band theory [80–91], applicable only for periodic
boundary conditions (PBC). However, despite recent work on
similar topology for non-Bloch bands under OBC [92], the
general definition and properties remain unclear, especially
for generic non-Hermitian systems with multiple non-Bloch
bands with respective GBZs dubbed the sub-GBZs [24–26].

In this paper, we propose a continuity criterion and a ho-
motopic formalism of the braid and knot topology for the
non-Bloch bands of non-Hermitian quantum systems under
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OBC in the thermodynamic limit, even in the presence of mul-
tiple bands and sub-GBZs. Consequently, we can characterize
such robust topology and the intermediate topological transi-
tions, denoted by the emergence of exceptional points (EPs),
by the non-Bloch bands’ vorticity. We have also established an
efficient and accurate numerical algorithm, demonstrated ex-
amples of non-Hermitian multiband models, and pointed out
their intriguing characteristics unique to OBCs. We reveal that
open-boundary bands interchange their parts as the system
crosses particular EPs. Additionally, compared to PBC bands,
the braiding of non-Hermitian OBC bands is significant due to
its more diverse transition options—the commonly two-visit
OBC eigenvalues offer multiple choices for exchange partners
and flow directions at the transition. Our results offer an essen-
tial facet and thus pave the way toward our full understanding
of the topology of generic non-Hermitian quantum systems
under OBC.

Continuity criterion of bulk energy bands under OBC. Con-
sider a generic 1D noninteracting non-Hermitian tight-binding
Hamiltonian:

Ĥ =
∑

j

R2∑
m=−R1

c†
jTmc j+m, (1)

with N lattice sites (unit cells) and n internal degrees of free-
dom on each site j—the dimension of the hopping matrices
Tm. Without loss of generality, we set the hopping ranges
R1 = R2 ≡ R. The direct diagonalization of such a non-
Hermitian Ĥ suffers from precision issues, especially for large
system sizes [93]. Instead, the energy bands of Ĥ may descend
from the roots of the characteristic equation with respect to the
reference energy E :

f (β, E ) ≡ det [H(β ) − E × 1n×n] = 0, (2)
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where H(β ) = ∑R
m=−R Tmβm is a matrix-valued Laurent

polynomial of the complex variable β. In the presence of
translation symmetry and PBC, the Bloch band theory dic-
tates β = eik , where the wave vector (lattice momentum) k ∈
[−π, π ] is defined within the (first) BZ [94]. For OBC, on the
other hand, we need to adapt to the non-Bloch band theory
[20,21], where β’s satisfy the GBZ condition—the 2M ≡
2nR sorted roots of the characteristic Eq. (2), |β1| � |β2| �
· · · � |β2M |, obey |βM | = |βM+1|. The bulk energy bands fol-
low such BZs or GBZs accordingly. Throughout this paper,
we refer to k as the wave vector in the BZ of the Bloch band
theory under PBC, while θ represents the complex argument
of β in the GBZ of the non-Bloch band theory under OBC.

Noteworthily, each OBC band εi, i = 1, 2, . . . , n, is related
to an ideally unique continuous sub-GBZ Ci for a generic
non-Hermitian system in the thermodynamic limit [24–26],
disregarding the potential emergence of pseudogaps with a
very low density of states [95]. However, due to the mul-
tiplicity of the roots of the characteristic Eq. (2), subtle
complications may arise when we associate the OBC bands
with the sub-GBZs. For instance, while the auxiliary GBZ
(aGBZ) can give all of the sub-GBZs [24], isolating the multi-
valued energy bands for each sub-GBZ remains uncontrolled
in practice and thus intractable for generic non-Hermitian
Hamiltonians except for certain simple cases [26]. Here, we
overcome such ambiguity by enforcing the continuity crite-
rion that a map from the sub-GBZ Ci to the OBC band εi must
be continuous. In other words, we require that infinitesimal
variations on Ci only induce infinitesimal variations in εi [96],
which keep the bands’ clear distinctions despite coincidental
roots thus intersecting sub-GBZs.

Here, we propose an algorithm to enforce such a continuity
criterion. First, we solve the resultant equation,

RE [ f (β, E ), f (βei�, E )] = 0, (3)

over the range � ∈ [−π, π ]. Here, RE represents the re-
sultant of f (β, E ) and f (βei�, E ) relative to E [97,98].
For a given �, the characteristic equations f (β, E ) = 0
and f (βei�, E ) = 0 share a common energy E if and
only if the resultant Eq. (3) holds. Thus, we can ob-
tain all βp+1 = βpe±i� solutions satisfying the characteristic
Eq. (2), so that |β1| � · · · � |βp| = |βp+1| � · · · � |β2M |,
p = 1, 2, . . . , 2M − 1, for a specific �. Next, we select the
β solutions with p = M, which coincide with the GBZ con-
dition, and map out the GBZ as we vary �. Finally, after
obtaining the set of GBZ with the corresponding ensemble of
OBC bands, we apply the continuity criterion: as the argument
θ of β increases, both βi and εi within each band i evolve
continuously. In practice, it helps to separate this ensemble
of energies into individual bands εi one by one, following
the order of β’s argument at a specific numerical precision.
Each {βi} for θ ∈ [−π, π ] constitutes a sub-GBZ Ci. Such an
algorithm can effectively and unambiguously determine the
multiple OBC bands and the associated sub-GBZs, except for
the degenerate points (DPs) where multiple βi coincide and
signal a topological transition; see detailed elucidation of the
algorithm along with the examples and applications later and
in the Supplemental Material [93].

We note that although the mapping from Ci to εi is con-
tinuous (and vice versa), it is not homeomorphic or injective
but rather surjective. Namely, an E value may correspond to
two (or more) points on Ci, dubbed as a two-bifurcation (or
n-bifurcation) point [26,27], and passed through two (or n)
times as we move across Ci. We note that the n-bifurcation
point is usually within a single band and not a degeneracy
between the bands. The degeneracy between two or more
bands will grant interesting physical consequences, such as
topological transitions and DPs, as we discuss next.

Band braiding topology with sub-GBZs. The continuity
criterion yields continuous OBC bands εi(β ) with β lying on
the related sub-GBZ Ci. For simplicity, we only consider cases
where all sub-GBZs are closed, i.e., homeomorphic to the one-
sphere S1, and r = |β| is a single-valued function of θ on each
Ci in the main text. We also choose the same convention of θ ,
i.e., identical starting points θ0, for all sub-GBZs’ arguments
so that β remains consistent and continuous before and after
a topological transition, where parts of the OBC bands may
switch their partners. We discuss more complex cases with
intertwined sub-GBZs in the Supplemental Material [93].

The braiding topology is only available to multiband sys-
tems. We define two arbitrary bands i �= j as isolated if
εi(β1) �= ε j (β2) for any β1,2 ∈ Ci, j , separated if they are not
isolated yet εi(β ) �= ε j (β ) for any coincidental β ∈ Ci, j , and
degenerate if εi = ε j at at least one degenerate point (DP)
βi = β j on Ci, j . We wish to analyze the equivalence classes
of the OBC bands εi(β ) in the absence of multiband degen-
eracies. However, as long as εi = ε j and θi = θ j , we obtain
|βi| = |β j | as dictated by the GBZ condition, and then βi =
β j ; therefore, it suffices to relate the transition to εi(θ ) instead
of εi(β ) and focus instead on the continuous mapping from
θ ∈ S1 to the OBC energies εi ∈ C. The subsequent homo-
topy characterization resembles that of a non-Hermitian Bloch
Hamiltonian H(k) with the lattice momentum k ∈ [−π, π ]
within the BZ [80–82,88] in our place of θ .

Strictly speaking, the relevant nonbased map is from S1

to Xn = (Confn × Fn)/Sn, where (ε1, . . . , εn) ∈ Confn is the
ordered n tuples of the complex energies, the quotient space
Fn = GLn(C)/GLn

1(C) describes the eigenvectors of H(βi )
with respect to the complex energies, and Sn is the permu-
tation group. The homotopy equivalence classes [S1,Xn] can
be simplified as the conjugacy classes of the braid group
Bn = π1(Confn/Sn) due to π1(Fn) = 0, and further reduced
to the pure braid group PBn, a subgroup of Bn, for the closed
sub-GBZs and S1 manifold here. Notably, it is unnecessary
to specify the starting point of S1 in the homotopy charac-
terization, as different choices correspond to braids within
the same conjugacy class. More complicated scenarios with
intertwined sub-GBZs and Bn braid group classifications are
in the Supplemental Material [93].

Intuitively, the target Bn conjugacy classes are equivalent
to the geometric knots [99] of strings (i = 1, 2, . . . , n) in the
(Re(ε), Im(ε), θ ) 3D space, and the target PBn to the geomet-
ric knots of closed loops [60,61,82] in the 3D space periodic in
θ ∈ [−π, π ]. We may thus characterize the braiding topology
of the OBC bands with the total vorticity over the bands,

ν = 1

2

∑
i �= j

νi j, (4)
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relevant to the braid crossings [93], where νi j is the vorticity
between two bands εi(θ ) and ε j (θ ) [100],

νi j = 1

2π

∮
S1

d

dθ
arg[εi(θ ) − ε j (θ )]dθ, (5)

in a similar way to the non-Hermitian Bloch bands. We note
that the vorticity is not a complete characterization of the
braiding topology, and a comprehensive description requires
braid words [60,61,82] or knot invariants (polynomials), e.g.,
the Jones polynomials [70,101–103], to encode the full in-
formation of the braiding topology. Topologically different
braids may manifest the same vorticity [76]; nevertheless,
braids with distinct vortices must be topologically different,
which offers us an elementary way to distinguish the different
braiding topology. For more complex scenarios, knot polyno-
mials might be necessary, but the overall braiding topology
and phase transition presented in this paper remain valid.

Topological transition of OBC band braiding. The DPs
are commonly EPs, which are stable, or unstable degenerate
points (UDPs), which rely on fine-tuning and are unsta-
ble and evolve into several EPs upon generic perturbations
[82,93,104–107]. Isolated bands are always topologically
trivial, while separated bands may host nontrivial braiding
topology, e.g., finite vorticity, which remains robust and
protected without going through DPs. Correspondingly, the
degenerate bands denote the critical point of a topological
transition, where the vorticity may undergo a change.

For instance, we illustrate the different OBC band
braidings and the topological transition in between on a
two-parameter (γ1,2) phase diagram in Fig. 1(a), where a
twofold degeneracy occurs on the critical line. We note that
a higher-fold degeneracy can split into several robust twofold
degeneracies upon perturbations. Without loss of generality,
we consider two types of transition: the degeneracy is intro-
duced by stable EPs [along the le line in Fig. 1(a)] or UDPs
[along the lu line in Fig. 1(a)]. Without extra symmetries
[104–107], a UDP splits into two EPs upon a small pertur-
bation, e.g., finite γ2.

Upon crossing each EP, two bands interchange and intro-
duce a vorticity change of 	νe = ±1/2. To see that, consider
the effective Hamiltonian upon the two relevant bands close to
the stable EP: Heff = hxσx + hyσy + hzσz, where σx,y,z are the
Pauli matrices and hx,y,z are small parameters depending on
θ and γ1,2. The two bands E± = ±(h2

x + h2
y + h2

z )1/2 follow
a multivalued function with a branch cut originating from
the EP at h2

x + h2
y + h2

z = 0; see an example Riemann surface
structure in the vicinity of the EP as a function of θ and a
model parameter, e.g., γ2, in Fig. 1(c). Any closed contour
around the EP will traverse the branch cut and switch one band
with the other, introducing a vorticity change of 	νe = ±1/2
and indicating such an EP’s stability against perturbations
unless annihilated or merged with another EP [93].

After the topological transition, the two bands separate
once again, but there may be a resulting change of total
vorticity and an exchange of partners between parts of the
bands. As we sum up θ for the total vorticity, the difference be-
tween the neighboring models [brown contours in Figs. 1(a1)
and 1(a2)] receives contributions from all intermediate DPs
(magenta circles): ν2 − ν1 = ∑

	ν. For instance, two EPs
with 	ν = −1/2 allow a difference of −1 between the total

FIG. 1. (a) A schematic phase diagram shows non-Hermitian
models with different OBC band braidings are separated by inter-
mediate topological transitions via UDP (orange arrowed line lu) or
EPs (purple arrowed line le). (b) The topological transition of OBC
bands ε1,2 from a Hopf link to an unlink may either go through a
UDP directly or a pair of EPs, which exchange the bands between
the EPs. The resulting change in total vorticity from ν1 to ν2 (brown
dashed lines) corresponds to the contours around all DPs, (a1) a
UDP with 	νu = −1 or (a2) two EPs with 	νe = −1/2 each and
a branch cut in between (thick green line). (c) The Riemann surface
structure shows the exchange between the two bands (blue and red
surfaces) and the vorticity change as the contour (magenta arrowed
curve) circles a single EP.

vorticity of the models on two sides, e.g., a Hopf link and
an unlink in Fig. 1(b), upon tuning the model parameter γ2.
In addition, after the two bands ε1,2 touch at the two EPs,
they separate and enter the unlink region, yet with their parts
between the two EPs interchanged; see the lower panel in
Fig. 1(b).

On the other hand, topological transitions through EPs
are not the only option, as a change of total vorticity can
also happen via UDPs with |	νu| � 1, which may sepa-
rate into multiple EPs. For example, the UDP with vorticity
	νu = −1 [Fig. 1(a1)] can split into two separate EPs with
	νe = −1/2 each and a branch cut in between [Fig. 1(a2)]
upon perturbations. Similarly, we can visualize such a UDP
as two 	νe = −1/2 EPs merged together, leaving behind
no branch cut or band exchange. Correspondingly, during
the transition from the Hopf link to the unlink through a
UDP [upper panel in Fig. 1(b)], the two bands ε1 and ε2

merely touch at the UDP and directly move across with-
out any band exchanges, yielding an unlink afterward. The
stable twofold degeneracies constitute the fundamental in-
gredient of the braiding transition. Therefore, the braiding
transition in non-Hermitian models with more than two bands
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FIG. 2. The OBC bands of the non-Hermitian model in Eq. (6) demonstrate clear braiding topology in the (Re(E ), Im(E ), θ ) space: (a) a
Hopf link at λ3 = 0.36; (b) a topological transition with two emergent EPs (yellow points) at λ3 ≈ 0.375; (c) a separated unlink at λ3 = 0.4;
and (d) an isolated unlink at λ3 = 1. λ1 = λ2 = 0, tp = 0.15, tm = 0.85, ta = 0.2, and m = 0.1. We also show (a1)–(d1) the corresponding
bands E1,2 in the complex E plane and (a2)–(d2) the sub-GBZs C1,2 in the complex β plane. The blue and magenta arrows show the spectral
flows as θ evolves along the sub-GBZs, where the orange and green diamonds mark the θ = −π locations. Note that the “∞”-shaped central
loop in (c1) is visited once only by each band, which overlaps there. The magenta (blue) dots in (c) and (c2) denotes the parts of the bands and
sub-GBZs exchanged after the transition.

can be understood as a combination of multiple twofold
degeneracies. The change in topological invariants, such
as the total vorticity, adheres to the additive principle
over all twofold degeneracies. These arguments about the
braiding phase transition generalize straightforwardly to
topological transitions with arbitrary DPs and OBC band
braidings.

An illustrated model. We study the following 1D non-
Hermitian tight-binding model under OBC as an example
of the continuity criterion, the OBC band braiding, and the
topological transitions:

Ĥbr =
∑

j

[c†
jMc j + c†

jTpc j+1 + c†
j+1Tmc j], (6)

where c j is the annihilation operator at site j with n = 2
internal degrees of freedom, e.g., spins or sublattices, and we

parametrize the hopping matrices as

M =
(

λ3 −im
im −λ3

)
,

Tp =
(

tp + λ1 −ta
ta tp − λ1

)
, Tm =

(
tm + λ2 ta

−ta tm − λ2

)
.

(7)

The corresponding Laurent polynomial reads:

Hbr (β ) =
(

h1(β ) + h2(β ) −h0(β )
h0(β ) h1(β ) − h2(β )

)
, (8)

where h0(β ) = ta(β − β−1) + im, h1(β ) = tpβ + tmβ−1, and
h2(β ) = λ1β + λ2β

−1 + λ3. Next, we explore its band braid-
ings and topological transitions. For simplicity, we set
λ1 = λ2 = 0, tp = 0.15, tm = 0.85, ta = 0.2, m = 0.1, and
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vary λ3 in the main text and leave more general cases to the
Supplemental Material [93].

Applying our continuity criterion, we obtain the two OBC
bands E1 (blue) and E2 (magenta) and their respective sub-
GBZs as shown in Fig. 2. The bands’ braiding topology
is visible and distinguishable in the (Re(E ), Im(E ), θ ) 3D
space: the Hopf link of the separated bands [Fig. 2(a)] trans-
forms into an unlink of the separated [Figs. 2(c)] or isolated
[Figs. 2(d)] bands as λ3 is gradually increased. The topo-
logical transition occurs with the emergence of two stable
EPs where the two OBC bands meet [Fig. 2(b)]. Each EP
contributes to a 	νe = −1/2 change to the vorticity, which
alters from νh = 1 of the Hopf link to νu = 0 of the unlink
and sufficiently distinguishes the braiding topology.

Interestingly, as the red points on the two bands of the
Hopf link approach [Fig. 2(a1)] and touch at the EPs [yellow
points in Fig. 2(b1)], the bands switch partners—their parts
between the EPs; see Fig. 2(c1). This band exchange is also
apparent from the sub-GBZ view, where the sub-GBZs C1

and C2 touches at the topological transition and switch their
portions between the two EPs [Figs. 2(a2) to 2(c2)]. We note
that such an exchange requires a unified starting point for
the sub-GBZs, say, an identical convention for β1 and β2’s
argument θ , so that the sub-GBZs remain continuous and
well defined across the transition. For example, the green and
orange points are θ = −π for the respective bands, regardless
before or after the transition.

One interesting property under OBC is that each point
(except a few endpoints) on its spectrum has to be visited (at
least) twice [27,28]. Correspondingly, we mark the spectral
flows along the OBC bands as θ ∈ [−π, π ] traverses its range.
Each point (exclusion of endpoints) on the Hopf link bands
is visited twice. After the topological transition, however, the
flow is intercepted and interchanged between the bands, each
of which only visited the central loop once. It is their overlap
that ensures the two-visit rule and unique for multiband OBC
systems. Also, as the OBC bands touch at the EPs, the two-

visit rule gives rise to two natural choices of flow directions
and exchange partners; see the Supplemental Material for
further discussions.

When λ3 equals zero, on the other hand, Eq. (8) reduces to
the model in Ref. [92]. The two sub-GBZs overlap, and as m is
varied, the Hopf link and unlink are separated by a topological
transition through a UDP, which splits into two EPs upon a
small perturbation, e.g., a small λ3.

Discussions and conclusions. We have proposed a con-
tinuity criterion to separate the respective sub-GBZs and
non-Bloch bands of non-Hermitian multiband quantum sys-
tems under OBC. This allowed us to build their homotopic
characterizations—braiding topology, such as the total vor-
ticity over the OBC bands, and the intermediate topological
transitions signaled by emergent DPs. We have also demon-
strated our conclusions in an example non-Hermitian two-
band model.

We have discovered that non-Hermitian open-boundary
bands undergo part exchanges when the system transi-
tions through specific EPs. Remarkably, this phenomenon
also exists within the non-Hermitian Bloch bands, though
it had remained unidentified until now. We have assumed
closed sub-GBZs Ci homeomorphic to S1 in the main text,
yet our continuity criterion and braiding topology, homo-
topic characterization of Bn instead of PBn, also remain
valid for more subtle scenarios with intertwined sub-
GBZs, as we discuss in the Supplemental Material [93].
Our analysis also does not depend on symmetries, whose
participation in further topological classifications of the
non-Bloch bands is an interesting open question for future
studies.
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