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Model of a non-Fermi liquid with power-law resistivity: Strange metal with a not-so-strange origin
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We construct a model that exhibits resistivity going as a power law in temperature T , as T α down to the
lowest temperature. There is no residual resistivity because we assume the absence of disorder and momentum
relaxation is due to umklapp scattering. Our model consists of a quantum spin liquid state with a spinon Fermi
surface and a hole Fermi surface made out of doped holes. The key ingredient is a set of singular 2kF modes
living on a ring in momentum space. Depending on parameters, α may be unity (strange metal) or even smaller.
The model may be applicable to a doped organic compound, which has been found to exhibit linear T resistivity.
We conclude that it is possible to obtain strange metal behavior starting with a model that is not so strange.
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Introduction. The notion of strange metals emerged out
of transport measurements from the early days of cuprate
superconductivity, and it has been applied broadly over the
years to instances where linear in temperature resistivity is
observed, whether it is low temperature or high temperature,
and with or without a finite residual resistivity due to disorder.
In this broad sense, strange metal behavior has been seen in
many materials and has attracted a great deal of attention from
the community, as summarized nicely in recent reviews [1,2].
The strange metal is usually associated with the violation of
Landau’s theory of Fermi liquid, and it is believed to be driven
by strong correlation physics. In this paper, we will restrict the
use of the term “strange metal” to low temperatures and where
disorder is either absent or does not play a dominant role. The
high-temperature linear resistivity anomaly is associated with
violations of the Mott-Ioffe-Regel limit and clearly requires a
separate set of physical input [2]. On the opposite end, while
there are examples where linear T resistivity survives to low
temperatures, in many cases the linear regime does not extend
above the residual resistivity beyond a value comparable to the
residual resistivity itself. Examples of this behavior include
the overdoped [3] and electron doped cuprates [4]. While
this phenomenon is not understood and is of great interest,
the effect of disorder is likely to be strongly relevant, and a
different set of explanations may be required. Furthermore,
as a matter of principle, Landau’s Fermi liquid theory refers
to the clean case. In this paper, we will not discuss models
where disorder plays a key role [5–8]. We will focus on
the situation in which a power-law resistivity extrapolates
to a small residual value, so that the power extends over a
range much larger than the residual resistivity, and disorder
may be considered unimportant. Our goal is to produce a
model that produces a power-law resistivity T α with α < 2
which is valid down to zero temperature and which include
the linear resistivity as a special case α = 1. As explained
below (see also [6]), there are barriers towards accomplishing
this goal, which may explain the paucity of such models.
While our model is unlikely to be applicable to cuprate

superconductors, it may find application in a doped organic
compound [9].

Why is it difficult to construct such a model? In the ab-
sence of disorder, the total momentum is conserved under
scattering unless umklapp scattering is allowed. Therefore,
in the absence of both disorder and umklapp scattering, the
conductivity σ (ω) is proportional to δ(ω), which is incompat-
ible with any power-law function ω−α . Hence the coefficient
of δ(ω) must be zero. This case was considered by Else and
Senthil [10], who show that a power-law resistivity requires
the divergence of a certain kind of fluctuations in order to
kill the δ function. We shall not pursue this route here and
instead consider models where umklapp scattering is allowed
down to T = 0. Such models immediately rule out scattering
from critical modes at q = 0 such as those from ferromagnetic
or nematic order or from emergent gauge fields [6,11]. This
leaves soft modes that are associated with a critical point
involving ordering at a finite momentum such as antiferro-
magnets or charge density waves. Such scatterings are limited
to “hot spots” on the Fermi surface. Without scatterings which
rapidly equilibrate the other momentum states on the Fermi
surface, the resistivity is dominated by scattering rates away
from the hot spots [5,12]. This problem can be brought under
control with the introduction of disorder scattering [5,6,11].
This indeed gives rise to a linear T regime with a coefficient
that is independent of the disorder. However, the price one
pays is that this regime is limited to an increase of resistivity
which is equal to or less than the residual resistivity. Hence the
zero disorder limit cannot be taken without losing the linear T
regime [5,11].

It turns out that these difficulties can be circumvented in
a model of doping holes into a quantum spin liquid with a
spinon Fermi surface. The spinon Fermi surface has a singular
self-energy and violates the Landau criterion for quasiparti-
cles. On a triangular lattice umklapp scattering is possible if
the density of doped holes is large enough. We shall show that
in this case the hot spot becomes a hot region on the Fermi
surface, which may even cover the entire Fermi surface. So
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the bottleneck problem mentioned earlier does not arise, and
the power-law resistivity survives to low temperature. We also
emphasize that if the power law α is equal to or less than unity,
the Landau criterion is violated and quasiparticles as defined
by Landau do not exist. Nevertheless, it was shown long
ago by Prange and Kadanoff [13] that even without Landau’s
quasiparticles, a Boltzmann equation that describes transport
properties can be derived. Taking advantage of their insight,
the resistivity can be calculated in a simple way even in the
“non-Fermi-liquid” case. While a quantum spin liquid with a
spinon Fermi surface is an exotic state of matter, it is no longer
considered very strange. In fact, these state may be realized in
certain organic compounds [14] and in monolayer 1T -TaSe2

[15]. In any case, as a matter of principle, it is useful to have
an example that can exhibit strange metal behavior based on a
model that is not so strange.

The model. We consider a Hubbard model on the triangular
lattice with nearest-neighbor hopping t and on-site U . We
assume U/t is such that we are on the insulator side of the
Mott transition, but not deep inside, so the charge gap is finite
but relatively small. S = 1/2 local moments are formed on
the sites, and we assume that they do not order but form a
spin liquid state. We further assume that the electrons have
fractionalized into fermionic spinons carrying S = 1/2 but no
charge, and relativistic bosonic chargons. Both are coupled to
emergent U(1) gauge fields [16]. This state was proposed to
characterize the organic spin liquids compounds, the ET, and
dmit salts [14]. Recently, the ET salt was found to have a spin
gap below a phase transition at 6 K, so if there is a Fermi
surface, at least part of it is gapped out at low temperatures
[17]. We note that with doping the 6 K transition is absent
and it is reasonable to assume that the spinon Fermi surface
is intact [9]. More recently, the spinon Fermi surface state
was also proposed to be realized in monolayer 1T -TaSe2

and 1T -TaS2, and there is evidence of such a state from the
appearance of incommensurate modulations at wave vectors
given by 2kF expected in a Fermi liquid [15]. Further evidence
comes from Kondo screening of adsorbed magnetic impurities
[18]. We note that recent density matrix renormalization group
(DMRG) calculations found a chiral spin liquid in the vicinity
of the Mott transition and not a spinon Fermi surface [19,20].
On the other hand, there is no experimental evidence for time
reversal breaking in the two systems mentioned above. So
we continue to assume that the Fermi surface state is either
realized with additional coupling or is a competing state that
may arise with carrier doping.

Now we consider doping this spin liquid with carriers that
can be electrons or holes. For concreteness we shall use the
hole notation. So far the 1T -TaSe2 and 1T -TaS2 has not been
systematically doped, even though significant charge transfer
is known to occur from the 1T to the 1H layer in 4Hb-TaS2

[21]. On the other hand, in the case of the ET salt, it has been
possible to introduce Hg chains between the layers, resulting
in a doped hole concentration p of 11% [9]. At the mean-field
level, the doped hole will occupy the gapped holon band. On
the triangular lattice, the band minimum may occur at the �

point or the K points depending on the sign of t . Here we
make a further assumption. We consider a strong attraction
between the holon and the spinon so they recombine to form
physical holes that carry both charge and spin. These holes

FIG. 1. (a) The dashed circle shows the spinon Fermi surface in
the hexagonal Brillouin zone for a triangular lattice. The solid blue
circle shows the hole Fermi surface holding p doped holes. The two
Fermi surfaces can exchange momentum P via an umklapp process
where P is the sum of a 2kF vector (dashed orange line) and a
reciprocal-lattice vector G (green line). (b) An expanded view of the
region between the two spinon Fermi surfaces shown in (a). P0 is the
shortest umklapp vector connecting the two spinon Fermi surfaces.
The hole Fermi surface is positioned so that its Fermi surface is
spanned by P0. An initial hole state (green dot) at angle −φ0 is
scattered to a final hole state (orange dot) at angle φ0 + φ in an
umklapp process. The short red arrow denotes the vector �q [defined
above Eq. (2)] which measures the deviation of the collective mode
momentum Q from 2kF

form a Fermi surface containing p holes if the band bottom is
located at �, or they form two Fermi surfaces containing p/2
holes each if the band bottoms are at the zone corner K points.
We shall refer to such bands as hole bands. Alternatively,
there may be an additional band that happens to be located
below the chargon gap, and the doped holes enter that band
to form conventional hole pockets. There is in fact evidence
for such a band in 1T -TaSe2 [22]. The situation is illustrated
in Fig. 1. The spinon band is half-filled and is almost circular.
For concreteness, the hole band is assumed to be at the � point
and has an area corresponding to p spinful holes.

Note that the hole band containing p holes violates the
Luttinger theorem, which states that the Fermi surfaces should
enclose a total of 1 − p fermions. This situation has been
dubbed FL∗ by Senthil, Sachdev, and Vojta [23]. They ex-
plained that one can get around the nonperturbative proof of
Luttinger theorem [24] if the spinon sector is in a gapped
topological state with degenerate ground states upon flux
insertion in a torus geometry. In our case, the spinon sec-
tor is gapless and has massive degeneracy. As a result, the
non-perturbative proof that relies on returning to the same
ground state after a flux insertion in a torus also fails [25].
While topology does not play a role, we follow [23] and
denote this as an FL∗ state. The properties of the hole pocket
can be quite conventional, apart from its small Fermi sur-
face area. In contrast, the spinon Fermi surface is strongly
coupled to a U(1) gauge field which the holes do not see.
This problem has been well studied and one key result is
that the self-energy goes as ω2/3 [27]. The spinon decay rate
exceeds ω, which violates Landau’s criterion for the existence
of quasiparticles. The origin of the strong decay rate is that
the gauge field is strongly overdamped, with a propagator
that goes as (|ω|/q + q2)−1. The excitation ω scales as q3
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FIG. 2. A plot of the exponent α which characterizes the resis-
tivity going as T α vs the exponent σ . The dashed line indicates the
breakdown of the linear relation given by Eq. (5) for σ > 5/6. The
Fermi liquid behavior α = 2 is recovered for σ < 1/6, and linear T
resistivity is obtained for σ = 2/3, as indicated by the short-dashed
line. σ is defined as the divergent exponent of the vertex function
γ (ω) ∝ ω−σ . As shown in the inset, this divergence is due to re-
peated exchange of the gauge field (dotted line). Also shown is the
diagram for the spinon polarization function 
2kF . The intermediate
spinon lines denote excitations of spinon particle-hole pairs, which
are restricted to low energy, hence two factors of the vertex func-
tions appear and contribute the factor ω̃−2σ in Eq. (1). For details,
see Ref. [26].

resulting in a copious amount of low-energy excitations. For
a number of years it was believed that this strong coupled
problem can be controlled with a 1/N expansion, where N
is the number of fermion species. The low-energy physics is
found to be described by a nontrivial fixed point, which is
exactly marginal and described by scaling functions [26,28].
Of particular interest to us is that the polarizibility function
for the system comprising spinons coupled to gauge fields,

(ω, Q), is singular for |Q| near 2kF [26]. Importantly, note
that this results in a ring of low energy excitations in mo-
mentum space with radius 2kF . Unfortunately, upon further
scrutiny it was shown by Sung-Sik Lee that the 1/N is not
controlled even in the large N limit [29]. So the nature of the
low energy physics is not known even for large N , let alone
the physical case of N = 2. Nevertheless, it is still-possible
that the low-energy physics remains to be described by a
nontrivial and marginal fixed point. There is support for this
possibility by studies involving more expansion parameters
[30]. We will adopt this point of view and assume a scaling
form for 
(ω, Q) which is the same for the large-N expansion
as given by Altshuler, Ioffe, and Millis [26], except that we
will treat the scaling exponent σ as an unknown parameter.
[σ is the exponent that characterizes the divergence of the 2kF

vertex function γ due to coupling to the gauge fluctuations
as shown in Fig. 2, namely, γ (ω) ∝ |ω|−σ .] Since 
(ω, Q) is
independent of the direction of Q, we introduce the variable
�q = Q − 2kF Q̂ to denote the distance of Q from the Fermi
surface. We write 
(ω, Q) as 
2kF (ω,�q) and denote the
imaginary part of the retarded function after analytic continu-
ation to real frequency � as 
′′. We define the scaled variable
q̃ as q̃Q̂ = �q/kF , together with ω̃ = ω/EF . We have (for

details, see Appendix A)


′′
2kF

(ω,�q) ∝ 1

EF
ω̃2/3−2σ , ω̃2/3 > |q̃|, (1)


′′
2kF

(ω,�q) ∝
{

1
EF

ω̃|q̃|−1/2−3σ , ω̃2/3 < |q̃|, q̃ < 0,

1
EF

ω̃5/3|q̃|−3/2−3σ , ω̃2/3 < |q̃|, q̃ > 0.

(2)

In these equations, the σ -dependent part comes from the
vertex function γ and the rest comes from particle-hole ex-
citations including the self-energy correction. Equation (1)
gives the limit ω̃2/3 > |q̃| and is given in Ref. [26]. The limit
ω̃2/3 < |q̃| is given in Eq. (2). The first line is applicable for
q̃ < 0 or |Q| < 2kF and apart from the σ -dependent factor, it
is the same as the familiar form for free fermions [31]. The
only difference is that the condition of validity is changed
from ω̃ < |q̃| to ω̃2/3 < |q̃|. The second line in Eq. (2) gives
the case |Q| > 2kF which is zero for free fermions because
we are outside of the particle-hole continuum. In our case,
there is a finite contribution due to a self-energy that goes
as ω2/3. Note that Eqs. (1) and (2) satisfy the scaling form

′′

2kF
∝ ω̃2/3−2σ F (ω̃/q̃3/2) so that ω̃ scales as q̃3/2. [F (x) goes

to 1 for x small.]
We note that while Eqs. (1) and (2) are often derived

assuming a circular Fermi surface, it is generally applicable
to any Fermi surface shape as long as opposite k points on
the Fermi surface have parallel tangents. In this case, kF is a
function of angle θ , and Eqs. (1) and (2) remain valid.

Resistivity. Now we are ready to compute the resistivity
of the hole band due to scattering by the soft 2kF mode of
the spinon Fermi surface. We note that after shifting by a
reciprocal-lattice vector G, the 2kF vectors are equivalent to a
set of vectors P centered at the M point that connect the Fermi
surfaces on neighboring extended Brillouin zones, as shown
in Fig. 1(a). If the hole Fermi surface is large enough, these
vectors can connect points on the hole Fermi surface and give
rise to umklapp scattering, which relaxes the momentum and
current. The condition on the size of the hole Fermi surface
is the following. With nearest-neighbor hopping the spinon
Fermi surface is nearly a circle with radius kF ≈ 0.375|b1|,
where b1 is the reciprocal-lattice vector along x̂ [15]. The
length of the shortest vector that connects the two Fermi
surfaces is 0.25|b1|. Let us denote the Fermi momentum of
the hole pocket by pF . The condition for umklapp is that
pF > 0.125|b1|, which is 1/3 of kF for one spinon per unit
cell. Hence we conclude that umklapp scattering begins for
p > 1/9 in the case of a single circular hole pocket centered at
�. This condition can be relaxed if the Fermi surface deviates
from a circle, which is likely the case if the doped holes
occupy a separate trivial band. Below we will assume that this
condition is satisfied, and we will calculate the hole lifetime
due to umklapp scattering. Since the momentum transfer is
large and umklapp, the same lifetime will enter the resistivity
and all transport phenomena.

Unlike the spinon Fermi surface, the hole Fermi surface is
not coupled to the gauge field, and it does not have the anoma-
lous large self-energy and damping rate. The major source
of damping at low temperatures comes from the umklapp
scattering channel under consideration. If this rate is smaller
than linear in T or its frequency �, the quasiparticle is well
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defined and a Fermi liquid description is valid in the Landau
sense, even if the Luttinger theorem is not obeyed. Here I
remark that even if the decay rate ends up with a power law
smaller than unity and Landau quasiparticles do not exist, it
is still possible to treat the transport problem using the Boltz-
mann equation, as long as the self-energy has only a frequency
dependence and no singular momentum dependence, which
is the case here. This was shown by Prange and Kadanoff
[13], and their idea has been applied to the fermion coupled
to the gauge field problem [11,32]. The idea is that at low
frequency, the electron spectral function is a sharp peak in
momentum space, and a Fermi surface can be defined by
the crossing of this sharp peak across pF . This is familiar
in the angle-resolved photoemission spectroscopy (ARPES)
literature in that the momentum distribution curve (MDC) can
be sharp while the energy distribution curve (EDC) is broad.
This allows us to use the Boltzmann equation approach to
calculate the resistivity, and the result will remain valid even
if the exponent α ends up being less than unity, which will
happen in a certain parameter range.

In its simplest form, the solution of the Boltzmann equa-
tion is just the computation of the scattering rate 1/τ using
Fermi’s Golden Rule. As shown in Fig. 1(b), we label the state
on the hole Fermi surface by an angle φ. For simplicity of
exposition, we consider the scattering from an initial state at
−φ0 to a final state at the Fermi surface near φ0 such that they
are connected by the shortest umklapp vector, which lies along
x̂. Different φ0’s will have longer spanning umklapp wave
vectors, but they will have a similar scattering rate with the
same power law. The important point is to note that in general
a finite region of φ0 values will satisfy this umklapp condition
and will have similar umklapp scattering rates. Furthermore,
there are six minimal spanning vectors in total which repli-
cate the one shown in Fig. 1(b). Therefore, it is quite likely
that these regions of initial states will cover the entire Fermi
surface. This situation is totally different from the scattering
from a critical mode at a finite momentum, such as that due to
antiferromagnetic instability. This results in the so called “hot
spots,” and the problem is that the rapid relaxation is limited
to these hot spots and there is a bottleneck to relax momenta
from the rest of the Fermi surface [5,12]. To overcome the
bottleneck constraint, one needs to introduce disorder scatter-
ing, which gives a finite resistivity at zero temperature, leading
to the difficulties described earlier. An important feature of
the current model is that the entire Fermi surface or large
fragments of it is hot, which allows us to reach the clean limit.

The umklapp scattering rate is given by [11]

1/τ = V 2
0

∫ �

0
dω

∫
dφ 
′′

2kF
(ω,�q(φ)), (3)

where V0 is a short-range interaction constant between the
holes and the spinons. Since the imaginary part of 
2kF rep-
resents the excitation of a particle-hole pair of spinons, this
equation captures the scattering of holes by spinons described
in Fig. 1. The integral is over a final state located at φ0 + φ on
the Fermi surface, and Q(φ) denotes a vector in the direction
connecting this point and the center of the spinon Fermi sur-
face circle, which is close to x̂ for small φ. We are interested in
Q(φ) near 2kF , so the integration over φ can be converted to a
one-dimensional integral over the length of �q, where �q is

the deviation of Q from the 2kF vector as defined earlier. It is
easy to see that |�q| ≈ kF φ cos(φ0). Hence the integral over
φ is converted to an integral over q̃/ cos(φ0). We have

1/τ = V 2
0

cos(φ0)

∫ �

0
dω

∫ �

−�

dq̃ 
′′
2kF

(ω,�q(φ)), (4)

where � ≈ 1 is an ultraviolet (UV) cutoff in the q̃ integration.
We can divide the q̃ integral into two regions. Region (1) is for
ω̃2/3 > |q̃| as given by Eq. (1). The q̃ integral gives a factor
ω̃2/3 and we find 1/τ ∝ �7/3−2σ Region (2) is for ω̃2/3 < |q̃|
as given by Eq. (2). The contribution from this region is the
same as that from region (1), as long as σ > 1/6. In this case,
all the integrals are ultraviolet-convergent and the integral can
be obtained by power counting using the scaling property
described after Eq. (2). (For details, see Appendix B.) Hence
we find the exponent for the scattering rate 1/τ ∝ �α or T α ,
where

α = 7/3 − 2σ, σ > 1/6. (5)

For σ < 1/6 the region q < 0 (corresponding to the region
inside the particle-hole continuum) dominates because the q
integral is ultraviolet-divergent and scaling fails. As a result,
we find that α = 2 and we recover the standard Landau Fermi
liquid result. We note that the spinon self-energy is given
by ωα due to scattering by the holes. When α < 2/3, the
exponent will need to be determined self-consistently. Hence
the validity of Eq. (5) is limited to the range 2/3 < α < 7/3.
This final result is summarized in Fig. 2.

We do not know what the value of σ is, but as a matter
of principle, this model gives a power-law behavior of the
resistivity down to the lowest temperature, which can include
the linear T resistivity. In fact, the linear T case α = 1 does
not play any special role, and there is no obvious restriction
that α cannot be smaller than unity.

The effect of disorder can easily be included in the Boltz-
mann approach by adding a scattering rate 1/τ0, which
simply adds a residual resistivity. Since the umklapp scatter-
ing already relaxes momentum, disorder does not modify the
umklapp rate given by Eq. (3) in an essential way, in contrast
with the hot spot models [5,6].

Discussion. We have constructed a model based on doping
of a spin liquid with a spinon Fermi surface, forming a hole
Fermi surface with an area that corresponds to the doped hole
concentration p. As such it violates Luttinger theorem and
belongs to the classification FL∗ [23]. We show that for p large
enough, umklapp scattering between the hole Fermi surface
and the spinon Fermi surface becomes possible, resulting in
a resistivity that goes as T α , where α is given by Eq. (5) and
can vary over a wide range, depending on the strength of the
2kF singularity of the spinon. In principle, α equal to unity or
even smaller is possible. In these cases, the Landau criterion
for the existence of his quasiparticle is violated, and this state
can be called a non-Fermi liquid. Our calculation relies on
the formulation of Prange and Kadanoff [13], who showed
that quasiparticles in the Landau sense are not necessary to
derive a Boltzmann equation to describe transport. Therefore,
our result should remain valid for α equal to or less than
unity. On the other hand, since the transport properties are
based on the Boltzmann equation, other properties such as the
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FIG. 3. Diagram for 
2kF (ω, Q). Solid triangles represent the
vertex function γ (ω,�q) shown in the inset of Fig. 2.

Hall constant and magnetoresistance should be conventional.
In particular, the magnetoresistance should obey Koehler’s
rule, which states that the correction to resistivity goes as
(Bτ )2. In cuprates, a linear in B magnetoresistance is often
associated with a linear in T resistivity. It is unlikely that
our model or something similar is relevant to the cuprates.
The most promising material candidate is the doped organic
system where 11% doping has been achieved, and linear or
close to linear in T resistivity, which extends over several
times the residual resistivity, has been observed over some
range of pressure [9]. The Hall constant is given by the hole
doping in this pressure range, consistent with small Fermi
pockets of total area p. Interestingly, 11% is on the border
of applicability of our model, which requires p > 1/9.

We note that the key ingredient of our model is a critical
mode that is soft along a line in momentum space. This
gives rise to low-energy scattering in finite regions on the
Fermi surface, which allows us to circumvent the hot spot
problem associated with scattering by a mode that is criti-
cal at one momentum. We employ a model with a spinon
Fermi surface because that represents a critical state that exists
over a range in parameter space. Therefore, the power-law
resistivity exists over a range of parameters such as doping
or pressure. Furthermore, a circular spinon or hole Fermi
surface is not needed, because the singularity of 
2kF is a
consequence of a two-patch model, which relies on the fact
that opposite k points in the spinon Fermi surface have parallel
tangents.

There have been a lot of discussions concerning the so-
called Planckian bound, h̄/τ < kBT [33]. Attempts to support
this conjecture with more rigorous derivations have centered
on the ability of the system to reach local equilibrium within
some relaxation time τeq. There is no clear connection of
τeq to the transport time [2] so that at present there is no
clear connection between transport lifetime and the Planckian
bound [2]. Our model is relatively simple and can serve as a
counterexample to the Planckian bound. The fact that phonon
scattering at high temperature is given by 2πλkT and can
exceed kT has been used to argue against the Planckian bound
[4]. Our model has the advantage that it is valid down to zero
temperature.
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Appendix A: The imaginary part of the polarization bubble

′′

2kF
(ω,�q). In this Appendix, we derive the expression for

the imaginary part of the polarization bubble 
′′
2kF

(ω,�q)
given by Eqs. (1) and (2). The diagram is shown in Fig. 3.

The vertex function is given by Altshuler et al. [26] as

γ (ω,�q) ∝
{

ω̃−σ , ω̃2/3 > |q̃|,
|q̃|−3σ/2, ω̃2/3 < |q̃|, (A1)

where a tilde denotes the scaled variables defined above
Eq. (1) in the main text. From Fig. 3 we see that 
′′

2kF
(ω,�q)

is given by the product of two factors of the vertex function
γ and the bubble 
0 given the product of two fermion Green
functions G,


0(ω, Q) ∝
∫

dν

∫
d p G(p, ν )G(p + Q, ν + ω). (A2)

We work at T = 0, and ω and ν are Matsubara frequen-
cies. The Green function is given by G(p, ν) = 1/[i�(ν) −
ξp], where ξp = p2/2m − k2

F /2m, and the self-energy �(ν) ∝
sgn(ν)|ν|2/3 due to gauge fluctuations and dominates over the
usual linear ν term, which has been dropped. We write Q =
2kF + q and pick the directions of Q, kF , q to be along the x
axis. For small q the important p is near −kF and it is natural
to define p = −kF x̂ + k. It follows that ξp = −vF kx + k2

y /2m
and ξp+Q = vF (q + kx ) + k2

y /2m. Equation (A2) becomes


0(ω, Q) ∝
∫

dν

∫
dkxdky

1

i�(ν) − k2
y /2m + vF kx

× 1

i�(ν + ω) − vF q − k2
y /2m − vF kx

. (A3)

The kx integral can be done. Note that the poles cannot be both
in the upper or lower half-plane. This results in a factor with
the θ function θ (sgn(ν)sgn(ν + ω)) and


0(ω, Q) ∝
∫

dν

∫
dky

× 2π iθ (sgn(ν)sgn(ν + ω))
i�(ν) + i�(ν + ω) − vF q − k2

y /2m
. (A4)

The ky integral can now be done, resulting in


0(ω, Q) ∝
∫

dν
(2π i)2θ (sgn(ν))θ (sgn(ν)sgn(ν + ω))√−vF q + i�(ν) + i�(ν + ω)

.

(A5)

Keeping the region in the ν integral that is not canceled by
the θ functions, we have for positive ω


0(ω, Q) ∝
∫ ω

0
dν

1√
−vF q + i|ν|2/3 + i|ν + ω|2/3

. (A6)

Now we can consider various limits. We note that in order to
get the imaginary part of 
0, we need to analytically continue
the Matsubara ω in Eq. (A6) to the real axis. In the equa-
tions below, ω is on the real axis. First for ω̃2/3 > |q̃|, we can
drop q in the denominator and obtain, in agreement with [26],


0(ω, Q) ∝ e−iπ/4|ω|2/3, ω̃2/3 > |q̃|. (A7)

For ω̃2/3 < |q̃| and q < 0, i.e., Q < 2kF , we are inside
the particle-hole continuum. For the leading contribution, it
suffices to keep the

√−q term in the denominator, resulting in

Im 
0(ω, Q) ∝ ω/
√

|q|, ω̃2/3 < |q̃| and q < 0. (A8)
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This is a well-known result for free fermions. On the other
hand, for q > 0 we are outsider the particle-hole continuum,
and the free-fermion polarization bubble has no imaginary
part. The presence of the self-energy � gives a finite contri-
bution in our case, and we need to keep the next order by ex-
panding the ω-dependent term in the denominator, resulting in

Im 
0(ω, Q) ∝ ω5/3

|q|3/2
, ω̃2/3 < |q̃| and q > 0. (A9)

Restoring the scaling factors and multiplying by two factors
of the vertex function γ given in Eq. (A1), we obtain Eqs. (1)
and (2) for 
′′

2kF
(ω,�q) in the text.

Appendix B: The scattering rate 1/τ . We calculate the
scattering rate 1/τ using the Fermi Golden Rule, which is
appropriate for a solution of the Boltzmann equation. Since
momentum scattering is large, there is no difference between
the scattering rate and the transport scattering rate. As ex-
plained in the text, the final state is parametrized by the angle
φ shown in Fig. 1. Importantly, for a given φ and for a final
state on the spinon Fermi surface, the momentum transfer is
given by the deviation of Q from 2kF where these two vectors
are parallel. Therefore, the integral over φ can be converted to
a one-dimensional integral over q̃ as shown in Eq. (4), and we
can use Eqs. (1) and (2) for 
′′

2kF
(ω,�q). We now break up

the integral into three regions, corresponding to the different
limits given in Eqs. (1) and (2). The first region corresponds
to ω̃2/3 > |q̃| and the integral takes the form∫ �

0
dω

∫ ω2/3

0
dq ω2/3−2σ ∝ �7/3−2σ . (B1)

The second region corresponds to ω̃2/3 < |q̃| and q > 0, i.e.,
the region outside the particle-hole continuum in the free-

fermion case. The integral takes the form

∫ �

0
dω

∫ �

ω2/3
dq

ω5/3

q3/2+3σ
. (B2)

Note that the q integral is ultraviolet convergent as long as
σ > −1/2, which is the case for a divergent vertex function.
The upper cutoff can be extended to infinity, and this integral
gives the same result as in Eq. (B1). This is a consequence
of the scaling between ω̃2/3 and |q̃|, and the result can be
obtained by power counting. The final region corresponds to
ω̃2/3 < |q̃| and q < 0, i.e., the region inside the particle-hole
continuum in the free-fermion case. The integral takes the
form

∫ �

0
dω

∫ −ω2/3

−�

dq
ω|q|−3σ

√|q| . (B3)

The important difference is that the q integral is ultraviolet-
convergent only for σ > 1/6, in which case the contribution
is the same as Eq. (B1) again. For σ < 1/6 the q integral gives
a constant proportional to ω�, and we recover the standard
Fermi liquid result 1/τ ∝ �2 and the power counting argu-
ment fails. This becomes the dominant contribution, and we
conclude that Fermi liquid is restored for σ < 1/6, as shown
in Fig. 2.

Finally, these results can easily be extended for finite tem-
perature by noting that since everything is a power law, T
simply scales as � if we include the usual Fermi factors,
which depend on ω/T . Therefore, we simply replace � by
T in the finite result for the scattering rate.
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