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Doping the Mott insulating state of the triangular-lattice Hubbard model
reveals the Sordi transition
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It has been reported that upon doping a Mott insulator, there can be a crossover to a pseudogapped metallic
phase followed by a first-order transition to another thermodynamically stable metallic phase. We call this
first-order metal-metal transition the Sordi transition. It was argued that the initial reports of Sordi transitions
at finite temperature could be explained by finite size effects and biases related to the model and method
used. In this work, we report the Sordi transition on larger clusters at finite temperature on a triangular
lattice, where long-range antiferromagnetic fluctuations are frustrated, using a different method, the dynamical
cluster approximation instead of the cellular dynamical mean-field theory. This demonstrates that this first-order
transition is a directly observable transition in doped Mott insulators and that it is relevant for experiments on
candidate spin-liquid organic materials.
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Emergent states of strongly correlated electronic systems
are among the most fascinating phenomena in physics. Simple
models can capture the essence of intriguing correlated states
while remaining interpretable. The Hubbard model [1–5], al-
though extremely simple to write and credited with important
successes, still has no exact solution in two dimensions (2D)
and remains a source of important challenges.

Hubbard already understood that this model should contain
the physics of the so-called Mott transition, namely a transi-
tion from a metal to an insulator caused by strong electronic
repulsion. By now, numerous experiments have suggested that
there is such an interaction-driven transition in the half-filled
single-band model and that it is first order [6–13], a result
supported by various embedding methods such as dynamical
mean field theory (DMFT) [14–18] and its multisite exten-
sions: cluster DMFT (CDMFT) [19–21] and the dynamical
cluster approximation (DCA) [22–24].

Here we focus on the doping-driven Mott transition. Early
on, several works have suggested that, upon changing the
chemical potential μ away from half-filling, the electronic
compressibility, ∂n/∂μ with n the average number of electron
per site, displays hysteresis characteristic of a first-order tran-
sition [25–29]. There is, however, disagreement on the nature
of the phases that are linked by doping-driven transitions.
Single-site DMFT [25] finds a first-order transition between
the Mott insulator (MI) and the metal, while DCA cluster
calculations find momentum space differentiation [30] or a
first-order transition on the electron-doped side only when the
model is frustrated [26,27,31]. In contrast, Ref. [28] found
that a first-order doping-driven transition could connect two

*Contact author: andre-marie.tremblay@usherbrooke.ca

thermodynamically stable metallic phases at finite tempera-
ture [32]: a pseudogap (PG) phase and a correlated Fermi
liquid (cFL). We refer to this type of doping-driven transition
as the Sordi transition.

This transition could have profound implications as it ap-
pears to be the hallmark of the onset of a strongly correlated
PG [33,34], namely a pseudogap that is a consequence only of
short-range spin correlations [35,36], not of long-wavelength
spin fluctuations [37]. What is meant by pseudogap in this
work simply refers to the appearance of a local minimum in
the density of states, exemplified in Fig. 1(b) and quantified in
the Supplemental Material [38]. Notice that the PG phase is
different from the bad-metal or bad-insulator phases discussed
in single-site DMFT [18,39] since in these high-temperature
phases one does not observe sharp peaks surrounding the min-
imum at the Fermi level. In short, it is a phase where density
of states and spin susceptibility are reduced and where various
features appear in transport. Its onset for decreasing temper-
ature happens at T ∗(p) that depends on doping p. The Sordi
transition also explains several features of the pseudogap in
cuprates [34,40–46], for example the experimentally observed
sudden drop of T ∗ at a critical doping p∗ [47,48], critical
opalescence [46,49], the specific heat maximum [44,50] plus
logarithmic temperature dependence [42,50], and even possi-
bly high temperature linear scattering rate [45,51].

More generally, the Sordi transition can be defined as a
first-order transition between a strongly correlated metal and
a weakly correlated metal. It is important to contrast the
first-order nature of such a transition to general doping-driven
transitions [17,25,26,29,30,52–56].

The Sordi transition was first reported in Ref. [28] using
CDMFT on the 2D square lattice single-band Hubbard model
with only nearest neighbor hopping t . In Ref. [57], the transi-
tion has also been seen when including a next-nearest hopping

2469-9950/2024/110(12)/L121109(7) L121109-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6854-2231
https://orcid.org/0000-0003-3970-6273
https://orcid.org/0000-0001-6932-8299
https://ror.org/00kybxq39
https://ror.org/00sekdz59
https://ror.org/02xrw9r68
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.L121109&domain=pdf&date_stamp=2024-09-12
https://doi.org/10.1103/PhysRevB.110.L121109


P.-O. DOWNEY et al. PHYSICAL REVIEW B 110, L121109 (2024)

FIG. 1. (a) First-order doping-driven Sordi transitions at U =
8.3 and T = 1/15. The hole-doped Sordi transition is highlighted
in the inset. We define the quantities μc1 and μc2 as the critical μ

for the transition from the Mott insulator (MI) or pseudogap (PG)
to correlated Fermi liquid (cFL), and from cFL to MI or PG, re-
spectively. The Sordi transition corresponds to a first-order transition
that evolves from the Mott transition at half-filling but that occurs
between two stable metallic states. The cluster used on the real lattice
is displayed in the lower right corner. (b) Local spectral weight for
the representative points of (a). We use the spectral weight to classify
the states obtained by the calculations. More details can be found in
the Supplemental Material [38].

term t ′ = −0.1t . Similar phenomena have been observed in
different contexts [53–55,58].

Objections that have been raised to the physical relevance
of the Sordi transition include the fact that in real systems,
this transition could be hidden by long-range ordered phases
or by long-range correlations precursors of zero-temperature
ordered phases. The latter argument has also been presented
against the interaction-driven Mott transition [59]. It has also
been argued that the Sordi transition could be an artifact of
CDMFT on a small 2 × 2 square cluster, as it overemphasizes
singlet correlations.

Here we study the Sordi transition on the triangular lattice.
While several magnetic phases appear at zero temperature for
values of interaction slightly larger than the Mott transition
[60], the triangular lattice geometrically forbids long-range
magnetic correlations until very low temperature, in particular
for the range of interaction strengths of interest to us: 8.5 �
U/t � 10.54 [61–71]. We also find that the strong coupling
metallic phase is a PG phase in the triangular lattice away
from half-filling [38].

In this Letter, we achieve two broad goals.
(i) First, we show that the Sordi transition is not an artifact

of either (a) the square lattice, since we work on the triangular
lattice; (b) nor of CDMFT, since we use DCA; (c) nor of
four-site clusters, since we study six-site clusters; (d) nor of

long-correlation lengths, since magnetism is frustrated on the
triangular lattice. We instead confirm that the transition is
related to Mott physics, namely strong interactions, and that
it should be observable at T > 0.

(ii) Second, we map out the phase diagram as a function of
interaction U and chemical potential μ for two different tem-
peratures and identify possibly observable pseudogap regions,
in particular in spin-liquid candidate κ-BEDT layered organic
compounds [72–74].

The model. We investigate the one-band 2D Hubbard
model [75–78], defined by the Hamiltonian

H = −
∑

i, j,σ

ti j ĉ
†
iσ ĉ jσ + U

∑

i

n̂i↑n̂i↓ − μ
∑

iσ

n̂iσ , (1)

where ti j represents the hopping terms between sites i and j,
ĉ†

iσ and ĉiσ are respectively the creation and annihilation oper-
ators for electrons with spin σ at site i, U is the strength of the
on-site Coulomb interaction between electrons, n̂iσ = ĉ†

iσ ĉiσ

is the number operator for electrons with spin σ at site i, and
μ is the chemical potential. The six-site cluster that we study
is shown in Fig. 1(a). We consider only the nearest-neighbor
hopping terms t and t ′, where t ′ is useful to model the
anisotropic triangular lattice and looks like a second-neighbor
hopping when the lattice is mapped on a set of orthogonal
basis vectors. Here we take t = −t ′ = 1. These signs of the
hopping terms were chosen with the cuprate convention. At
half-filling, the sign of t ′ is irrelevant and, in general, changing
it is equivalent to a particle-hole transformation [79]. We work
in units where hopping t , lattice spacing, and Planck and
Boltzmann constants are unity.

The solutions to this model are obtained using a state-of-
the-art DCA implementation [80–82] with continuous-time
auxiliary-field quantum Monte Carlo interaction expansion
(CT-AUX) [83,84]. The six-site cluster on Fig. 1 was shown
in Refs. [23,45] to exhibit the major features seen in its larger
counterpart (12 sites). Note that, contrarily to CDMFT, the
DCA cluster has periodic boundary conditions on the cluster.

Filling induced first-order transitions. Figure 1 presents
the first-order doping-driven transitions obtained on both the
hole- and electron-doped sides, for U = 8.3 and T = 1/15.
The hole-doped doping-driven transition highlighted in the
inset is clearly a Sordi transition since it shows a first-order
transition between two metallic (compressible) states away
from half-filling. As in the careful studies of Refs. [28] and
[29] on the square lattice, observing this transition requires
very fine scans in μ and might have been missed in earlier
studies [26,30]. One needs to start from a previously con-
verged solution in the MI and to make small steps in μ in
order to numerically reveal the hysteresis.

As expected, on a triangular lattice, the hole- and electron-
doped sides are asymmetrical. For these parameters on the
electron-doped side, the hysteresis is between a metal and
an insulator, as observed on the square lattice with second-
neighbor hopping [26,31]. Nevertheless, what looks like a
hysteresis between a metal and an insulator in fact evolves
continuously into the Sordi transition, as shown in Fig. 2(a)
that displays the evolution of the doping-driven transitions
as a function of interaction strength U . Even if a first-order
metal to insulator transition seems to be more commonly
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FIG. 2. Evolution of the first-order doping-driven transition with
respect to U on the (a) electron- and (b) hole-doped sides at T =
1/15. The Widom line μhW (μeW ) is the value of μ on the hole-doped
(electron-doped) side where the compressibility ∂n/∂μ is maximal
for a given value of U .

witnessed [26,31], increasing U makes it clear that there is a
Sordi transition. The Sordi transition was often presented as a
transition induced by hole doping [34,53–55], but our results
suggest that the transitions on the electron- and hole-doped
sides are very similar, even in the case of large electron-hole
asymmetry.

Figure 2(b) presents the hole-doped side. We see that
the Sordi transition disappears upon increasing U to U =
8.35 ± 0.05 and that it then becomes a Widom line μhW (U )
[34], which is a line of maxima of thermodynamic quan-
tities [85,86]. In this case, the Widom line is defined as
a maximum of the compressibility ∂n/∂μ that slowly van-
ishes as U increases. On the other hand, for U down to
U = 8.05, once in the metallic state it cannot go back to the
insulator. This is the expected behavior when U is in the in-
terval Uc1 < U < Uc2, the spinodals of the interaction-driven
Mott transition at half-filling. Note that the Sordi transition
on the electron-doped side exists at that temperature for a
much wider range of interaction (8.8 � U � 10.3) than on the
hole-doped side.

Connection to Mott physics. To better grasp the connection
between the Sordi transition, the PG, and Mott physics, we
present their interplay on the phase diagrams presented in
Fig. 3. It displays the three phases, MI, PG, and cFL, en-
countered in Fig. 2 for a wide range of μ and U for two
different temperatures: T = 1/8 in (a) and T = 1/15 in (b).
Notably, the doping range of the PG decreases with tem-
perature, and the Mott energy gap becomes smaller as the
temperature increases. At T = 1/8, the phase diagram is
rather simple. We find that the Mott gap increases with U , and
that a rapid crossover separates the electron-doped PG and the

FIG. 3. Phase diagram with U on the vertical axis and μ − U/2
on the horizontal axis for (a) T = 1/8 and (b) T = 1/15 show-
ing the connections between the MI, Widom lines μeW and μhW ,
and Sordi transitions. Phases are labeled as correlated Fermi liquid
(cFL), pseudogap (PG), and Mott insulator (MI). The red stars with
blue contours highlight the critical (U, μ) of the Sordi transition
where the compressibility tends toward infinity, on both the hole-
and electron-doped sides. The color gradients between some of the
phases represent the crossover nature of the transitions. The red
dotted line represents where the spectral weight at ω = 0 is below
a small threshold (δ = 0.005) [38].

cFL. The physics becomes more interesting when the temper-
ature decreases. At T = 1/15, we find that the cFL can coexist
with either the PG or the MI, as highlighted by the hatched
region. Although we cannot reach infinitesimally small tem-
peratures with continuous-time quantum Monte Carlo, we
expect that the Sordi transition likely remains down to T = 0
if long-range order does not appear [55]. The portions of
this region corresponding to Sordi transitions are those where
the hysteresis occurs between the cFL and the PG phases
at constant U . The limit between the PG and the cFL are
intimately related to the first-order doping-driven transition or
to the Widom line.

While the limit between the PG and the cFL is clear when
there is a first-order transition, it is no longer the case at large
U or high temperature. Indeed, in these cases, the first-order
transition evolves into a Widom line or leaves no visible trace
in the compressibility ∂n/∂μ. It makes it particularly hard to
define only one objective criterion for the boundary between
the PG and the cFL [38]. Another important remark is that the
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spinodals μc1 and μc2 of the Sordi transition are connected at
half-filling to Uc1 and Uc2 discussed in Ref. [23], showing the
direct relationship between the Sordi transition and the Mott
transition. Finally, we observe around μ = 3.4 and U = 7.8
that a PG can be found with a U slightly lower than Uc for the
MI. This peninsula in the PG phase has an analog in the 1D
Hubbard model [87].

Discussion. Our results provide evidence for Sordi tran-
sitions in the triangular Hubbard model using DCA, hence
showing that this phenomenon is not an artifact of two-orbital
DMFT nor of CDMFT on 2 × 2 clusters. We stress that our
implementation of the CT-AUX impurity solver and DCA
algorithm are independent of any previous studies on this
subject. Furthermore, many other studies found that the Hub-
bard model on a triangular lattice does not have long-range
magnetic correlations at half-filling in the temperature and
interaction regime we study (∼8.2) [61–71]. This suggests
that our study is not biased by large correlation lengths, that
the Sordi transition is not a magnetic transition, and that it
could be measured experimentally.

The Sordi transition separates two different metals: one
highly correlated and the other less correlated. The former
is interpreted as a PG state, although the formal proof of a
k-dependent loss of spectral weight remains to be seen and is
kept for future works, as it will require additional extensive
calculations. Triangular lattices are highly frustrated, thus the
existence of the strong-coupling PG in the triangular Hubbard
model is strong evidence that long-range magnetic correla-
tions are not a necessary ingredient for the onset of a PG,
consistent with other studies [29,33,35,36,88].

As suggested by Fig. 2, the hysteresis associated to the
Sordi transition appears to be indissociable from the Mott
transition, as follows from the phase diagram, Fig. 3(b),
where it clearly emerges from the Mott insulator. This was
seen on the square lattice as well [28,29]. At temperatures
where DCA calculations can be performed, this hysteresis
is found in the low interaction limit of the doped MI
[28,29,34,40], but it should persist to larger interactions in
lower temperature phase diagrams [28,29]. The transition
also disappears when the temperature increases. Furthermore,
we find that at T = 1/15, the critical μc1 and μc2 of the
interaction-driven Mott transition are connected to Uc1 and
Uc2 of the interaction-driven Mott transition. The PG is
constrained within the boundary delimited by μc1. This is
further evidence that the PG is an unavoidable consequence
of Mott physics in systems where singlet formation can occur
because of strong interactions.

The scenario of a first-order doping-driven transition sep-
arating a strongly correlated metal from a weakly correlated
one is similar to results for the two-orbital Hubbard model
in Ref. [55] where the authors observed the Sordi transition
between a strongly correlated Hund metal and a weakly cor-
related metal. Their conclusion suggests the hypothesis that

the two critical points denoted by stars in Fig. 3 are finite
temperature critical points that might extend to quantum crit-
ical points at zero temperature.

Such fundamental connections between different phenom-
ena have important consequences for our understanding of the
Hubbard model and thus of the cuprates, modeled on a square
lattice with frustrated hoppings. Having a PG that is unrelated
to long-range AFM correlations but that still starts at a critical
endpoint suggests that the sudden drop of T ∗ in cuprates near
the critical doping, usually noted p∗, is a signature of Mott
physics [40,42,47,48]. Although the physics of the PG on the
hole-doped side in our results is relevant for the PG found in
hole-doped cuprates [29], our PG on the electron-doped side
is not related to the PG of the electron-doped cuprates, since
those arise from long wavelength spin fluctuations [33,35,89–
92]. In addition, our work is relevant for doped layered or-
ganic superconductors [72,73], for field-effect doped organic
superconductors [74], for doped 1T-TaS2 [93] or for analog
simulators [94–97]. Our predictions motivate experiments at
low temperatures in these systems.

Conclusion. We report the Sordi transition between a
strongly correlated pseudogap phase and a correlated Fermi
liquid on the triangular lattice Hubbard model at finite temper-
ature. This transition is not an artifact of two-orbital DMFT,
nor of 2 × 2 CDMFT as confirmed by our alternate 6-site
DCA approach. We expect that other computational methods
will be able to identify this transition on the triangular lattice,
contrary to the unfrustrated square lattice where large system
size calculations do not even find a Mott transition due to
antiferromagnetism [59]. On the triangular lattice, magnetic
correlations arising from superexchange are short ranged at
finite temperature, so the mechanism for the pseudogap is
not related to long-wavelength magnetic fluctuations. Finally,
our U -μ phase diagrams show that both this pseudogap and
the Sordi transition are phenomena intimately associated to
doping a Mott insulator, and as such they should be observ-
able in any dopable system where the Mott transition can be
observed at finite temperature. Future work should focus on
additional experimental predictions, in particular for layered
organic materials.
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