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We show that even with arbitrarily large cyclotron gap, Landau level (LL) mixing can be dominant with scale-
free interaction in a fractional quantum Hall system, as long as the filling factor exceeds certain critical values.
Such scale-free interaction with kinetic energy can serve as exact model Hamiltonians for certain composite
Fermion or parton states (unlike the well-known TK Hamiltonians where the number of LLs needs to be fixed by
hand), and they are natural physical Hamiltonians for 2D systems embedded in higher-dimensional space time.
Even with LL mixing the null spaces of such Hamiltonians (spanned by the ground state and the quasiholes) can
be analytically obtained, and we show these are the generalization of the conformal Hilbert spaces (CHS) to more
than one LLs. The effective interaction between the anyons for these topological phases emerges from the kinetic
energy of the “elementary particles,” leading to an interesting duality between strongly and weakly interacting
systems that can be easily understood via the tuning of parameters in the scale-free interaction. We also propose
an experimental platform for approximately realizing such model Hamiltonians with trionlike particles that can
potentially lead to very robust (non-Abelian) FQH phases from two-body Coulomb-based interaction.
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The long range bare Coulomb repulsion between electrons
comes from one of the fundamental interactions between el-
ementary particles. The inverse quadratic interaction (e.g.,
1/r2, where r is the separation between the two particles)
is a universal force that is scale free; the quadratic power is
fundamentally determined by the three-dimensional universe
we live in, from the hydrodynamic description of the gauge
Bosons mediating the interaction between charged particles.
The long range nature of the interaction tends to complicate
theoretical treatments, where singularities need to be properly
renormalized. In Fermi liquid, such long range interaction typ-
ically can be screened by mobile charge carriers [1], leading
to a Yukawa-like interaction and Friedel oscillation of electron
density [2].

For strongly interacting condensed matter systems with
flat bands (quenched kinetic energy), the quantum fluids
of electrons are quintessentially non-Fermi liquid. In two-
dimensional electron gas systems with a strong perpendicular
magnetic field, flat bands called Landau levels are formed.
The fractional quantum Hall effect (FQHE) emerge entirely
from Coulomb interaction (with no kinetic energy), when the
top most Landau level is partially filled [3]. Nevertheless,
extensive numerical analysis shows single-particle-like be-
haviors emerge from strong interaction, not for electrons, but
for emergent phenomenological composite Fermions [4]. At
least for finite size systems, the composite Fermion wavefunc-
tions have large overlap with the Coulomb interaction ground
states, thus capturing not only the topological properties of
those quantum fluids, but also the nonuniversal quantitative
behaviors quite accurately.

It is important to note that for many FQH phases, there
exist model Hamiltonians and model wavefunctions (as exact
eigenstates) that give ideal descriptions of such topologi-
cal phases [3,5]. These include the exact quasihole counting
and degeneracy, as well as the ground state topological

entanglement entropy and spectrum [6–8]. Such model
Hamiltonians in the form of pseudopotentials are exact toy
models for the FQH phase. For the CF wavefunctions or the
exact eigenstates of the Coulomb interactions, however, these
ideal properties are conjectured to be qualitatively captured
but no longer quantitatively exact. In particular, the CF wave-
functions after the lowest LL (LLL) projection generally do
not even have parent Hamiltonians [9,10]. It is thus interest-
ing that the CF wavefunctions tend to quantitatively agree
with the Coulomb eigenstates better than the special model
wavefunctions. A more detailed exposition on the microscopic
derivation of the CFs without the LLL projection has been
discussed in [10,11]. The questions of why the Coulomb in-
teraction seems to be special for the composite Fermions, and
its hidden connection to the model Hamiltonians and the LLL
projection, are still poorly understood.

In this Letter, we study the family of scale-free interactions
between elementary Fermions (e.g., electrons) and Bosons
with the electrostatic interaction Vα (r) = 1/rα , confined to a
two-dimensional manifold. For integer α this is the Coulomb
interaction within a 2D manifold in a universe with α + 2
spatial dimensions; though, in principle, α serves as a single
continuous tuning parameter for a family of Hamiltonian of
the following form:

Ĥα =
∑

i

1

2m
gabπ̂aπ̂b +

∫
d2r1d2r2Vα (|�r1 − �r2|)ρ̂r̂1 ρ̂r̂2 . (1)

Here gab is the metric describing the effective mass tensor with
m being the effective mass, π̂a = P̂a − eÂa is the canonical
momentum from the minimal coupling of the external vector
potential Âa with the uniform magnetic field B = εab∂r̂a Âb,
and the electron charge e; ρ̂r̂ = ∑

i δ
2(r̂i − �r) is the bare elec-

tron density operator.
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We show even in the experimentally relevant limit of
h̄ωc → ∞ where ωc = eB/m is the cyclotron frequency, the
low energy physics could naturally involve multiple LLs
and the Trugman-Kivelson (TK) type interaction Hamilto-
nians [12] are related to the special cases of Ĥα with α =
2k, k � 1. Thus, in the large ωc limit, strong LL mixing can
still occur when the filling factor exceeds critical values, and
the low energy dynamics (e.g., ground state and quasiholes)
can be exactly obtained even with LL mixing. Indeed, from
our understanding of the TK Hamiltonian [13,14], Eq.(1) is
the exact physical model Hamiltonian with proper values of α

for a number of the unprojected CF and parton states with
no additional assumptions. This is not the case for the TK
Hamiltonian where the number of LLs needs to be manually
determined [15]. The conjectured adiabatic connection to the
LLL Coulomb interaction physics for these CF and parton
states comes from tuning a single parameter α while keeping
the cyclotron energy large. Based on those theoretical results
we propose experimental platforms where model Hamiltoni-
ans and non-Abelian physics from two-body interactions can
be potentially realized.

It is useful to first confine the Hilbert space to the LLL,
and look at the effective interaction from Vα (r) by expanding
its Fourier transform in the basis of Haldane pseudopotentials.
The effective interaction in the momentum space is

Ṽα (q) ∼ qα−2e− 1
2 q2 =

∞∑
i=0

cα,iV
2bdy

i , (2)

where the two-body pseudopotentials (PP) are V 2bdy
i =

Li(q2)e− 1
2 q2

with Li(x) being the ith Laguerre polynomial and
cα,i being the PP weights. The Coulomb interaction is the
well-known case of α = 1, but Eq. (2) is only valid for α < 2;
for α � 2 the Fourier transform diverges. A more careful
calculation shows that as α approaches 2 from below, only
cα→2,0 is divergent, while all other PP weights are finite. More
generally, as α → 2k, cα→2k,i�k−1 → ∞ [thus, equivalent to
a divergent ∇2k−2δ2(�r1 − �r2)], while cα→2k,i>k−1 are all finite.
As α increases, the interaction diverges more strongly at short
distances, and it is the leading PPs that become divergent first,
forbidding two particles from having small relative angular
momenta.

Density dependent LL mixing. The simplest example is
the Bosonic system with α = 2, so within the LLL, c2,0

is infinity, leading to a hardcore interaction equivalent to
the artificial model Hamiltonian (with infinite strength) for
the Bosonic Laughlin state at filling factor ν = 1/2. With
large cyclotron energy, for ν � 1/2 (or more specifically for
the number of magnetic fluxes 2Q � 2Nb − 2 on the spherical
geometry with Nb the number of Bosons) the ground state(s)
are completely within the LLL, which we can set as zero
energy states. Thus, the null space of Eq. (1) is spanned by
the model ground state and the quasiholes of the Laughlin
ν = 1/2 phase [19], with the highest density states given by
2Q = 2Nb − 2. At low temperature, no LL mixing is induced
by the interaction in the limit of large cyclotron energy [see
Fig. 1(a)].

Adding another Boson to the highest density quantum
fluid, however, is not possible within the LLL, since the inter-
action will send the energy to infinity [20]. At 2Q < 2Nb − 2,

FIG. 1. An illustrative example for α = 2, in (a)–(c) the circles
are orbitals in three different LLs, the solid ones are occupied by
Bosons. (a) All Bosons can go into the LLL when ν � 1/2; (b) An
additional Boson added to the half-filled LLL has to go to the second
LL to avoid infinite energy; (c) An additional Boson added to filling
factor ν = 2/3 has to go to the third LL; (d) A schematic illustration
of different CHS in the parameter space of α and ν. Here L3 ∈ L2 ∈
L1 are CHS within the LLL, and S2 ∈ S1 are CHS within two lowest
LLs, while T1 is the CHS within the lowest three LLs [21].

strong LL mixing is present no matter how large the cyclotron
gap is. Indeed, for α = 2, the second term of Eq. (1) is equiv-
alent to an infinite bosonic TK interaction. Only the second
LL will be occupied for 2Q � 3Nb/2 − 3 [see Fig. 1(b)].
These are known as the exact unprojected Bosonic Jain state
at ν = 2/3 and its quasiholes [13]. Further increasing the den-
sity with 2Q > 3Nb/2 − 3 leads to the consecutive mixing of
higher LLs [see Fig. 1(c)] [24], giving a series of conjectured
non-Abelian FQH states that are well studied in the context of
the TK Hamiltonians [14,17], but without artificially picking a
few lowest LLs by hand. A schematic illustration of different
topological phases at larger α is shown in Fig. 1(d), which we
will also explain in more details later.

Model Hamiltonians for the composite Fermion and parton
theory. The family of TK Hamiltonians involving multiple
LLs give exact unprojected Jain states and parton states in
many cases, but it is not obvious how they are relevant to
experiments when one cannot just select just a few LLs
arbitrarily. The family of Hamiltonians with scale-free in-
teractions given in Eq. (1), however, serves as natural exact
model Hamiltonians for many Jain states and parton states.
It also offers transparent insights on why such theories are
successful for the Coulomb interaction (with α = 1) [4], and
why LLL projection in such theories could be conceptually
redundant [10] and may only be useful for certain numerical
computations.

This is because with Eq. (1) as the exact model Hamil-
tonian (e.g., for the Jain state at ν = 2/3 or the 221 parton
state at ν = 1), it is natural to include more than one LLs.
As we adiabatically tune α to 1, all states are orthogonal,
though they are mostly within the LLL in the presence of
the large cyclotron gap: it is not necessary to project the
CF wavefunctions, leading to the spurious nonorthogonality.
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FIG. 2. (a) Energy spectrum on the sphere with 2Q = 14 and
Nb = 8, with the black plot from exact diagonalization at α = 2 − ε,
and the red plot at α = 2, both from Eq. (1). L is the total angu-
lar momentum quantum number. (b) The normalized magnetoroton
mode for different values of α, with α = 1.9 (black), α = 1 (red),
and α = 0.1 (blue). The horizontal dotted lines are the bottom of
the multiroton continuum. (c) The dependence of cα,0 on α. (d) The
dependence of the normalized magnetoron minimum energy on
cα,2/cα,0 (R-squared error of the linear fit is 0.9997).

Certain unprojected CF states will vanish entirely under LLL
projection. This corresponds to eigenstates of Eq. (1) that lives
entirely within higher LLs, and thus their energies are sent to
infinity (as punished by the cyclotron energy).

Indeed, in Fig. 2 we can see in the large cyclotron gap
limit, there is numerical evidence that scale-free interactions
are qualitatively similar [19]. This is true for the magnetoroton
modes (MR) of the Laughlin state [11,25] at ν = 1/2, both at
α = 2 where the second LL is involved [see Fig. 2(a)], and
for 0 � α < 2 when only the LLL is involved [see Fig. 2(b)].
Here the gap of the MR is controlled by both cα,0 and the
perturbation to V 2bdy

0 (i.e., cα,i>0). In Fig. 2(b) the MR en-
ergies are normalized by cα,0, so the gap is entirely from
cα,i>0. It is clear that cα,0 approximately approaches unity as
α → 0 [see Fig. 2(c)], as do all other cα,i; there is almost
a linear relationship between the normalized gap and cα,2,
as shown in Fig. 2(d) (see caption). Thus, as α → 0, the
energy scales (e.g., the gap and the bandwidth of MR, etc.)
approach zero, but the dynamics of the MR does not qualita-
tively change [26]. This is highly nontrivial, since for small α,
the perturbation to V 2bdy

0 is very large (e.g., cα,i>0/cα,0 → 1).
Note that at the limiting case of α = 0, we have a constant in-
teraction, thus all states within the LLL have the same energy.
The integer quantum Hall effect (IQHE) thus can also be seen
as a special case of the scale-free interaction [i.e., Eq. (1) with
α = 0].

Conformal Hilbert spaces within multiple LL. The con-
cept and hierarchy of conformal Hilbert spaces (CHS) within
a single LL have been discussed extensively with vari-
ous applications [10,27–30]. These are Hilbert spaces in
a 2D manifold with emergent conformal symmetry, exact
bulk-edge correspondence, containing a particular type of
anyons/non-Abelions as “elementary particles.” Thus, each
CHS is the low energy manifold of a particular topological

phase; for scale-free interaction, the corresponding CHS is
spanned by all the finite energy states. At α = 2 (or α = 4),
for Bosons (or Fermions) the null space for the scale-free
interaction is isomorphic to the CHS of two LLs for ν � 2/3
(or ν � 2/5), completely agreeing with the CF description for
the IQHE of composite Fermions (from each electron attached
to two fluxes). For greater filling factor, the null spaces of
the scale-free interaction involves more than two LLs, and
become non-Abelian.

In Fig. 1(d) we show a “phase diagram” of different CHS
defined by Eq. (1) with varying values of α and ν, and for
simplicity we focus on ν � 1. The blue region are the CHS
within the LLL: L1 is the entire LLL, L2 is the null space of
V 2bdy

0 (Laughlin 1/2 ground states and quasiholes), and L3 is
the null space of V 2bdy

0 + V 2bdy
2 (Laughlin 1/4 ground states

and quasiholes). As the filling factor increases, more LLs are
involved with α � 2: both S1 and S2 are CHS involving two
lowest LLs, and each is a subspace of two LLs but isomorphic
to the Hilbert space of two LLs with a rescaling of the mag-
netic field. Similarly, T1 is a CHS involving three lowest LLs,
but it is non-Abelian [14].

It is interesting to note that within the red and green region
the dominant dynamic energy scale is the kinetic energy. In
Fig. 2(a) the energy spectra at the filling factor of ν = 1/2
on the spherical geometry, with the magnetic monopole at the
sphere center 2Q = 2Nb − 2 (Nb is the Boson number), can
also be understood as from the two following Hamiltonians:

H1 = V̂ 2bdy
0 , H2 =

∑
i

1

2m
gabπ̂aπ̂b, (3)

where H1 gives V 2bdy
0 PP interaction within L1 (the LLL), and

H2 is within S1 (the null space of the TK Hamiltonian for
the lowest two LLs). Apparently H1 is a purely interacting
Hamiltonian between Bosons, while H2 only involves kinetic
energy of the Bosons. Naively, it would be surprising to find
these two Hamiltonians having very similar spectrum, reflect-
ing a duality between the strongly interacting and weakly or
noninteracting systems. Now we understand this duality is
natural: H1 is the special case of Eq. (1) with α = 2 − ε with
lim ε → 0 in the limit of the large ωc, while H2 is the special
case of α = 2; the two Hamiltonians are very close in the
parameter space of α.

The dispersion of the MR modes at α = 2, ν = 1/2 indi-
cates nontrivial interaction between the Laughlin quasihole
and quasielectron emerging from the kinetic energy of the
Bosons. This is a generic feature of the quasiparticles in the
multiple LL CHS as the null space of the interaction between
the elementary particles: these quasiparticles are noninteract-
ing without the kinetic energy of the elementary particles; they
gain self-energy and start to interact only when the kinetic
energy is included. Such energies come from the mixing of
the higher LLs for the many-body wavefunctions. The amount
of mixing depends on the separation between quasiparticles,
which is worth further detailed study as an unusual micro-
scopic mechanism for quasiparticle interaction.

Experimental platform for non-Abelian phases. It is still
very challenging to realize non-Abelian topological phases
in FQH systems. There are tentative results for the Moore-
Read phase at ν = 5/2 [31], but the physical interaction (the
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FIG. 3. (a) A schematic illustration of charged Bosons with finite
dipole moments confined to a 2D manifold. The electric field is
needed to align all the dipoles and it can be either pointing up
or pointing down; (b) The dependence of V 2bdy

0 PP weight on d
parametrizing the size of the dipole; (c) The dependence of the ratio
of the PP weights of V 2bdy

0 and V 2bdy
2 on d .

second LL Coulomb interaction) is very different from the
model Hamiltonian consisting of a pure three-body interac-
tion [32,33]. Ideally, we would like to experimentally realize
model Hamiltonians for the non-Abelian phases, for example,
the two-body TK Hamiltonian within the lowest three or more
Landau levels [14,22]. The scale-free interaction in Eq. (1)
offers exactly that path, but it seems difficult to increase α in
a realistic experiment in a three-dimensional universe.

Nevertheless, the key for realizing CHS involving multi-
ple LLs with strong LL mixing is the competition between
the kinetic energy and the energy scale given by individual
two-body pseudopotentials. In this way, LL mixing explicitly
depends on the filling factor. It is important to note that a
strong magnetic field or large ωc is needed, because we only
hope to mix, or project into, a small number of lower LLs.

While Fermionic systems are possible, we now focus on
Bosonic systems, because for Coulomb based interaction,
V 2bdy

0 is more dominant against other even PPs, while V 2bdy
1

is less dominant against other odd PPs in comparison. This
is desirable, because a good approximation to the scale-free
interaction at α = 2 is for ||V̂ 2bdy

0 || � nh̄ωc � ||V̂ 2bdy
i>0 || [34].

We can enhance the interaction effect for particles with greater
charge or mass. The main challenge is thus to tune the
Coulomb interaction experimentally to achieve the regime
where ||V̂ 2bdy

0 || � ||V̂ 2bdy
i>0 ||.

Here we propose a “simple” physical system in which the
required window for different energy scales can be readily

tuned and achieved. It offers a pathway for realizing approxi-
mate model Hamiltonians for (non-Abelian) FQH phases. We
hypothesize a collection of charged Bosons with a nonzero
dipole moment confined to a two-dimensional manifold sub-
ject to a strong perpendicular magnetic field [see Fig. 3(a)],
and an out-of-plane electric field to align their dipole moment.
They can be considered as Bosonic analogous of “trions” that
have been realized in certain semiconductor systems [35–37].
Let the total dipole and charge of each Boson be e1d and e2,
respectively. The magnetic length and the cyclotron energy are
given by 
B = √

h̄/e2B and εc = h̄e2B
m (where m is the Boson

mass). The Boson-Boson interaction is

V (r) = 1

4πε
(ε1(r) + ε2(r)), (4)

ε1 = 2e2
1

(
1

r
− 1√

r2 + d2

)
, ε2 = e2

2

r
, (5)

where r = |�r|. Note that for r � d we have ε1 ∼ r−3, but ε1

vanishes as d → 0, thus we do not have scale-free interaction
at short distances [see Fig. 3(b)].

Nevertheless the magnetic length 
B sets a “minimum
length” and we can decompose V (r) into PPs within the
LLL with weights ci. It is not surprising that we find
limd→0 ci>0/c0 = 0, so that V 2bdy

0 dominates [see Fig. 3(c)].
For large magnetic field we have εc � ε1, thus, here we ignore
ε1. Assuming we can tune e1, e2, and m of the charged Bosons,
we can then get arbitrarily close to the regime with e1 �
e2/m. It is thus potentially feasible to engineer the 2D system
to realize many interesting (non-Abelian) FQH phases (e.g.,
the bosonic Jain 221 state with three LLs and the Fibonacci
state with four LLs).

One focus of the future studies is the anyon interactions
within multiple LLs emerging from the kinetic energy. When
the energy window proposed above is achieved, we can real-
ize robust ground states that are theoretically proposed with
prominent Hall plateaus at those Abelian and non-Abelian
phases. However, the quasihole excitations may not be degen-
erate in the thermodynamic limit due to the cyclotron energy.
Numerical analysis of multi-LL systems, however, is strongly
constrained by the large size of the Hilbert space. Thus, bet-
ter numerical and theoretical tools are needed to understand
the interesting dynamics (both gapped and gapless) for these
topological phases.
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