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Self-consistent electron lifetimes for electron-phonon scattering
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Acoustic phonons in piezoelectric materials strongly couple to electrons through a macroscopic electric field.
We show that this coupling leads to a momentum-dependent divergence of the Fan-Migdal electron linewidth.
We then develop a self-consistent theory for calculating electron linewidths, which not only removes this
piezoelectric divergence but also considerably modifies the linewidth in nonpiezoelectric, polar materials. Our
predictions await immediate experimental confirmation, and this self-consistent method should be broadly used
in interpreting various experiments on the electronic properties of real materials.
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Piezoelectricity, the change in polarization in response to
a mechanical strain, is a common phenomenon allowed in
20 out of 21 noncentrosymmetric point groups [1]. It in-
duces a coupling between electrons and acoustic phonons
mediated by a long-range electric field [2]. In recent years,
there has been a significant increase in the interest in the
calculation of piezoelectric electron-phonon coupling (EPC)
and its effect on electronic properties [3–15]. The combination
of Wannier interpolation [16–19] with analytically calculated
long-range Fröhlich and piezoelectric EPC in terms of dipole
and quadrupole moments [7–15,20] enables a fully ab initio
study of the effects of EPC on the spectral and transport
properties of piezoelectric materials.

Interestingly, in the presence of piezoelectric EPC, the
electron linewidth diverges when calculated from the per-
turbative Fan-Migdal formula [21], the current standard for
calculating carrier linewidths from first principles [22,23].
This divergence should occur when using a vanishing broad-
ening [24], an adaptive broadening [12,15,25], or even the
tetrahedron integration method [9,26]. Even though this di-
vergence implies that calculations of the linewidths cannot be
converged, it has not been considered in first-principles calcu-
lations of piezoelectric materials [7–11,14,15]. Calculations
with a finite broadening would lead to results that depend
sensitively on artificial computational parameters [24].

In this work, we study the limitation of the one-shot cal-
culation of electron lifetimes in piezoelectric materials and
prove that a self-consistent broadening of the electrons is re-
quired. First, we find that the piezoelectric divergence depends
on the electron wave vector and confirm this finding with
first-principles calculations. Then, we develop a formalism
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based on the quasiparticle approximation to self-consistently
calculate the linewidths and apply it to study the EPC in cubic
boron nitride (c-BN), Si, NaCl, and PbTe. We find that self-
consistency dominates the regularization of piezoelectric EPC
for weak to intermediate doping and quantitatively affects
the results even at higher doping. Furthermore, we find that
self-consistency also affects the scattering due to polar optical
phonons in both piezoelectric and nonpiezoelectric materials,
leading to a complex dependence of the linewidths on the
electron energy, temperature, and doping. Our prediction can
be directly confirmed by angle-resolved photoemission ex-
periments [27–29]. The self-consistent linewidths should be
broadly applied to the computations of transport, optical, and
spectroscopic properties.

The Fan-Migdal formula for the phonon-induced electron
linewidth at band n and wave vector k reads [23,30,31]

γnk = 2π

h̄

∑
mν

∫
dq
�BZ

|gmnν (k, q)|2

×
∑
±

{[nqν + f ±(εmk+q)]δ(εnk − εmk+q ± h̄ωqν )},

(1)

where �BZ is the volume of the Brillouin zone, nqν the phonon
occupation at wave vector q and mode ν, f +(εmk+q) is the
electron occupation, f −(εmk+q) = 1 − f +(εmk+q), gmnν (k, q)
the electron-phonon matrix element, and εnk and h̄ωqν the
electron and phonon energies, respectively. The linewidth
γnk is the inverse of the carrier lifetime τnk and twice the
imaginary part of the electron self-energy 
nk, γnk = 1/τnk =
2| Im 
nk|/h̄ [32].

To analyze the linewidths due to piezoelectric EPC,
we start with a three-dimensional isotropic long-wavelength
model: εk = h̄2k2

2m , ωq = qvph, where m is the electron effec-
tive mass and vph the phonon velocity. We set εk = 0 at
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the conduction-band minimum (CBM) throughout this paper.
We consider the piezoelectric EPC with longitudinal acoustic
phonons [21], which originates from the long-range Coulomb
interaction and is discontinuous at q = 0.

Let us regularize the delta function in Eq. (1) with a
Lorentzian

δη(ε) = 1

π

η/2

ε2 + (η/2)2
. (2)

Using other regularization functions such as Gaussians does
not alter the conclusions qualitatively. Evaluating the integral
in Eq. (1) yields

γk ∝
⎧⎨
⎩

1
k ln εk

η
if vel

k > vph (k > mvph/h̄),

1
k ln vph+vel

k

vph−vel
k

if vel
k < vph (k < mvph/h̄),

(3)

where vel
k = h̄k/m is the band velocity of the electron at wave

vector k (see Eqs. (S15) and (S26) of the SM [33]).
For the first case where vel

k > vph, the linewidth diverges
logarithmically in the zero-broadening limit η → 0+. A sim-
ilar logarithmic divergence has been found using an artificial
infrared cutoff of phonon wave vector q instead of the finite
broadening (see Sec. 3.6 of Ref. [21]). In the second case
with vel

k < vph, the linewidth converges to a finite value. Due
to the 1/k prefactor in Eq. (3), for a sufficiently small η,
the linewidth is peaked around k = mvph/h̄ where vel

k = vph.
This dichotomy of the Brillouin zone into a divergent and
convergent region is an important finding of this work.

This logarithmic divergence originates from the absorp-
tion and emission of acoustic phonons with an infinitesimal
wave vector. Figures 1(a) and 1(b) illustrate the disper-
sion that disallows and allows the infinitesimal-wave-vector
scattering, respectively; only the latter leads to the diver-
gence. The criterion for divergence can be generalized to an
arbitrary three-dimensional dispersion. To have infinitesimal-
wave-vector scattering, one needs a direction q̂ where the
electron and acoustic phonon velocities are identical:

vel
nk · q̂ = vph

0ν · q̂ for some q̂ and ν ∈ 1, 2, 3. (4)

We confirmed this behavior by performing ab initio calcu-
lations whose details are provided in the SM [33]. Figure 1(c)
shows the ab initio linewidths for the conduction-band states
of c-BN. We performed an ultradense nonuniform sampling
near �, with a density reaching that of a (5 × 107)3 homoge-
neous q-point grid. The CBM is located at kX = 2π

a ẑ, where
a is the cubic lattice parameter. For a k point on the �X line,
the condition Eq. (4) for q̂ ‖ kX reads

|(k − kX) · ẑ| = mzv
ph
z

h̄
= mz

h̄

√
C44

ρ
= 0.0080 Å−1, (5)

where C44 is the shear modulus and ρ the mass density.
By scanning all q̂ directions, we find a lower bound of
|kz − 2π

a | > 0.0078 Å−1 = 0.0045 2π
a for the presence of the

logarithmic divergence where Eq. (4) is satisfied at q̂ =
(sin 0.1π, 0, cos 0.1π ) due to a small anisotropy in the dis-
persion. Figure 1(c) verifies this criterion, as the linewidths
at |k − kX| � 0.004|kX| converge to a finite value in the
η → 0+ limit, while those at |k − kX| � 0.005|kX| diverge
logarithmically in η.

FIG. 1. (a), (b) Dispersion of electrons and phonons. We show
two-dimensional dispersions for a simpler visualization. The q points
where energy-conserving phonon absorption or emission is allowed
is indicated by cyan and yellow, respectively. (c) Linewidths at the
conduction band of intrinsic c-BN at T = 300 K as a function of
broadening for k points along the �X line. Inset: linewidths as a
function of wave vectors for two broadening values. The vertical red
dashed line indicates the onset of the divergence.

Since this divergence is logarithmic, it is easy to misinter-
pret it as a convergence, which explains why the divergence
was not reported in any of the previous ab initio calculations.
For a given broadening η, capturing the correct momen-
tum dependence of the linewidths requires resolving phonon
modes with energy as low as η and wave vectors as small
as η/h̄vph. For c-BN, one would need a q-point density of
1/60003, albeit only at the zone center, to get the correct mo-
mentum dependence at η = 0.2 meV, where the divergence
becomes barely noticeable [Fig. 1(c)]. Such a grid is more
than three orders of magnitude denser than the ones com-
monly used in ab initio calculations [23,62]. We emphasize
that this divergence is an artifact of the zero-broadening for-
mula and does not reflect experimental observations.

We remark that since the piezoelectric scattering is
dominated by small-q phonons, it conserves the electron mo-
mentum and therefore does not contribute to the electrical
resistivity when calculated with the full Boltzmann transport
equation. Hence, the mobility of c-BN calculated using the
Boltzmann transport equation converges rapidly with the den-
sity of the q points [12].

We now study the role of self-consistent broadening in
regularizing this divergence. Since the linewidths broaden
the electronic spectral function, the energy-conserving delta
function in Eq. (1) should be broadened accordingly. By
evaluating the Fan-Migdal self-energy under the quasiparticle
approximation and taking the imaginary part of the self-
energy at the quasiparticle energy as the linewidth, we derive a
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self-consistent formula for the linewidth (see Sec. S2 [33]):

γnk = 2π

h̄

∑
mν

∫
dq
�BZ

|gmnν (k, q)|2

×
∑
±

{[nqν + f ±(εnk ± h̄ωqν )]

× δh̄γmk+q (εnk − εmk+q ± h̄ωqν )}. (6)

The self-consistent broadening γnk is calculated for each
temperature.

There are two key differences compared to the non-self-
consistent formula, Eq. (1). First, the delta function is replaced
with a Lorentzian [Eq. (2)] with a self-consistent width
h̄γmk+q. Second, the occupation function f ±(εnk ± h̄ωqν ) is
used instead of f ±(εmk+q). The two occupations can be used
interchangeably in the limit h̄γmk+q � kBT because of the
energy-conserving delta function. Otherwise, the two for-
mulas give different results. For example, at T = 0, only
the correct formula using f ±(εnk ± h̄ωqν ) gives a vanishing
linewidth at the Fermi surface. The approximation f ±(εnk ±
h̄ωqν ) ≈ f ±(εmk+q) has been adopted in Ref. [63] for a self-
consistent calculation of electron lifetimes.

The renormalization of the phonon energies and spectral
function may also be similarly included, by modifying the
phonon frequency and occupation factors in Eq. (6). However,
in the low- to intermediate-doping regime, which we focus
on in this work, the adiabatic density-functional perturbation
theory is expected to work well for the phonons [22], and the
phonon renormalization can be viewed as a secondary effect.
In fact, in the intrinsic, undoped case, the phonon dispersion
does not get renormalized, while the electron spectral func-
tions are still strongly renormalized.

Another mechanism that regularizes the logarithmic diver-
gence is the free-carrier screening [21]. In doped semiconduc-
tors, free carriers screen the long-range Coulomb interaction
to make it finite ranged. This screening is important for lon-
gitudinal optical (LO) phonons [64–67] and ionized impurity
potentials [68,69]. For the piezoelectric EPC, the screening
regularizes the O(q0) discontinuity of the EPC at q = 0 to a
smoothly decaying function with a characteristic wave vector
given by the Thomas-Fermi wave vector. In metals, free car-
riers will completely screen the piezoelectric EPC. However,
when the doping is not too heavy, the piezoelectric EPC will
still make a large contribution to the linewidth. In this case,
self-consistency plays an important role.

Figure 2 compares the linewidths at two different doping
levels. The doping is included via the change in the elec-
tron occupation factor and the free-carrier screening of EPC
[Eq. (S94)], while the electron and phonon dispersions are
taken from calculations on the undoped system. We iden-
tify two distinct regimes. For a low doping n � 1016 cm−3,
the self-consistent linewidths display a monotonic energy
dependence in the shown energy range. In contrast, the fixed-
broadening linewidths display a sharp peak at an energy
below 5 meV, which originates from the piezoelectric diver-
gence regularized by the free-carrier screening. In this regime,
self-consistency plays a dominant role in regularizing the
piezoelectric scattering. For a higher doping n � 1017 cm−3,
the low-energy peak disappears but quantitative differences

FIG. 2. Electron linewidth of c-BN at T = 300 K at differ-
ent doping levels n. Black circles show the self-consistent (SC)
linewidths while the others show those computed at a fixed broad-
ening. Blue vertical dashed lines indicate the LO phonon frequency.

between the fixed-broadening and self-consistent linewidths
remain, especially at energies εnk � h̄ωLO. These differences
are due to the LO phonon scattering, which is heavily broad-
ened due to a large linewidth of the electrons above the LO
phonon energy. We note that free-carrier screening of the LO
phonons (ω ≈ 160 meV) is negligible at the considered carrier
densities (n � 1018 cm−3) since the LO phonon frequency is
much higher than the plasma frequency (ω � 25 meV) [64].

This analysis leads to our main finding that self-
consistency may qualitatively change the energy dependence
of electron linewidths. To demonstrate that such a strong
effect is a generic phenomenon that does not require piezo-
electricity, we apply our theory of self-consistent linewidths
to three nonpiezoelectric materials, Si, PbTe, and NaCl. We
compare the self-consistent calculation with fixed-broadening
calculations with three different broadenings, chosen from
the smallest self-consistent linewidth of each material.
Figures 3(a)–3(c) show that while the linewidths of Si
are affected only slightly by broadening parameters and
self-consistency, those of PbTe and NaCl vary signifi-
cantly. Compared to the η = 0.6 meV results, self-consistency

FIG. 3. (a)–(c) Linewidths at the conduction band of Si, PbTe,
and NaCl at T = 300 K and n = 1013 cm−3 with self-consistent life-
time (empty circle) and fixed broadening (filled symbols). (d)–(f)
Full-frequency and quasiparticle (QP) spectral functions along the
�X line for |k|/|kX| values (d) 0.82, 0.86, 0.88, 0.9, 0.92, 0.94, and
0.96 for Si; (e) 1, 0.97, 0.96, 0.95, and 0.94 for PbTe; and (f) 0, 0.06,
and 0.08 for NaCl, from left to right.
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FIG. 4. (a), (b) Piezoelectric and (c), (d) other contributions to
the linewidth of c-BN at varying doping and using self-consistent
broadening. Consecutive curves show results for systems with ten
times different doping levels n, going from violet (1014 cm−3) to red
(1018 cm−3). The values of μ(n, T ) + ωLO, where μ is the chemical
potential, are indicated by vertical dotted lines in color.

substantially smoothens the sharp rise of electron linewidths
at the LO-phonon energy. We also find that while fine-tuning
can yield fixed-broadening results comparable to the self-
consistent calculation, the value of the “optimal” broadening
parameter is highly material dependent, spanning over two
orders of magnitude, and cannot be determined a priori.
The deviations of over several tens of meV’s are well above
the current resolution for angle-resolved photoemission spec-
troscopy and can be directly confirmed from experiments
[27–29].

Figures 3(d)–3(f) show the spectral functions obtained
from a one-shot calculation of the frequency-dependent self-
energy using the converged self-consistent broadening (see
Sec. S3 for details [33]). For Si and PbTe, the two spectral
functions agree very well, especially in the low-energy part,
providing a strong validation of the quasiparticle approxima-
tion. We also find a similar agreement for c-BN (Fig. S4). For
NaCl, where the EPC is the strongest, the deviation is larger,
but the quasiparticle approximation still captures the width of
the spectral function.

The doping dependence of the linewidth has two ma-
jor contributions, the piezoelectric scattering from acoustic
phonons and the scattering from the LO phonons. To under-
stand their respective roles, we use a long-wavelength model
that solely contains the acoustic phonons and their piezoelec-
tric EPC with parameters computed from the piezoelectric and
elastic tensors (see Sec. S4). We write the total linewidth as the
sum of the piezoelectric contribution and the remainder, i.e.,

γnk = γ
piezo
nk + γ other

nk . (7)

Figures 4(a) and 4(b) show that γ
piezo
nk decreases with doping

due to the free-carrier screening of the piezoelectric EPC.
In contrast, since the screening is ineffective for the LO
phonon, and the doping dependence of γ other

nk in Figs. 4(c)
and 4(d) originates from the change in the chemical poten-
tial. At kBT � h̄ωLO, where the LO-phonon occupation is
negligible, the linewidth is almost zero for states with energy

below μ + ωLO. This behavior is a consequence of the general
principle that at T = 0 the emission of a phonon with energy
h̄ωLO is not allowed for states with energy inside the window
[μ − h̄ωLO, μ + h̄ωLO], since for an electron with energy
εnk < μ + h̄ωLO the final state has energy εnk − h̄ωLO < μ

and is fully occupied, forbidding the transition. At finite tem-
peratures, this feature is broadened, resulting in a smooth
increase centered at μ + h̄ωLO, as shown in Figs. 4(c) and
4(d). If a fixed broadening is used (Fig. S2), or if f (εnk ±
h̄ωqν ) in Eq. (6) is approximated by f (εmk+q) (Fig. S4), this
feature disappears.

Self-consistency in the EPC can affect many electronic
properties such as the broadening of the electron spec-
tral function measured from angle-resolved photoemission
spectroscopy [70–72], optical absorption spectra [73–75],
phonon-mediated superconductivity [76–78], and phonon-
limited transport [23,24,79]. Incorporating self-consistency in
the study of these quantities and reexamining ab initio calcu-
lations would be desirable. The effect of the self-consistent
linewidth on the ionized impurity linewidths [68,69] could
also be studied. The effect of piezoelectric EPC on low-
dimensional materials, for which one of the acoustic phonon
branches displays a quadratic dispersion [80,81], is another
interesting venue for future research. Our work also forms the
foundation for going beyond the simple perturbative treatment
of EPC in first-principles studies. A straightforward general-
ization to full spectral self-consistency [82] could capture the
reduction in the quasiparticle weight and the appearance of
satellite peaks [64,65,83].

In conclusion, we show that the calculation of the
electron lifetime for piezoelectric materials in the zero-
broadening limit breaks down and needs to be replaced with
a self-consistent method. We implement a self-consistent
equation for the electron linewidth using the quasiparticle
approximation and apply it to c-BN, Si, PbTe, and NaCl. We
find that self-consistency plays a central role in regularizing
the piezoelectric EPC for a wide range of experimentally
relevant doping and strongly affects the doping dependence
of the LO-phonon scattering. Therefore, our theory should
be broadly applied to various experiments on electronic
properties. Finally, our predictions on the energy-dependent
electron linewidths, which are qualitatively different from
conventional calculations, await immediate experimental
confirmation.
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