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We reassess the structure of the effective action and quantum critical singularities of two-dimensional Fermi
systems characterized by the ordering wave vector �Q = �0. By employing infrared cutoffs on all the massless
degrees of freedom, we derive a generalized form of the Hertz action, which does not suffer from problems of
singular effective interactions. We demonstrate that the Wilsonian momentum-shell renormalization group (RG)
theory capturing the infrared scaling should be formulated keeping �Q as a flowing, scale-dependent quantity.
At the quantum critical point, scaling controlled by the dynamical exponent z = 3 is overshadowed by a broad
scaling regime characterized by a lower value of z ≈ 2. This, in particular, offers an explanation of the results of
quantum Monte Carlo simulations pertinent to the electronic nematic quantum critical point.
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Introduction. Quantum criticality in Fermi systems con-
stitutes a highly relevant and largely open problem for
condensed matter theory. Its significance stems from the
growing experimental evidence demonstrating non-Fermi-
liquid behavior of thermodynamic as well as transport
properties at the onset of different ordered states in a diversity
of compounds; the high-Tc cuprate superconductors being the
most prominent examples [1]. A persistent question concerns
the structure of the low-energy effective action to correctly
capture the critical singularities at quantum criticality in Fermi
systems. The traditional approach, developed by Hertz [2] and
later extended by Millis [3], borrowed the spirit of the Wilso-
nian theory of classical critical phenomena [4,5]. It proposed
to integrate out the original degrees of freedom, resulting in
an exact representation of the problem in terms of an effective
order parameter action. In the subsequent step, this action was
expanded in powers of the ordering field, truncating at quartic
order; the two-point function was replaced by its low mo-
mentum and frequency asymptotic form, and the (supposedly
irrelevant) momentum and frequency structure of the bosonic
self-interaction was disregarded. This leads to a relatively
simple Hertz action [2,3,6]

SH [φ] =
∫

q
φ−�q,−q0

[
m2 + Z �q2 + A

|q0|
| �q|

]
φ�q,q0 + u

∫
x
φ(x)4,

(1)

describing the propagation of a damped collective bosonic
mode φ, where the interaction with fermions is described
by the so-called Landau damping term ∼|q0|/| �q|, q0 being
the frequency and �q the momentum of the order param-
eter field. Here {m2, Z, A, u} are constants, q := (q0, �q),
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∫
q := 1/(2π )3

∫
dq0

∫
d2q, and

∫
x := ∫

dτ
∫

d2x encom-
passes integration over space and the imaginary time τ . The
form ∼|q0|/| �q| is valid for instabilities occurring at ordering
wave vector �Q = �0.

In contrast to classical statistical physics systems, this
procedure involves integrating out gapless particle-hole exci-
tations across the Fermi surface, the consequence of which
becomes revealed by inspection of the nature of the mo-
mentum and frequency expansion of the bosonic interaction
vertices (for example, the fermionic box diagram), which
turns out to be singular at T = 0 [7–10]. For this reason, quan-
tum critical Fermi systems (at least in dimensionality d = 2
and temperature T = 0) cannot be adequately described by a
purely bosonic action characterized by local interactions.

The above issues motivated development of a diversity
of approaches that retain the fermionic degrees of freedom,
which are coupled to order parameter fluctuations [9,11–27].
These theoretical routes come with their own questions. One
of these concerns the transition between the microscopic and
effective low-energy action. This is transparent, for instance,
in the analysis concerning generation of the damped dynamics
of the bosonic mode. As emphasized in previous literature
(see, in particular, Ref. [15]), appearance of the ∼|q0|/| �q|
term requires that the fermions be integrated out down to the
Fermi level. It is not conceivable to generate the standard Lan-
dau damping term by a Wilsonian-type renormalization group
(RG) flow until the cutoff on fermions is completely removed
and therefore the fermionic degrees of freedom become once
and for all integrated out of the theory. As a consequence, ac-
counting for the Landau damping (in its standard form) within
such approaches requires fully dressing the boson propagator
with self-energy before calculating any loops that involve
internal boson lines in the coupled Bose-Fermi theory.

In the present Letter, we systematically readdress the the-
ory of quantum criticality in Fermi systems featuring �Q = �0
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instabilities and develop a Wilsonian RG approach, where
both the bosonic and fermionic propagators become equipped
with momentum cutoffs and, upon lowering these, generate
the RG flow, leading to a generalization of the Hertz ac-
tion. Our goal is to develop an approximate approach fully
encompassing the Hertz-Millis framework, but at the same
time refraining from completely integrating femions out, such
that the singular effective bosonic interactions never appear.
We demonstrate that the RG flow of the bosonic properties
involves a completely different, not previously recognized
contribution, which encodes a structure richer than the con-
ventional Hertz-Millis theory.

Generalized Hertz action. Our approach relies on the
nonperturbative RG framework in the Wetterich formulation
[28–30]. This methodology has, in recent years, led to several
important insights concerning key problems of condensed
matter theory, critical systems, in particular. Examples in-
clude identification of strong-coupling fixed points for the
Kardar-Parisi-Zhang problem in d > 1 [31], resolution of the
problem of dimensional reduction and its breaking for the
random field Ising model [32], discovery of nonperturbative
multicritical RG fixed points for the O(N ) models in d = 3
[33], and invalidation [34] of the predictions of perturbative
approaches concerning nonanalyticity of the critical expo-
nents as function of d and N . In our approach, we integrate
the coupled fermionic ({ψ̄, ψ}) and bosonic (φ) fluctuating
fields out of the partition function via a renormalization group
flow. The central object is the scale-dependent effective action
��[ψ̄, ψ, φ], which continuously interpolates between the
bare effective action S[ψ̄, ψ, φ] and the full effective action
(free energy) when the infrared cutoff � is lowered from the
UV scale towards zero. Below, we suppress the arguments
of � for readability. The evolution of � upon varying � is
governed by the exact Wetterich flow equation

�̇ = βb + β f , (2)

where

βb = 1
2 Tr

{
Ṙb

(
�̃

(2)
φφ

)−1[
1 − �̃

(2)
φψ

(
�̃

(2)
ψψ

)−1
�̃

(2)
ψφ

(
�̃

(2)
φφ

)−1]−1}
,

(3)

β f = 1
2 Tr

{
Ṙ f

(
�̃

(2)
ψψ

)−1[
1 − �̃

(2)
ψφ

(
�̃

(2)
φφ

)−1
�̃

(2)
φψ

(
�̃

(2)
ψψ

)−1]−1}
.

(4)

The quantity �̃ := � + 	S denotes the action � supple-
mented with the regulator term 	S = 1

2
(R
T ), which is
quadratic in the fields 
 = (ψ̄, ψ, φ) and contains bosonic
(Rb) and fermonic (R f ) components. The quantity �̃(2) de-
notes the second (functional) field derivative of �̃ with the
relevant fields specified by the subscript in each case. By Ẋ ,
we mean ∂�X . Finally, the trace (Tr) sums over the field com-
ponents, momenta, and frequencies. Our notation is equivalent
to that introduced in Ref. [35] (for details and derivations, see
also Ref. [36]) with the exception that φ is a real scalar in our
case. Differentiating the flow equation [Eq. (2)] with respect
to fields gives rise to a hierarchy of flow equations for the one-
particle irreducible vertex functions. We concentrate on the
RG flow equation for the bosonic two-point function, obtained
by taking the second functional derivative of Eq. (2) with

FIG. 1. Terms contributing to the flow of the bosonic two-point
function. Dressed (scale-dependent) fermion and boson propagators
are depicted as full and dashed lines, respectively. Black triangles
and rectangles represent the bosonic vertices, while dotted (grey)
triangles and rectangles stand for fermion-boson interactions. The
stroked lines represent the single-scale propagators: S f for fermion
and Sb for boson propagators (see the main text).

respect to φ. The resulting equation [29,30,35,36] involves
terms represented via one-loop Feynman diagrams depicted
in Fig. 1.

The expressions involve the flowing fermion propagator
G̃ := (�̃(2)

ψψ )
−1

supplemented with a momentum cutoff R�
f (�k):

G̃k,k′,σ,σ ′ = (−ik0 + ξ�k + R�
f (�k) + ��(k)

)−1
δk,k′δσ,σ ′ (5)

[with k := (k0, �k)]; the flowing regularized boson propagator
G̃b := (�̃(2)

φφ )
−1

, interaction vertices, as well as the so-called
single-scale propagators defined as

S f := −(
�̃

(2)
ψψ

)−1Ṙ f
(
�̃

(2)
ψψ

)−1
, (6)

Sb := −(
�̃

(2)
φφ

)−1Ṙb
(
�̃

(2)
φφ

)−1
. (7)

In Fig. 1, the single-scale propagators correspond to stroked
lines. The bare (microscopic) action contains only contribu-
tions quadratic in fields and a Yukawa-type term coupling the
bosonic field with two fermionic variables [6]. In addition, the
bare boson propagator carries no momentum and frequency
dependence. These dependencies are generated by gradually
integrating the fermions out via the contribution to the flow
given by the first diagram in Fig. 1.

The flow parameter � appearing in the Wetterich equa-
tion is identified with the bosonic momentum cutoff (�b =
�). The precise form of the bosonic cutoff will be specified
later. We will use the following form of the cutoff function on
fermions:

R f (�k) =
{

(ξkF +�F − ξ�k )θ (�F − (|�k| − kF )) for |�k| � kF

(ξkF −�F − ξ�k )θ (�F − (kF − |�k|)) for |�k| < kF .

(8)

The quantity �F = �F (�) is a function of �. The effect of
adding R f (�k) to the dispersion ξ�k amounts to deforming it in a
sliver of extension 2�F around the Fermi level, as depicted in
Fig. 2. We expect that our conclusions are completely insen-
sitive to the precise choice of the momentum cutoff function
R f (�k).

The Hertz-like approach corresponds in our framework to
sending �F to zero before �. This can be realized, e.g., by
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FIG. 2. A schematic plot of the regularized dispersion ξ�k +
Rf (�k). Including the regulator introduces a deformation of the dis-
persion in a strip of extension 2�F (�) around the Fermi level. In
the inset, the black line represents the Fermi surface and gray shell
designates the area of the deformation.

taking

�F = (� − �0)θ (� − �0), (9)

with �0 > 0, such that �F becomes zero at positive �. In
what follows, we will perform a detailed comparison between
the pictures emergent for �0 = 0 and �0 > 0 (Hertz-Millis
case).

The flow equation represented by the terms depicted in
Fig. 1 is exact, but can be solved only approximately. Its
present truncation is devised such that it encompasses the
Hertz-Millis theory if �F is scaled to zero first [e.g., when
one takes �0 > 0 in Eq. (9)], but does not require this in any
way. The gradual generation of the dynamics of the boson
propagator can be followed upon reducing � towards zero.
The key present approximation amounts to disregarding the
Fermi self-energy [��(k) = 0] and the flow of the Yukawa
coupling g as well as other fermionic interactions generated
by the flow. This allows us to write the contribution to the
flow of the boson propagator represented by the first diagram
in Fig. 1 as

X(q,�F ) = −2g2
∫

k
∂�R f (�k)G̃0(k)2(G̃0(k + q) + G̃0(k − q)),

(10)

where the scale-dependent (regularized) fermion propaga-
tor is given by G̃0(k)−1 = [−ik0 + ξ�k + R f (�k)]. To simplify
the calculations and highlight the theoritical insight clearly,
we employ the standard quadratic dispersion, ξ�k = (�k2 −
k2

F )/2m f . We then evaluate the integrals in Eq. (10) and sub-
sequently integrate over the cutoff scale, which results in the
momentum and frequency structure of the boson propagator
(generated from integrating the fermions from the UV cutoff
scale �u down to the scale �). Computing

B(�q, q0,�F (�)) :=
∫ �

�u

d�′X , (11)

we obtain

B(�q, q0,�F ) = B<θ (−|�q| + �F ) + B>θ (| �q| − �F ) , (12)

where

B< = −N<

| �q|�F

q2
0 + 4v2

F �2
F

, (13)

B> ≈ −N<
�q2

q2
0 + 4v2

F �q2

+N>

q0

| �q|
[

arctan
2vF | �q|

q0
− arctan

2vF �F

q0

]
, (14)

andN< = N>v3
F = 4g2kF vF /π2 [37]. The above expressions

are essential for the present Letter. Equation (13) follows from
exactly evaluating the integrals of Eq. (10) for | �q| < �F and
subsequently integrating over the cutoff scale according to
Eq. (11). Equation (14) results from evaluating Eq. (10) for
| �q| � �F retaining the terms, which generate the standard
Landau damping ∼|q0|/| �q| if we first take �F → 0 and subse-
quently consider | �q|

q0
→ ±∞; the dropped terms are regular in

q in the limit �F → 0 and we make no assumptions concern-
ing the relative magnitude of |q0| and vF | �q|. Concerning the
structure of B(�q, q0,�F ), we emphasize that (i) for �F → 0
it recovers, via B>, the standard Landau damping term of the
Hertz action and (ii) it takes minimum at (q0, | �q|) = (0,�F ),
which indicates that the ordering wave vector depends on the
cutoff scale and falls at | �Q�| = Q� = �F , thus scaling to zero
under RG. Note, in particular, that artificially putting Q� = 0
suppresses the flow of the mass generated from fermionic
bubble. This explains (and evades) the unwelcome features
of the mass flow under the Wilsonian RG, discussed in Ref.
[15]. Observe that the mass flow is generated from B< [evalu-
ated at (q0, | �q|) = (0,�F )]. In the present generalization of
the Hertz-Millis approach, we will parametrize the flowing
inverse boson propagator as

�
(2)
� = Z (| �q| − Q�)2 + Aq2

0 + m2
� + B(�q, q0,�F (�)) .

(15)

The essential modification of the standard Hertz action
amounts to replacing the term ∼|q0|/| �q| occurring in Eq. (1)
with the formula B(�q, q0,�F ) obtained above, such that
fermionic fluctuations are included only down to the scale
�F (�) (which is sent to zero as � → 0). We emphasize
that the RG flow of the boson propagator will be strongly
influenced by the first term in Eq. (12), corresponding to | �q|
small.

The dynamical exponent. We now examine the conse-
quences of the term B< for the dynamical exponent z of the
order parameter field. If we first take �F → 0 setting �0 > 0
in Eq. (9) [thus removing the term B< from B in Eq. (15)], and
subsequently consider the limit vF | �q|/q0 → ±∞, we recover
the Hertz result z = zH = 3, proceeding along the standard
path [6].

The situation radically changes if we instead integrate both
bosons and fermions in parallel by considering Eq. (9) with
�0 = 0 (�F = �), in which case B< plays a prominent role.
The anticipated value of z resulting from the q0 dependence of
B< can be deduced by putting | �q| = � in B< and expanding
for q0 	 2vF �. The leading term renormalizes the mass m2

�

in Eq. (15) and the second term is proportional to q2
0/�

2. We
find that the B< term in �

(2)
� scales as �2 (thus leading to scale

invariant propagator) provided q0 ∼ |�q|2, which corresponds
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FIG. 3. The renormalized value of ρ = φ2
0/2 plotted as function

of the control parameter τ (bare mass) at T = 0 for a sequence
of values of the boson-fermion coupling g (N>vF ∝ g2). The up-
permost curve (blue) exhibits crossover between scaling pertinent
to the classical 3D Ising universality class and mean-field scaling
outside the true critical region. Upon gradually switching on g, the
asymptotic critical scaling corresponding to efffective dimensionality
D = d + z � 4 sets in and the system again crosses over to mean-
field behavior. The behavior exhibited in the inset corresponds to
�0 > 0 (integrating out fermions first). There is no qualitative dif-
ference between these two cases, which demonstrates that including
B< has no impact on the critical singularities of the order parameter.

to the dynamical exponent z = z< = 2. We also note that the
choice �F ∼ � is the only one, which allows us to write
�

(2)
� given by Eq. (15) (keeping either B< or B>) in a scaling

form. From this above heuristic picture, one anticipates a
competition between two scaling behaviors governed by z ≈ 2
and z ≈ 3. This is checked and confirmed by solving the RG
equations as described below.

RG flow. A convenient way to extract the dynamical ex-
ponent z from the RG flow, capturing possible crossovers,
is to inspect the behavior of the flowing order parameter
expectation value, which follows φ�

0 ∼ �z/2. This is, for
d = 2, implied from m2

� ∼ �2, u� ∼ �4−(d+z) and the rela-
tion m2

� = u�(φ�
0 )2 (see, e.g., Refs. [38,39]). Equivalently,

one may invoke the scaling dimension of the φ field [φ2] =
d + z − 2 + η, which gives z for d = 2. Here we neglect the
anomalous dimension η.

We evaluate the flow [37] of the boson order parameter φ�
0

and quartic coupling u� within a simple truncation of the Wet-
terich equation, where the bosonic propagator is dressed as
dictated by Eq. (15). We include [39,40] the renormalization
of u via bosonic fluctuations of order ∼u2, which allows for
also capturing the 3D Wilson-Fisher fixed point. The latter
governs the critical behavior in the absence of the Fermi-Bose
coupling g and gives rise to an intermediate scaling regime de-
scribed by the dynamical exponent z = 1, as observed in Ref.
[15] and also clearly captured in our approach (see Fig. 3).
Within our present framework, the flow equations for φ�

0 and
the quartic coupling u� are derived following the standard
procedure described, for example, in Refs. [38,39]. We choose
the Litim cutoff [41] on bosons

Rb(�q) = Z[�2 − (| �q| − Q�)2]θ [�2 − (| �q| − Q�)2] . (16)

FIG. 4. The RG flows of ρ� = (φ�
0 )2/2 for a sequence of values

of τ progressively tuning the system towards the QCP in a situation,
where fermions are integrated first [�0 > 0 in Eq. (9)]. The value of z
can be read by fitting the power law (see the main text). The crossover
between z = 1 and z = 3 is clearly visible both as a function of
g (N>vF ∝ g2) and the cutoff scale �.

We verified that implementing the Wetterich cutoff [38] in-
stead does not change any of our results. Our major conclusion
concerning z is best summarized by comparing the RG flows
of the order parameter depicted in Figs. 4 and 5.

Before discussing the scale dependencies arising in the RG
flow, we inspect the T = 0 phase diagram—see Fig. 3. We
observe hardly any difference between the situations corre-
sponding to �0 = 0 and �0 > 0 that would be visible in the
scaling of the order parameter as a function of the nonthermal
control parameter τ . A similar situation may be anticipated
for T > 0 in the behavior of the critical temperature Tc(τ ).
This is because (at least in the Hertz-Millis framework) one
has Tc ∼ τψ with ψ = z/(d + z − 2), which for d = 2 yields
ψ = 1 irrespective of the value of z. As far as the behavior
of Tc is concerned, the distinction between z = 2 and z = 3

FIG. 5. The RG flows of ρ� = (φ�
0 )2/2 for a sequence of values

of τ progressively tuning the system towards the QCP in the case
when �F = �. The value of z can be read by fitting the power
law (see the main text). The value z ≈ 2 following from B< is
clearly visible for nonzero values of the boson fermion coupling
g (N>vF ∝ g2).
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is only revealed at the level of logarithmic corrections [3].
In a realistic (experimental or simulation) situation, the value
of z may, for example, be read from the scaling behavior of
the correlation function above the quantum critical point (see,
e.g., Ref. [42]).

While presence of the term B< has no impact on the phase
diagram (see Fig. 3), switching on g leads to scaling of the
order parameter characterized by z ≈ 3 in absence of B< and
z ≈ 2 when B< is present (compare Figs. 4 and 5). At a
vanishingly low cutoff scale, deviation from the z = 2 scaling
towards higher values of z is clearly visible in the right plot in
Fig. 5. Despite high numerical accuracy, for the considered pa-
rameter values, we were, however, not able to obtain a scaling
regime, which could be trustfully interpreted as capturing the
behavior corresponding to z = 3. This emergent picture seems
to be consistent with, and offer a potential explanation to,
results of quantum Monte Carlo simulations of certain models
of the electronic nematic [42] as well as the itinerant ferro-
magnetic [43] quantum critical points which provide evidence
for z = 2-type scaling behavior, rather than the conventionally
anticipated behavior corresponding to z = 3.

Conclusion and perspective. Within the nonperturbative
RG framework, we have derived a generalization of the Hertz
action pertinent to fermionic quantum critical systems in
d = 2 characterized by the ordering wave vector �Q = �0. In

our approach, both the fermionic and bosonic degrees of
freedom are regularized and integrated out of the partition
function in parallel, which uncovers another term in the cor-
responding order-parameter action and gives rise to a broad
scaling regime characterized by the dynamical exponent z ≈
2. Our results indicate that a consistent formulation of the
momentum-shell Wilsonian RG approach to this problem nec-
essarily requires treating the ordering wave vector as a flowing
quantity, which scales to zero exclusively in the infrared limit.
The present Letter addresses only properties pertinent to the
order parameter degrees of freedom and the structure of the
bosonic effective action. An extension accounting for the
feedback of bosonic fluctuations on fermionic properties (i.e.,
the flowing fermion self-energy) can be naturally achieved
within our framework, but requires a fully numerical treat-
ment and self-consistent evaluation of the interplay of the two
flowing propagators.
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