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Mirror-protected Majorana zero modes in f -wave multilayer graphene superconductors

Võ Tiến Phong,1,2,3,*,† Héctor Sainz-Cruz,4,*,‡ Eugene J. Mele ,1,§ and Francisco Guinea4,5,‖
1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

2Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
3National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA

4IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain
5Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain

(Received 14 September 2023; revised 18 February 2024; accepted 26 June 2024; published 10 September 2024)

Inspired by recent experimental discoveries of superconductivity in multilayer graphene, we study models of
f -wave superconductivity on the honeycomb lattice with arbitrary numbers of layers. For odd numbers of layers,
these systems are topologically nontrivial, characterized by a mirror-projected winding number ν± = ±1. Along
each mirror-preserving edge in armchair nanoribbons, there are two protected Majorana zero modes. These
modes are present even if the sample is finite in both directions, such as in rectangular and hexagonal flakes.
Crucially, zero modes can also be confined to vortex cores. Finally, we apply these models to twisted bilayer
and trilayer systems, which also feature boundary-projected and vortex-confined zero modes. Since vortices are
experimentally accessible by local scanning probes, our study suggests that superconducting multilayer graphene
systems are promising platforms to create and manipulate Majorana zero modes.
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Due to their non-Abelian braiding statistics and immunity
to quantum decoherence, Majorana zero modes (MZMs) are
highly sought after as building blocks for topological quantum
computation [1–3]. They are believed to exist as excitations of
the ν = 5/2 fractional quantum Hall effect [4,5], at the ends of
a spinless p-wave superconducting chain [6], or in the vortex
cores of spin-triplet px + ipy superconductors [7–9]. How-
ever, these platforms are challenging to realize experimentally
because a full understanding of the ν = 5/2 state remains
elusive while spin-triplet superconductors are scarce in nature
[10]. To circumvent these problems, the modern search for
MZMs focuses primarily on proximitized systems [11–15],
using which various groups claimed to have observed MZMs
due to the presence of zero-bias conductance peaks [16–24].
However, it is now clear that disorder-induced Andreev bound
states can masquerade as MZMs in conductance experiments
[25–32]. Therefore, quenching disorder is an important goal
in the pursuit of MZMs.

As an exceptionally low-disorder platform [33,34],
graphene is a promising material for the realization of MZMs.
Up to now, graphene-based proposals have involved the prox-
imity effect due to the lack of intrinsic superconductivity
[35–37]. Several recent groundbreaking experiments shifted
this paradigm by showing that graphene multilayers are
robust, highly-tunable superconductors [38–48], with mount-
ing evidence suggesting that these states involve an exotic,
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non-s-wave pairing [43–45,49–52]. In particular, spin-triplet,
valley-odd f -wave pairing is emerging as a leading candidate
for the superconducting symmetry [49,50,53,54]. Inspired
by these recent developments, we study models of intrin-
sic f -wave superconductivity in chirally stacked multilayer
graphene. We show that in odd-layer configurations, these sys-
tems are topological mirror superconductors characterized by
a nontrivial mirror winding number. Therefore, nanoribbons
with mirror-symmetric edges must host one Majorana mir-
ror pair per boundary. Finite flakes also support zero modes
with mirror character and degeneracy determined by the pre-
cise termination. Boundary states and their consequences for
spectroscopy for the monolayer case were also considered in
Refs. [55,56]. Furthermore, we calculate the spectrum of finite
flakes that host vortices. We find that a pair of zero modes is
confined to each vortex core. This observation holds signifi-
cant experimental implications since vortices can be readily
created and probed by existing techniques [57–65]. Finally,
we extend these results to twisted systems, wherein robust
zero modes are found in twisted trilayer graphene, but not in
twisted bilayer graphene. Importantly, a pair of zero modes
is also trapped at vortices in twisted trilayer graphene. Our
work suggests that multilayer graphene is an experimentally
feasible, ultraclean Majorana platform.

We begin with a simple model of spinless superconduct-
ing monolayer graphene wherein the superconducting order
parameter in real space is described by hoppings between the
electrons and holes of the same sublattice with phase winding
as indicated in Fig. 1(a). Importantly, the order parameter
changes signs between the K and K ′ valleys, realizing an
exotic f -wave superconductor. We will show that at mirror-
symmetric boundaries of nanoribbons, this model supports
topologically protected pairs of MZMs. The tight-binding
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FIG. 1. Majorana zero modes in a monolayer model. (a) Tight-
binding model of superconducting monolayer graphene. The hop-
pings between electrons and electrons (and between holes and holes)
are indicated in blue, while the “hoppings” between electrons and
holes are indicated in red. (b) The Brillouin zone showing the mirror-
symmetric line in red along which the winding number is calculated.
(c)–(d) Band structures of mirror-symmetric nanoribbons showing
protected edge states that cross zero energy at ky = 0. The edge
structures are shown in the insets. Here, � = μ = 0.05t0, and the
ribbons are 99a wide.

Hamiltonian is described in Fig. 1(a). The Bogoliubov–de
Gennes (BdG) Hamiltonian in momentum space is given by
Ĥ = 1

2

∑
k �̂†(k)HBdG(k)�̂(k), where

HBdG(k) = τz[σ0μ + σxhr (k) − σyhi(k)] + τxσ0g(k),

h(k) = hr (k) + ihi(k) = −t0(1 + eiκ1 + eiκ2 ),

g(k) = �[sin (κ1 − κ2) + sin (−κ1) + sin (κ2)], (1)

κi = k · ai, ai are the lattice vectors, the τ and σ Pauli ma-
trices act on the Nambu particle-hole and sublattice {A, B}
spaces respectively with the subscript 0 denoting the identity
operator, and �̂†(k) = (ĉ†

A,k, ĉ†
B,k, ĉA,−k, ĉB,−k ). This Hamil-

tonian depends only on three real parameters: t0 > 0 the
hopping between nearest neighbors, � the superconducting
parameter, and μ the chemical potential. Assuming that � �=
0, the bulk band structure is gapped for |μ| < t0 and |μ| > 3t0
[66]. We focus only on the lightly-doped regime. Our system
respects time reversal T , particle hole P, and mirror My

symmetries:

T = τzσ0K : T HBdG(k)T −1 = HBdG(−k),

P = τxσ0K : PHBdG(k)P−1 = −HBdG(−k),

My = τ0σx : MyHBdG(k)M−1
y = HBdG(Myk), (2)

where K is the complex conjugation operator. Combining P
and T leads to a chiral symmetry C:

C = iτyσ0 : CHBdG(k)C−1 = −HBdG(k), (3)

which requires that every state at E (k) must have a partner at
−E (k). Since both T 2 = P2 = +1, our system belongs to the
topologically trivial two-dimensional BDI class [67]. There-
fore, a generic termination does not guarantee the existence of
boundary states.

With mirror symmetry, we can enrich the topological clas-
sification along mirror-symmetric lines in the Brillouin zone
[68–71]. In our case, there is only one independent mirror-
symmetric line in the Brillouin zone along ky = 0 as shown in
Fig. 1(b) [72]. On this line [My,HBdG(kx, ky = 0)] = 0, so
we can block diagonalize the Hamiltonian into a mirror-odd
and mirror-even sector. Within each mirror sector, we can
further put the Hamiltonian into chiral off-diagonal form since
[My, C] = 0 [67,73,74],

HBdG =
(
H− 0
0 H+

)
, where H± =

(
0 D±
D†

± 0

)
. (4)

The mirror-projected Hamiltonians H± are characterized
by winding numbers ν± = 1

2π i

∮
dkxTr[D̃†

±(kx )∂kx D̃±(kx )],
where D̃±(kx ) is obtained from D±(kx ) via singular value
decomposition [73,74]. For our model, we have D±(kx ) =
μ ± h(kx ) − ig(kx ) and ν± = ∓sign(�/t0). This unity wind-
ing number predicts that when a mirror-symmetric edge is
cut parallel to the y direction, there exists one topologically
protected boundary mode per mirror sector at ky = 0. Impor-
tantly, this mode must reside exactly at zero energy due to
chiral symmetry. More generally, the odd parity of ν± guar-
antees the existence of at least one exact zero mode at ky =
0. We illustrate these zero modes for two mirror-symmetric
boundaries in Figs. 1(c)–1(d). In Fig. 1(c), the termination is
pristine armchair, while in Fig. 1(d), the termination is jagged
armchair that includes both armchair and zigzag characters.
In both cases, since My is preserved, we find two zero modes,
one from each mirror sector.

The Majorana zero modes can be obtained analytically
from a continuum theory for armchair edges. Assuming that
|�|, |μ| � t0, the relevant physics is described by a Dirac
theory in the original sublattice basis as

HBdG(r) = τz[μσ0 − ih̄vF ∇r · (ξσx, σy)] − ξ�̃τxσ0, (5)

where h̄vF = √
3t0a/2, �̃ = 3

√
3�/2, and ξ = ± denotes

valley. Putting the edge at x = 0 and extending into x → −∞,

the (unnormalized but normalizable) zero-energy solutions at
ky = 0 that satisfy the armchair boundary conditions are

ψξ,my = ex/�−iqxxξ (1, my, −imysign�, −isign�)T ,

(6)
where the decay length is � = h̄vF /|�̃|, the wavelength is
qx = myξμ/h̄vF , and my = ±1 is the mirror eigenvalue of the
mode. The valley-antisymmetric nature of the superconduct-
ing gap is crucial to the existence of the zero modes in Eq. (6)
because had the gap been endowed with the same sign in both
valleys, these modes would not have been normalizable. Thus,
the presence of armchair-confined Majorana states can serve
as a diagnostic of valley-odd, spin-triplet superconductivity in
graphene [55]. Away from ky = 0, the mirror-odd and even
sectors hybridize, lifting the energy away from zero. To find
the dispersion, we can rewrite Eq. (5) at finite small ky in the
basis of Eq. (6)

HBdG(ky) = h̄ṽF

(
0 iky

−iky 0

)
. (7)

Thus, the mid-gap boundary-projected dispersion is E =
±h̄ṽF ky, where ṽF = vF [1 + (μ/�̃)2]−1, and the associated
eigenfunctions are ψξ,E=± = eikyy[∓iψξ,my=−1 + ψξ,my=+1].
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FIG. 2. Isolating Majorana zero modes on finite flakes. (a) Ma-
jorana zero mode localized on the left armchair edge of a rectangular
flake with different values of the chemical potential and different
terminations of the horizontal top and bottom edges (either zigzag
or bearded). The mirror eigenvalue of the shown state my is indi-
cated. (b) Dependence of the zero mode on vertical length of the
flake. (c) Majorana corner state in a hexagonal flake. There are six
such states in total. In these simulations, � = 0.1t0 and |μ| = 0.2t0.

(d) One of two vortex states confined to the vortex core near zero
energy E ≈ 10−17t0, with � = 0.2t0, μ = 0.1t0, and d ≈ 0. The
irregular shape has 9609 atoms, and is chosen to illustrate that the
vortex states do not depend on boundary conditions. The energies
of this flake are shown in (e), with the zero modes emphasized. The
vortex is centered at a hexagon’s center.

For potential applications in topological quantum comput-
ing, it is desirable to isolate Majorana zero modes spatially.
For our model, the Majorana zero modes always come in pairs
as demanded by My along translationally invariant edges.
One way to isolate a Majorana zero mode is to break My

symmetry by adding a spatially dependent σz mass of the form
V (x, y) = m(y)τzσz where limy→±∞ m(y) = ±m and m is a
constant. The mass changes sign at y = 0. Then, there are two
possible zero-energy solutions φξ,my = emy

∫ y m(y′ )dy′/h̄vF ψξ,my

[75]. However, only one of them is normalizable depending
on whether m is positive or negative. Thus, the effect of the
mirror-breaking mass is to gap out the two boundary modes
and create a single bound state localized where the mass
changes sign.

Another way to isolate single zero modes is by careful
design of edges and corners [56]. For instance, in a rectangular
flake that features armchair edges on the left and the right
and either zigzag or bearded edges on both the top and the
bottom, there are two zero modes that are localized on the left
and right armchair edges. These modes are odd (even) under
mirror if μ > 0 and the horizontal edges are zigzag (bearded)
or if μ < 0 and the horizontal edges are bearded (zigzag), as
shown in Fig. 2(a). Therefore, the imposition of zigzag and
bearded edges mimics a large σz mass above the sample that
goes to zero inside the sample and then changes sign below the
sample. While the width separating the two armchair edges
needs to be large to prevent mixing of the zero modes, the

length of the flake along the y direction does not qualitatively
affect these modes, as shown in Fig. 2(b). Furthermore, in a
hexagonal flake, we find six localized corner states at zero
energy, one of which is shown in Fig. 2(c) [56,76]. Spin
domain walls can also host pairs of MZMs, see Ref. [77]. It is
worth emphasizing that the chosen simulation parameters are
unrealistically large to facilitate fast numerical convergence,
but should not qualitatively affect the topologically derived
conclusions.

Crucially, vortices can also support zero-energy modes.
Since vortices break translational symmetry, we calculate
these vortex states numerically in real space on finite flakes
using the tight-binding framework, where the gap function
is modified to �(ri, r j ) = ±eiφr� tanh(|r|/d )/2i, r = (ri +
r j )/2 is the center-of-mass position, φr is the angular coordi-
nate of r, and d is the coherence length. When the vortex is
centered along a My-invariant line that connects a hexagon’s
center and a midbond, we find two vortex-confined modes at
numerically exact zero energies, as shown in Fig. 2(d). This
is strong evidence that these vortex-confined zero modes are
protected by mirror symmetry. When the vortex is centered
elsewhere, such as on a carbon site, then these low-energy
modes are no longer at zero energy. However, when d � a,

where a is the lattice constant, the precise origin of the vortex
becomes less important, and we find near-zero modes for var-
ious geometries numerically. The coherence length is the ratio
of the Fermi velocity and the superconducting gap, which
for practically relevant small gaps, is many times the lattice
constant. We leave the topological stability of these modes,
including in the presence of disorder, to future analyses.

We now generalize the previous results to rhombohedral
N-layer graphene stacks, which is motivated by the recently
discovered superconductivity in Bernal bilayer graphene and
rhombohedral trilayer graphene [43,45,47,48]. The Hamilto-
nian is now modified to

HBdG(k) = τzHN (k) + τxg(k), (8)

where

HN (k) = INHintra(k) + UNHinter(k) + LNH†
inter(k),

Hintra(k) =
(

μ h(k)
h∗(k) μ

)
, Hinter(k) =

(
0 0
γ1 0

)
, (9)

IN is the N × N identity matrix, UN (LN ) is the N × N matrix
with ones along the diagonal above (below) the principal di-
agonal, acting on layer space, and γ1 is the interlayer hopping.
For multiple layers, mirror symmetry is actually C2x sym-
metry that simultaneously exchanges layers and sublattices
represented by My = τ0ĪNσx, where ĪN is the N × N antidi-
agonal matrix of ones. For N even, all layers are exchanged
under mirror, while for N odd, there is one central layer
which is mapped onto itself under mirror. Due to this mirror
symmetry, we can classify the bands by the same topological
invariant as before. For N even, the system is topologically
trivial with ν± = 0. Consequently, there are no Majorana zero
modes pinned to ky = 0 on armchair nanoribbons. Interest-
ingly, we find that for the current models, there are still zero
modes displaced away from ky = 0. However, it is important
to emphasize that these ky �= 0 modes are not topologically
protected, and thus they can be removed by perturbations
which are invariant under My and do not close the bulk gaps.
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One such perturbation is a layer-antisymmetric σz potential
energy.

On the contrary, for N odd, the systems are topological,
protected by My, with ν± = ±1. Therefore, there are two
topological zero modes per armchair edge pinned at ky = 0, in
addition to many removable accidental zero modes at nonzero
momenta. In addition to these zero modes, we also find nu-
merous midgap states for N > 1. Like the nontopological zero
modes, these midgap states are also removable; however, they
are generically present at armchair edges. The topological
zero modes can be removed by breaking My. In the multilayer
case, one can break My by invalidating layer equivalence
with a perpendicular electric field, which is much more ex-
perimentally accessible than a staggered potential. Regarding
vortices, for the trilayer case, we have also found numerically
a number of low-energy states confined to a vortex core. In
fact, we find a pair of numerically exact zero modes when
the vortex center is located along a My-symmetric line. Like
before, if d � a, then the vortex center is not as important,
so we find these near-zero modes to be robust. We expect all
the odd-layer configurations to feature vortex-confined zero
modes, but we have not numerically calculated these due to
increasing computational cost.

The above results can be generalized to ABA stacks as
well. When the number of layers is odd, such a stack can
be decomposed into a direct sum of bilayer sectors and one
monolayer sector due to the presence of Mz symmetry [80].
The monolayer sector behaves exactly like the monolayer toy
model albeit it is written in a basis of a coherent superposition
of layers. As such, in these systems, there are also protected
Majorana zero modes in the monolayer sector at armchair
boundaries and robust vortex-confined low-energy modes.
Although superconductivity has not yet been experimentally
observed in ABA multilayer graphene, these observations sug-
gest that twisted multilayer graphene will contain the same
exotic physics owning to the decomposition into a monolayer
sector and bilayer sectors.

Inspired by the aforementioned findings, we now look for
zero modes in twisted multilayer graphene, using a scaled
tight-binding model [53,77,81–87]. Results for twisted bilayer
and trilayer graphene appear in Fig. 3. In panel (a), the band
structure of a TBG nanoribbon is shown for angle θ = 1.06◦,
which is close to the magic angle. The bands are qualitatively
similar to those of Bernal bilayer graphene. There are 8 zero
modes at ky �= 0, which are not topologically protected. These
modes and the rest of subgap Andreev states appear near the
edges of the system, at the last complete moiré AA regions,
as shown in Fig. 3(c), and can be observed via scanning-
tunneling microscopy [49,50]. The bands depend sensitively
on twist angle. Increasing the angle decreases the momentum
of the zero modes. When the angle is increased further, the
zero modes disappear and only Andreev states near ky = 0
remain. Few subgap states survive at θ � 1.2◦ [77].

Just like in TBG, in twisted trilayer graphene (TTG)
[41,42], generic My-symmetric edges do not lead to topo-
logically protected zero modes at ky = 0. However, a new
possibility arises due to the decomposition of TTG into TBG
plus monolayer graphene, as found in Ref. [80]. In particular,
since the effective monolayer comes from the odd combina-
tion of top and bottom layers, when these two layers have

FIG. 3. Twisted multilayer graphene. (a) Band structure of a
twisted bilayer graphene nanoribbon, in the hole superconducting
dome (filling n = −2.4), with a twist angle of θ = 1.06◦. The width
of the ribbon is W ≈ 35 moiré periods (LM ) and the superconducting
gap is �sc = 1 meV. (b) Band structure of a twisted trilayer graphene
nanoribbon with armchair edges in the top and bottom layers. The
states in red come from the effective monolayer sector and thus have
all the charge in top and bottom layers. Here θ = 5◦, μ = 0, �sc =
200 meV [88], and |T | > LM due to a commensurability condition
[77]. (c) Charge map of a TBG zero mode, showing localization at
the last full moiré AA region near an edge. (d) Zero mode confined
to a vortex core in twisted trilayer graphene, with E ≈ 10−10t0. Here
θ = 1.5◦, n = −2.4, �sc = 0.05t0, and the flake contains 323 742
atoms.

armchair edges, the system includes the four zero modes at
ky = 0, like monolayer graphene, as shown in Fig. 3(b). The
charge of these zero modes is indeed evenly distributed in the
top and bottom layers, with no charge in the middle layer.
Since a decomposition including a monolayer is possible for
any alternating-twist stack with an odd number of layers [80],
we expect that four zero modes at ky = 0 will exist in all
such multilayers. Finally, Fig. 3(d) shows one of the two zero
modes confined to a vortex core in twisted trilayer graphene.
As in the ribbon geometry, these zero modes come from the
effective monolayer sector. These promising results suggest
that there is a whole family of robust superconductors in
twisted odd-layer graphene that host topologically protected
Majorana zero modes.

Superconductivity with f -wave pairing is favored in two-
dimensional materials with Fermi pockets at opposing corners
of the Brillouin zone and strong repulsive electron-electron
interactions. Defects which scatter electrons between the dif-
ferent pockets lead, in the superconducting phase, to Andreev
resonances deep within the gap, and even allow for the exis-
tence of isolated Majorana states. In particular, the Majorana
states are present when My symmetry is respected. This
symmetry can be broken by applying a perpendicular dis-
placement field. In rhombohedral stacks, superconductivity
has not yet been seen without such a field; so our model might
not immediately apply to these cases [43,45,47,48]. How-
ever, superconductivity has been unambiguously established
in twisted trilayer graphene even in the absence of a displace-
ment field [41,42,89]. Therefore, twisted trilayer graphene is
the most promising candidate to detect these Majorana bound
states, the observation of which is a simple way to iden-
tify this exotic f -wave superconductivity. In these materials,
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edges and corners are prototypical defects that trap Andreev
states and Majorana zero modes. Although precision fabrica-
tion of these boundaries is technically challenging, there has
been much experimental progress in achieving such a feat
[90–94]. On the other hand, vortices are much more experi-
mentally accessible because they can be created in the bulk
by a magnetic field or by magnetic impurities. The electronic
states at vortex cores have been extensively studied using
local probes [57–62]. These techniques can also be used to
manipulate vortices [63–65]. Therefore, the vortex-confined
zero modes in these graphene-based topological supercon-
ductors can be created, probed, and manipulated by readily
available technology, opening the way to new types of quan-
tum devices.
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