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Recently, a quantum simulator for the two-dimensional Fermi-Hubbard model on an anisotropic triangular
lattice has been realized, where both geometrical frustration and doping can be continuously tuned. Here, we
provide a comprehensive comparison between the magnetic correlations calculated by the two-particle self-
consistent (TPSC) theory and those measured in this quantum simulator, at temperatures comparable to the spin-
exchange energy and Hubbard interactions comparable to the bandwidth. We find overall excellent agreements
between the TPSC calculations and the measurements from the quantum simulator at all levels of frustration
and doping. This is quite remarkable considering that the Hubbard model is already in the intermediate- to
strong-coupling regime, for which very few methods yield reliable results. Our work showcases the potential
of TPSC as a theoretical approach capable of providing reasonably accurate descriptions of the Hubbard model
even at fairly strong interactions and when the frustration is present.
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Introduction. Quantum simulation of the two-dimensional
(2D) Fermi-Hubbard model with ultracold atomic gases has
seen tremendous progress in the past decade [1–3]. These
systems have long been known to offer a pristine realization
of the Hubbard model through the use of optical lattices,
where all the model parameters can be precisely tuned [4],
but it is the advent of a quantum gas microscope with its
unprecedented power of resolution [5,6], combined with in-
novative ideas of cooling [7,8], that has made simulating
strongly correlated regimes possible. By now experiments
have successfully reached temperatures as low as half of the
spin-exchange energy and along the way simulated many
equilibrium and nonequilibrium properties of the Hubbard
model. Among others, these include demonstration of a
metal-to-insulator transition [9], probes of short- and long-
range antiferromagnetic correlations [10–14], measurement
of the equation of state [15,16], and studies of magnetic po-
larons [17–19]. In addition, various transport measurements
have also been carried out in the quantum simulator, such
as charge transport in the bad metallic regime [20], spin
transport of the Mott insulator [21], as well as subdiffusion
and heat transport in the high-temperature regime [22]. All
these developments are encouraging signs that the ultimate
goal of simulating the 2D Hubbard model at temperatures and
dopings relevant to the physics of high Tc superconductivity
may finally be within reach.

However, the value of a quantum simulator lies not only
in revealing the properties of simulated models in regimes not
accessible by classical computation tools, but also in serving
as an important platform for testing various theoretical ideas
used to unravel these models. For the 2D Fermi-Hubbard
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model, an extraordinary amount of effort has been devoted to
its understanding [23] and various theoretical methods have
been proposed for its quantitative description [24,25]. The so-
called two-particle self-consistent theory (TPSC), developed
by Vilk and Tremblay [26,27], is one such method. TPSC is a
nonperturbative approach which satisfies the Mermin-Wagner
theorem, the Pauli principle, and various conservation and
sum rules for the charge and spin. It has been applied to
a wide range of problems related to the 2D Fermi-Hubbard
model [28–44] and was found to agree with Monte Carlo
simulations on the calculation of various physical quantities
in the weak- to intermediate-coupling regime [27], including
the double occupancy, spin and charge structure factors, and
single-particle spectral functions. More importantly, it pre-
dicts the opening of a pseudogap [26] and the existence of
d-wave superconductivity in the model [30], two very conse-
quential results. Although calculations based on TPSC have
been directly compared to measurements of cuprate super-
conductors [31–33], the agreement or lack thereof should be
viewed along with the fact the single-band Hubbard model
cannot possibly capture the real materials perfectly. For this
reason, it is important to benchmark the methods proposed
to solve the Hubbard model, such as the TPSC, against a
quantum simulator of the model.

In this Letter, we perform such a benchmarking by com-
paring the magnetic correlations calculated by TPSC to those
measured in the quantum simulator of the doped and frustrated
Hubbard model on an anisotropic triangular lattice [14]. To
our surprise, we find that even for Hubbard interactions com-
parable to or slightly larger than the bandwidth, TPSC still
gives a fairly accurate account of the magnetic correlations
at almost all levels of doping and frustration. Our results
highlight the capacity of TPSC in understanding strongly
correlated regimes of the Hubbard model that very few
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FIG. 1. (a) Optical lattice potential used in Ref. [14] to real-
ize the quantum simulator of a tunable frustrated Hubbard model.
(b) A sample of the measured real-space magnetic correlation in the
quantum simulator of Ref. [14]. Here, t ′/t = 0.57, T/t = 0.34, and
U/t = 8.2.

approaches can access. Within quantum simulation our work
also suggests another avenue of using quantum simulators to
systematically benchmark theoretical approaches on strongly
correlated models.

Quantum simulator of a frustrated Hubbard model. In the
quantum simulator [14], a two-component Fermi gas is loaded
into a nonseparable square optical lattice potential, formed by
the interference pattern of two laser beams. When the intensi-
ties of the two beams are equal, this setup realizes the standard
Hubbard model on a square lattice with nearest-neighbor hop-
ping t and on-site interaction U . Through varying the relative
intensity of the two beams, the horizontal diagonal hopping t ′
can be tuned from zero to t continuously, thereby realizing a
tunable triangular lattice potential [see Fig. 1(a)]. The Hamil-
tonian of the Hubbard model on such a lattice reads

Ĥ = −t
∑

〈i j〉σ
ĉ†

iσ ĉ jσ − t ′ ∑

〈〈i j〉〉,σ
ĉ†

iσ ĉ jσ + U
∑

i

n̂i↑n̂i↓, (1)

where 〈〈i j〉〉 denotes the next-nearest neighbor along the hor-
izontal diagonal line with respect to the square lattice. In
these experiments, a quantum gas microscope provides an
in situ, site-resolved imaging of the atomic distribution after
a spin-selective removal of one component and in so doing
measures the real-space magnetic correlation function

Cr = 4
(〈

Ŝz
j Ŝ

z
i

〉 − 〈
Ŝz

j

〉〈
Ŝz

i

〉)
, (2)

where r denotes the position of site j relative to site i and Ŝz
i =

1
2 (n̂i↑ − n̂i↓). Sample data of thus measured magnetic correla-
tion from this quantum simulator are shown in Fig. 1(b).

TPSC and magnetic correlations. For completeness, we
review the basic ideas of TPSC using the Luttinger-Ward
functional formalism [27]. In this formalism, the self-energy
�σ [Gσ ] is treated as a functional of the single-particle Green’s
function Gσ . Once a specific ansatz for the self-energy is
given by some conserving scheme, the single-particle Green’s
function is determined by Dyson’s equation. Preceding from
here, however, are two independent routes to obtaining the
two-particle Green’s functions. One is through the Heisenberg
equation of motion which relates the single-particle Green’s
function to the two-particle one. The other is through the
Bethe-Salpeter equation, which expresses the susceptibili-
ties, essentially the two-particle Green’s function, in terms
of the effective interactions (i.e., the irreducible vertices)
�σσ ′ = δ�σ/δGσ ′ . The central idea of TPSC is to enforce the

consistency in the calculations of the two-particle Green’s
function on the choice of the variational self-energy ansatz.

TPSC adopts a simple Hartree-like ansatz for the
self-energy which assumes momentum- and frequency-
independent irreducible vertices �↑↑ and �↑↓. In terms of
the spin vertex �sp ≡ �↑↓ − �↑↑, the single-particle Green’s
function is given by

G(1)
σ (k, iωm) = 1

iωm − (εk + n�sp/2 − μ)
, (3)

where ωm = (2m + 1)πT is the fermionic Matsubara
frequency at temperature T , εk = −2t (cos kx + cos ky) −
2t ′ cos(kx + ky) is the single-particle dispersion, n is the den-
sity, and μ is the chemical potential. The equation of motion
for the single-particle Green’s function gives the following
relation between the spin vertex �sp and the double occupancy
〈n̂i↑n̂i↓〉,

�sp〈n̂i↑〉〈n̂i↓〉 = U 〈n̂i↑n̂i↓〉. (4)

The Bethe-Salpeter equation, which determines the spin sus-
ceptibility, leads to another relation between them,

T

N

∑

ν

∑

q

χ (1)(q, iων )

1 − 1
2�spχ (1)(q, iων )

= n − 2〈n̂i↑n̂i↓〉, (5)

where N is the number of lattice sites, n is the density, ων =
2νπT is the bosonic Matsubara frequency, and

χ (1) ≡ T

N

∑

mkσ

G(1)
σ (k, iωm)G(1)

σ (k + q, iωm + iων ) (6)

is the so-called polarization bubble. For the single-particle
Green’s function given in Eq. (3), the latter takes the form
of the Lindhard function χ (1)(q, iων ) = − 2

N

∑
k

f (ε̃k )− f (ε̃k+q )
iων+ε̃k−ε̃k+q

,

where ε̃k = εk + n�sp/2 and f (ε̃k) = 1/(e(ε̃k−μ)/T + 1) is the
Fermi-Dirac distribution.

To obtain the relation in Eq. (5), one first notes that the
spin susceptibility can be obtained from the Bethe-Salpeter
equation as

χsp(q, iων ) = χ (1)(q, iων )

1 − 1
2�spχ (1)(q, iων )

, (7)

which in turn determines the spin structure factor

C̃q = T
∑

ν

χsp(q, iων ). (8)

Using the latter to calculate the real-space magnetic correla-
tion function

Cr = 1

N

∑

q

C̃qeiq·r, (9)

and observing that Cr=0 = n − 2〈n̂i↑n̂i↓〉, one arrives at
Eq. (5). Once �sp is determined self-consistently by solving
Eqs. (4) and (5), the spin structure factor in Eq. (8) and the
real-space magnetic correlation function in Eq. (9) can then
be compared to experimental measurements. Lastly, we point
out that the complete theory of TPSC involves additional steps
to obtain a more accurate single-particle Green’s function, but
we omit this discussion as it is not relevant to our present
purpose.
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FIG. 2. The real-space magnetic correlation Cr between the
nearest-, next-nearest, and next-next-nearest neighbors, denoted by
C(1,0), C(1,1), and C(2,1) respectively. For reference, C(1,0) = −1 for a
perfect antiferromagnetic Néel order. The dots with error bars are
experimental data, the shaded bands with solid line boundaries are
TPSC calculations, and those with dashed lines are DQMC simula-
tions. Here, U/t = 9.5, T/t = 0.3–0.35, and n = 1.

Benchmarking. We first compare the magnetic correlations
calculated by TPSC to those measured in the quantum simu-
lator in the case of half filling. To reaffirm the faithfulness of
the quantum simulator we also perform determinant quantum
Monte Carlo (DQMC) simulations [45] and include the results
in the benchmarking. All TPSC calculations are done on a
256×256 lattice, where sparse sampling and IR decomposi-
tion from the sparse-ir library are used to treat the temperature
Green’s functions [46–48]. As mentioned earlier, the exper-
iments measure directly the real-space correlation function
Cr between any two sites. Shown in Fig. 2 are comparisons
between theory and experiment on the nearest-, next-nearest,
and next-next-nearest-neighbor correlations as a function of
t ′/t at U/t = 9.5. As the final temperature of the atomic sys-
tem varies slightly from one value of t ′/t to another, we show
TPSC calculations (shaded bands in Fig. 2) for a range of tem-
peratures T/t = 0.3–0.35, consistent with that determined in
the experiments. We note that these temperatures are slightly
lower than the spin-exchange energy J = 4t2/U . As we can
see, the overall agreement between experiment and theory is
excellent. At half filling, the suppression of antiferromagnetic
correlation by increasing frustration is clearly reflected by
the reduction of the spin vertex in the TPSC calculations as
shown in Fig. 3. However, we notice that the performance of

FIG. 3. The spin vertex �sp as a function of doping at vari-
ous degrees of frustration characterized by t ′/t . Here, U/t = 9.5,
T/t = 0.35, and n = 1.

TPSC declines slightly as frustration increases; in particular,
the next-next-nearest-neighbor correlation C(2,1) does not turn
positive for large t ′/t as observed both in the quantum simu-
lator and in DQMC.

In Ref. [14], the measured real-space magnetic correlations
between all sites are then used to construct the spin structure
factor C̃q by inverting Eq. (9). There, to illustrate clearly the
effects of frustration, the physical lattice in Fig. 1 is mapped to
a triangular lattice such that the square-shaped first Brillouin
zone of the physical lattice now stretches into the rhombus-
shaped one as illustrated in Fig. 4(a). Plotted as a function of
the crystal momentum corresponding to the triangular lattice,
the experimental C̃q and the TPSC calculations are shown in
Fig. 4. Here, the TPSC reproduces the full spin structure factor
of the Hubbard model simulator reasonably well; in particular,
the splitting of the C̃q peak at the M point into two parts
at the K points as the frustration increases is well captured
by the TPSC. We note that TPSC does produce a smaller
peak value of the spin structure factor in general compared
to the experimental measurements, which could be due to the
limitation of the theory. Another possible explanation is that
because of the system’s nonuniform density the experimental
determination of the spin structure factor involves a cutoff
of real-space correlations beyond a certain distance, which
may result in a less accurate peak value [49]. This truncation
might also account for why the spin structure factor from the
quantum simulator does not display additional oscillations as
shown by TPSC [see Fig. 4(l)] [45].

We next consider the case of finite doping where the parti-
cle density is given by n = 1 + δ. The comparisons between
the TPSC calculations and the experimental results on the
nearest- and next-nearest-neighbor correlations as a function
of doping are shown in Fig. 5; again, the agreements are
on the whole very good. Here, an important characteristic
of frustrated lattices is the lack of particle-hole symmetry in
contrast to the square lattice. This can be seen from the fact
that the system with particle doping δ > 0 can be mapped to
one with hole doping −δ and described by the same Hamilto-
nian with t ′ replaced by −t ′ [50–52]. In fact, the magnetic
correlations with particle doping are calculated using this
mapping. The observed particle-hole asymmetry in frustrated
lattices is well captured by the TPSC calculations and, from
the theoretical perspective, is due to the reduction of the spin
vertex by particle doping in the presence of frustration (see
Fig. 3). We notice that the experimental results in Fig. 5(c)
have a somewhat more pronounced particle-hole asymmetry
than those of the TPSC calculations. In particular, the agree-
ment between theory and experiment is almost perfect for the
hole doping while some discrepancy exists for the particle
doping. However, this discrepancy is perhaps not as large as
it appears if we take into account the fact that the experi-
mental results for the square lattice already exhibit a slight
but noticeable particle-hole asymmetry [see Fig. 5(a)], due
presumably to system errors. Nevertheless, the comparison
in Fig. 5(c) clearly shows that TPSC does not capture the
ferromagnetic correlations observed for the isotropic trian-
gular lattice in the vicinity of particle doping δ = 1/2. This
may be an indication that the assumption of constant effective
interactions from TPSC is not adequate here. Since in this
case a van Hove singularity exists at the Fermi level in the
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FIG. 4. Spin structure factor of the Hubbard model at half filling and in increasing degree of frustration characterized by t ′/t . The top panel
contains results from the quantum simulator, the middle panel calculations from the TPSC, and the bottom panel comparisons between them.
The dots in the bottom panel are experimental data and lines TPSC calculations. Here, experimental parameters corresponding to different t ′/t
are T/t = 0.26 and U/t = 9.7 for t ′/t = 0.0265; T/t = 0.34 and U/t = 8.2 for t ′/t = 0.57; T/t = 0.32 and U/t = 8.2 for t ′/t = 0.75; and
T/t = 0.39 and U/t = 9.2 for t ′/t = 0.97. All the TPSC calculations in this Letter are done using experimental parameters except for the case
of t ′/t = 0.0265, where we find an almost perfect agreement with the experiment using a theoretical T/t = 0.39.

density of states of the noninteracting system, any momentum
dependence of the effective interactions will be accentuated

by the presence of this singularity and can no longer be
neglected [45].

(d) (e) (f)

(a) (b) (c)

FIG. 5. The nearest- and next-nearest-neighbor correlations, C(1,0) and C(1,1), as a function of doping and at various degrees of frustration
characterized by t ′/t . Here, the parameters used in our calculations are U/t = 9, and T/t = 0.35 for (a)–(c) and T/t = 0.4 for (d)–(f).
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Conclusions. We have systematically benchmarked the
TPSC calculations of the magnetic correlations of a doped
and frustrated Hubbard model against the experimental results
of a quantum simulator for U/t = 8–10. Although TPSC is
believed to be valid only for weak-to-intermediate coupling,
i.e., for U/t � 8, the overall excellent agreement with the
copious data from the quantum simulator indicates a wider
range of applicability for this theory. In the future, it would be
highly desirable to test other predictions of the TPSC, such as
the opening of the pseudogap, in the next generation of quan-
tum simulators of the Hubbard model where the temperature
can be further lowered. This can in principle be carried out

by probing the single-particle spectral weight of the atomic
system using the photoemission spectroscopy [53–55], a tool
analogous to the angle-resolved photoemission spectroscopy
(ARPES) in solid-state systems [56].
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