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Few-magnon bound states in quantum spin chains have been long studied and attracted much recent attention.
For a higher-spin ferromagnetic XXZ chain with single-ion anisotropy, several features regarding the evolution
of the low-lying two-magnon bound states with varying wave number were observed in the literature. However,
most of these observations are only qualitatively understood due to the lack of analytical tools. By combining
a set of exact two-magnon Bloch states and a plane-wave ansatz, we achieve a complete solution of the two-
magnon problem in such a system. We identify parameter regions that support different types of two-magnon
bound states, with the boundaries defined by algebraic equations. We discover a narrow region in which two
single-ion bound states coexist. We show that the phase diagrams for distinct wave numbers are similar to each
other, which enables us to map the evolution of the bound states to the rectilinear movement of a representative
point for given parameters in a rescaled phase diagram. This dynamic picture provides quantitative interpretations
of the observed features.
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Introduction. Recently, there has been a resurgence in
the study of few-magnon bound states (BSs) due to the ex-
perimental observation of two-magnon BSs in the spin-1/2
ferromagnetic XXZ chain [1], as first predicted by Bethe [2].
Theoretically, the generalization of the two-magnon problem
to higher spins and higher spatial dimensions was initiated by
Dyson [3], and followed by Wortis, who found using Green’s
functions that the exchange (Ex) two-magnon BSs may exist
in certain regions of the Brillouin zone [4]. Silberglitt and
Torrance [5], and Tonegawa [6] made further generalizations
to take into account the effect of single-ion (SI) anisotropy and
revealed the existence of the so-called SI BSs. Papanicolaou
and Psaltakis later extended Bethe’s ansatz to the case of
higher spins and solved the two-magnon problem in an XXX
chain with SI anisotropy [7].

In the case of ferromagnetic chains, it is well known that
the two types of two-magnon BSs may appear as the lowest
two branches of the excitation spectra. These two branches
exhibit several remarkable features, including possible tran-
sitions between different types of BSs, the appearance of
an alternative type of BS at certain wave numbers, and the
existence of a branch consisting of a unique type of BS under
certain parameters. Unfortunately, most of the understanding
of these properties in the existing literature remains mainly
qualitative due to the lack of appropriate analytical methods
[5,7,8].

In this Letter, we succeed in providing analytical and quan-
titative interpretations of the above-mentioned properties. We
develop a semianalytical method that combines a set of exact
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two-magnon Bloch states [8] and a plane-wave ansatz for
solving a class of inhomogeneous tridiagonal matrices. For
each wave number, we obtain a phase diagram that contains
several phases supporting different types of bound states, with
the phase boundaries determined by algebraic equations. We
observe a narrow parameter region in which two SI BSs coex-
ist. The phase diagrams for distinct wave numbers are shown
to be similar to each other, which allows us to convert the
evolution of BSs with varying wave number to the movement
of a representative point for given parameters along a half-line
in a rescaled phase diagram. This intriguing dynamic picture
enables us to get analytical expressions for the wave numbers
at which the foregoing transition or emergence takes place.

Model and motivation. We consider the spin-S ferromag-
netic XXZ ring in the presence of SI anisotropy [5–8], which
is described by the dimensionless Hamiltonian
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where Sα
j are the spin operators on site j with quan-

tum number S, J > 0 is the nearest-neighbor exchange
interaction, � > 0 is the anisotropy parameter, and d � 0
measures the SI anisotropy strength. We assume that
N/2 is even and S > 1/2, and confine ourselves in the
two-magnon subspace with total magnetization NS − 2.
Let |F 〉 = |S, . . . , S〉 be the fully polarized state pos-
sessing an energy EF /J = −NS2(� + d ), and the real-
space two-magnon basis states read |i, j〉 = 1

2S S−
i S−

j |F 〉
(1 � i < j � N) and |i, i〉 = 1

2S̃
(S−

i )2|F 〉 (1 � i � N) with
S̃ ≡ √

S(2S − 1). The two-magnon Bloch states are con-

structed as [8] |ξr (k)〉 = ei rk
2√
N

∑N−1
n=0 eiknT n|1, 1 + r〉 (0 � r
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< N/2) with k ∈ K0 = {−π,−π + 2π
N , . . . , 0, . . . , π − 2π

N },
and |ξ N

2
(k)〉 = ei Nk
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√
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2 −1
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2 〉 with k ∈ K1 =

{−π,−π + 4π
N , . . . , 0, . . . , π − 4π

N }, where T is the trans-
lation operator defined by T |i, j〉 = |i + 1, j + 1〉. The

complement of K1 is denoted as K ′
1 and we focus on

k ∈ K1 below. The matrix representation of [H − EF ]/J in
the ordered basis {|ξ0(k)〉, |ξ1(k)〉, . . . , |ξ N

2
(k)〉} is [H2(k) −

EF ]/J = 4S� + 2(2S − 1)d − h2(k) [8], where
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is a (N/2 + 1) × (N/2 + 1) tridiagonal matrix with Ck ≡
cos k

2 and C̃k ≡ 2SCk . Diagonalization of [H2(k) − EF ]/J

gives the excitation energies E (α)
2 (k) and eigenstates

|ψ (α)(k)〉 (α = 1, 2, . . . , N/2 + 1). We use the con-
vention E (1)

2 (k) � E (2)
2 (k) � · · · � E (N/2+1)

2 (k) and write
|ψ (α)(k)〉 = ∑N/2

r=0 V (α)
r (k)|ξr (k)〉. An eigenstate |ψ (α)(k)〉 is

said to be an Ex (SI) BS if |V (α)
0 (k)| < |V (α)

1 (k)| > |V (α)
2 (k)| >

· · · > |V (α)
N/2(k)| [|V (α)

0 (k)| > |V (α)
1 (k)| > |V (α)

2 (k)| > · · · >

|V (α)
N/2(k)|].
We present in Fig. 1 several examples of the two-magnon

spectra calculated by numerically diagonalizing h2(k) (N =
200 and S = 3/2). The insets show the weights of the two
states |ξ0(k)〉 and |ξ1(k)〉, P(i)

SI (k) = |V (i)
0 (k)|2 and P(i)

Ex (k) =

FIG. 1. The lowest ten levels of the two-magnon excitation
spectra calculated by numerically diagonalizing [H2(k) − EF ]/J for
N = 200, S = 3/2, and k ∈ K1. The lowest two levels are indicated
in colors, while the remaining eight ones form the narrow band
(gray). The insets show the evolution of the weights of |ξ0(k)〉
and |ξ1(k)〉 in |ψ (i)(k)〉 (i = 1, 2), P(i)

SI (k) = |V (i)
0 (k)|2 (box) and

P(i)
Ex (k) = |V (i)

1 (k)|2 (dot).

|V (i)
1 (k)|2 (i = 1, 2). For (�, d ) = (1, 1), the lowest sepa-

rated branch (blue) was believed to be entirely contributed
by the SI BSs [5,7]. However, a closer look at P(1)

SI/Ex(k)
reveals that |ψ (1)(k)〉 is actually an Ex BS for −3π/5 �
k � 0, as already been noticed by Tonegawa [6]. The state
|ψ (2)(k)〉 (red) becomes an Ex BS at k = −9π/10. For
(�, d ) = (0.25, 0.15), |ψ (1)(k)〉 develops into an Ex BS for
−24π/25 � k < −19π/25, while |ψ (2)(k)〉 remains a non-
BS. Surprisingly, for the mode k = −π + 4π/N (circled by
the dotted oval), both |ψ (1)(k)〉 and |ψ (2)(k)〉 are SI BSs.
For (�, d ) = (1.2, 0.48), |ψ (1)(k)〉 corresponds to Ex BSs
throughout the zone and |ψ (2)(k)〉 becomes an SI BS for
k � −47π/50. The role of the two types of BSs is roughly
interchanged compared with the case of (�, d ) = (1, 1).

These observations lead us to ask the following questions
about the two lowest levels: How can we analytically de-
termine the transition point between different types of BSs
and the wave number at which an alternative type of BS
emerges? When will a unique type of BS occupy a single
branch throughout the zone? Under what circumstance will
two SI BSs simultaneously occur? Which parameter controls
the interchange of the BSs? Except for Tonegawa’s determi-
nation of the wave number at which a higher branch emerges
[6], we did not find any other quantitative results concerning
these questions.

Phase diagram: A plane-wave ansatz. We now set out to
provide a semianalytical solution of the problem and quan-
titatively answer the above questions. As detailed in the
Supplemental Material [9], the eigenvalue problem of h2(k)
can be solved through a plane-wave ansatz Vj = Xeip j +
Ye−ip j ( j = 1, 2, . . . , N/2 − 1) [10–13], where X and Y are
j-independent coefficients. The “momentum” p is determined
by the solutions of the following transcendental equation,

tan
N

2
p = wk (cos p)

(Ak − cos p) sin p
, (2)

where Ak ≡ d/C̃k − (C̃k − Ck )/� and wk (x) ≡ x2 − (Ak +
C̃k/�)x + d/�. The number of real solutions of Eq. (2) is es-
sentially determined by the sign of wk (1) = −[(d − C̃k )(� −
C̃k ) − C̃k (C̃k − Ck )]/(C̃k�) [9]. The condition wk (1) = 0 de-
fines the curves C1,2 as shown in Fig. 2. It can be shown
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FIG. 2. For any k ∈ K1, the curves C1,2 (black), B1 (red), and B2

(blue) divide the �-d plane into six regions I and i–v. Region i (ii)
supports Ex (SI) BSs only. In region iii (v), the smaller and larger
solution of Eq. (6) gives the SI and Ex (Ex and SI) BSs, respectively.
In region iv we have two SI BSs.

that Eq. (2) has N/2 + 1, N/2, and N/2 − 1 real solu-
tions in regions I, i

⋃
ii, and iii

⋃
iv

⋃
v, respectively [9].

For each real solution p, the excitation energy and the
corresponding eigenstate are given by E2,p(k)/J = 4S� +
2(2S − 1)d − 2C̃k cos p and Vj,p = cos[(N/2 + 1 − j)p] ( j =
1, 2 . . . , N/2 − 1) [9]. For large N , these excitation lev-
els form the scattering continuum with oscillating wave
functions.

In i
⋃

ii and iii
⋃

iv
⋃

v, Eq. (2) has purely imaginary
solutions p = i p̃ (with p̃ real) satisfying [9]

tanh(N p̃/2) = θ (cosh p̃), (3)

where θ (x) ≡ −w(x)/[(Ak − x)
√

x2 − 1] (x > 1). The exci-
tation energy for each solution p̃ on (0,∞) is E2,p̃(k)/J =
4S� + 2(2S − 1)d − 2C̃k cosh p̃ < E2,p(k)/J , showing that
the excitation level lies below the continuum. The wave func-
tions of the associated BS read [9]

Vj,p̃ = cosh[(N/2 + 1 − j) p̃] ( j = 1, 2, . . . , N/2 − 1),

V0,p̃ = RV1,p̃,

VN/2,p̃ = VN/2−1,p̃/(
√

2 cosh p̃), (4)

where

R ≡ S̃Ck/(C̃k cosh p̃ − d ). (5)

Since V1,p̃ > V2,p̃ > · · · > VN/2,p̃, the state is an SI (Ex) BS if
|R| > 1 (0 < |R| < 1). The boundaries in the �-d plane that
separate the SI and Ex BSs, denoted by B1,2, are determined
by the relations R = ±1. The solutions of Eq. (3) on B1,2 are
obviously p̃B1,2 = cosh−1[d/C̃k ± S̃/(2S)].

In region iii
⋃

iv
⋃

v with Ak > 1, there is a smaller
solution of Eq. (3), xL, on (0, cosh−1 Ak ). The larger one
xR lies on (cosh−1 Ak,∞) [9]. Clearly, p̃ = 0 is the unique
(smaller) solution on C1 (C2). The minimal (maximal) value

FIG. 3. Graphs of the functions θ (x) − tanh( N
2 cosh−1 x) (red

dotted-dashed) and F (x) [blue solid, Eq. (7)] for (�, d ) = (Ck,Ck ),
(C̃k, C̃k ), (C̃k, 2C̃k ), and (2C̃k, 2C̃k ). We choose N = 52, S = 2, and
k = 4π/N ∈ K1. It can be seen that the solutions of Eq. (3) are well
approximated by the zeros of F (x) given by Eq. (7). Note that for
(�, d ) = (2C̃k, 2C̃k ) ∈ iii

⋃
iv

⋃
v there is an unphysical solution of

Eq. (6) between the two physical solutions xL and xR.

of R on C1 is reached at d = 0 (d = Ck): R(C1 )
min = S̃/(2S) < 1,

R(C1 )
max = S/S̃ � 1. Thus, C1 never intersects B1 unless S = 1;

and C2 (with R < 0) intersects B2 at (�, d ) = (C̃k + 2S̃Ck,

C̃k + S̃Ck ).
We emphasize that all the results obtained so far are exact

for finite N . Moreover, our method combining the Bloch states
and the plane-wave ansatz offers a simpler and more trans-
parent treatment of the problem than the conventional Bethe
ansatz [7,14,15], where the solutions of the associated Bethe
ansatz equations could be subtle even for S = 1/2 [14,15].

It is more desirable to get explicit expressions for the equa-
tions describing B1,2 [16]. To this end, we consider the limit
of large N and regions with C1,2 excluded, where Eq. (3) has
no solutions near p̃ = 0. We can thus use the approximation
tanh(N p̃/2) ≈ 1 for large N . Accordingly, Eq. (3) is reduced
to a cubic equation for x ≡ cosh p̃,

F (x) = 0, (6)

where

F (x) ≡ 2C̃k�x3 − (
C̃2

k + 2C̃kAk� + 2d� + �2)x2

+ 2(Akd� + Ak�
2 + C̃kd )x − (

d2 + A2
k�

2
)
. (7)

As shown in Fig. 3, for large N (here, N = 52) the zeros of
F (x) give very accurate approximations to the actual solutions
of Eq. (3). By inserting xB1,2 = cosh p̃B1,2 into Eq. (6), we
obtain the equations for B1,2:

d = [
� + C̃2

k

/
(� ± 2S̃Ck )

]/
2. (8)

Now, the curves C1,2 and B1,2 divide the �-d plane into six
regions, I and i–v (Fig. 2). In region i (ii), we have only the Ex
(SI) BS with R < 1 (R > 1). In region iii, the two solutions
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xL and xR correspond respectively to the SI (R < −1) and Ex
(R < 1) BSs, with the latter being the lowest-energy state.
In region v, xL and xR give the Ex (−1 < R < 0) and SI
(R > 1) BSs, respectively. Interestingly, in the narrow region
iv sandwiched by C2,B1, and B2, both of the two BSs are of
SI type (with R < −1 and R > 1). This region is so narrow
that it has most likely never been noticed in prior literature.
Moreover, region iv would become narrower and narrower as
k shifts to the zone edge.

Evolution of the BSs: A dynamic picture. For any con-
stant λ, the vertical line � = λCk intersects (if it does) with
C1,2 and B1,2 at d = [2S(λ − 1)/(λ − 2S)]Ck and d = [λ/2 +
2S2/(λ ± 2S̃)]Ck , indicating that the phase diagrams for dis-
tinct k’s are similar to each other. We are thus encouraged
to set the Ck for any k as unity in the same figure. This
procedure amounts to magnifying the phase diagram for k 	=
0 by a factor of 1/Ck . As a result, the variation of k is
mapped to the movement of the representative point (RP)
for (�, d ), (�̃k, d̃k ) = (�, d )/Ck , in such a rescaled diagram.
The equations for the borderlines C1,2 and B1,2 in the rescaled
diagram become C̃1,2 : (d̃k − 2S)(�̃k − 2S) = 2S̃2 and B̃1,2 :
d̃k = �̃k/2 + 2S2/(�̃k ± 2S̃) [Fig. 4(a)].

The RP for k = 0 is simply (�̃0, d̃0) = (�, d ), while the
one for k = −π is at infinity. As k decreases, the RP will
move along the half-line L�,γ : d̃k = γ �̃k , with �̃k � � and
γ ≡ d/�. A typical example for the evolution of the RPs is
illustrated by the pink half-line in Fig. 4(a), where L�,γ starts
with (�, d ) and extends to the upper-right-hand direction as
k decreases. Clearly, the evolution of the BSs depends on two
factors: the slope γ and the value of �. The former determines
the regions through which the RPs can pass and the latter fixes
the starting point. L�,γ may (if it does) intersect C̃1,2 and B̃1,2

at, respectively,

�C̃1,2
= [S(1 + γ ) ∓

√
S2(1 + γ )2 − 2γ S]/γ ,

�B̃1,2
=

√
2S2/γ̄ + S̃2 ∓ S̃, (9)

where γ̄ ≡ γ − 1/2.
We can read off the following facts from Fig. 4(a):
(a) For γ < 1/2, L�,γ does not intersect B̃1,2. If (�, d ) ∈ I,

the Ex BS emerges at k1 = −2 arccos �/�C̃1
, and a higher-

energy SI BS is developed at k2 = −2 arccos �/�C̃2
. We

would like to mention that Tonegawa obtained the same
expression for k2 using the Green’s function method [see
Eq. (3.9) there] [6]. We figuratively express the above
flow as

no BS(I) k1
⇁ Ex(i) k2

⇁

(
SI
Ex

)(iii)

, (10)

where the SI in the last term is arranged above the Ex to
indicate that it has a higher energy. If (�, d ) ∈ i, the Ex BS
exists throughout the zone and the SI BS still emerges at the
k2. If (�, d ) ∈ iii, then the Ex and SI BSs simultaneously exist
throughout the zone.

(b) For 1/2 < γ < 1/2 + S/[2(S + S̃)], L�,γ may inter-
sect C̃1, B̃1, C̃2, and B̃2 at �C̃1

< �B̃1
< �C̃2

< �B̃2
. If

(�, d ) ∈ I, the Ex BS again emerges at k1. When k further
decreases to q1 = −2 arccos �/�B̃1

, the RP enters region ii
where the single Ex BS transforms to SI type. The other higher

FIG. 4. (a) Rescaled phase diagram with coordinates (�̃k, d̃k ) =
(�, d )/Ck . The pink half-line d̃k = d�̃k/� shows a typical trajec-
tory of the representative points. (b) Evolution of the representative
points for N = 200, S = 3/2, and (�, γ ) = (1, 1) (pink diamonds),
(0.25,0.6) (green stars), (1.2,0.4) (brown squares). The parameters
are chosen in accordance with those in Fig. 1. The arrows indicate
the direction of decreasing k from k = 0 to k = −π + 4π/N (note
that representative point for k = −π is at infinity).

SI BS shows up in region iv as we lower k down to k2. As k
continues decreasing to q2 = −2 arccos �/�B̃2

, the foregoing
higher-lying SI BS becomes an Ex one after entering the final
region v. The corresponding flow is expressed as

no BS(I) k1
⇁ Ex(i) q1

⇁ SI(ii) k2
⇁

(
SI2

SI

)(iv)
q2
⇁

(
Ex
SI

)(v)

, (11)

where the SI2 stands for the second higher-energy SI BS in
region iv. A similar analysis can be applied to the cases of
(�, d ) ∈ i, ii, iv, or v.
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(c) For γ > 1/2 + S/[2(S + S̃)], L�,γ may intersect C̃1,
B̃1, C̃2 at �C̃1

< �B̃1
< �C̃2

. The flow reads

no BS(I) k1
⇁ Ex(i) q1

⇁ SI(ii) k2
⇁

(
Ex
SI

)(v)

. (12)

We now apply the above general analysis to the
examples in Fig. 1. The evolution of the RPs for
the three examples with (�, γ ) = (1, 1), (0.25,0.6), and
(1.2,0.4) are shown in Fig. 4(b). The case of (�, d ) =
(1, 1) ∈ i belongs to case (c) and the flow goes as

Ex(i) q1
⇁ SI(ii) k2

⇁ (Ex
SI )(v), with the transition point q1 =

−2 arccos 1√
3

≈ −3π/5. The higher-energy Ex BS sub-

sequently appears at k2 = −2 arccos 1
3+√

6
≈ −9π/10. For

(�, d ) = (0.25, 0.15) ∈ I we have γ = 0.6 < 3/(6 + 4
√

3),
so that it belongs to case (b). The corresponding flow
is given by Eq. (11). The first Ex BS emerges at k1 =
−2 arccos 4+√

11
20 ≈ −19π/25 and transforms to the SI BS

at q1 = −2 arccos
√

3
36 ≈ −24π/25. The RP enters region iv

at k2 = −2 arccos 4−√
11

20 ≈ −π + 4π/N , which explains the
simultaneous appearance of the two SI BSs in this mode. The
case of (�, d ) = (1.2, 0.48) ∈ i can be similarly analyzed.

For k ∈ K ′
1, the associated transcendental equation has a

different form from Eq. (2) [9]. However, the resulting phase
diagram is very close to that of k ∈ K1 and the two tend to
be identical as N → ∞ [9]. We thus achieved a complete
solution of the problem.

Conclusions. We develop a theoretical method for semian-
alytically solving the two-magnon problem in a higher-spin
XXZ chain with single-ion anisotropy. Although several

typical features of the evolution of the two-magnon bound
states with varying wave number have been observed in prior
literature, the understanding of them is limited to qualitative
explanations. By combining a set of recently constructed ex-
act two-magnon Bloch states for higher-spin chains and a
plane-wave ansatz, we are able to treat the problem as ana-
lytical as possible. Explicitly, we establish a complete phase
diagram consisting of various parameter regions that support
different types of bound states, with the phase boundaries
defined by algebraic equations. In particular, we discover a
narrow parameter region in which both of the two lowest-lying
bound states are of single-ion type. By showing that the phase
diagrams for any two different wave numbers are similar to
each other, we convert the evolution of the bound states to the
movement of a representative point for given parameters on
a rescaled phase diagram, which offers quantitative explana-
tions to the previously observed behaviors of the bound states.

Considering the spin-1 Heisenberg model with single-ion
anisotropy has recently been realized with ultracold atoms
[17], our results might be relevant to several timely research
directions such as bound-state dynamics in engineered quan-
tum spin systems [18,19] and exciton fission [20] where a
multilevel structure is relevant. Our method can be applied to
more general nearest-neighbor periodic quantum chains, e.g.,
spin chains including higher-order terms [21] and itinerant
particle systems [22,23]. In addition, two-magnon excita-
tions upon antiferromagnetic states can also be treated by the
present approach.
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