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Spin parity effects refer to those special situations where a dichotomy in the physical behavior of a system
arises, solely depending on whether the relevant spin quantum number is integral or half-odd integral. As is
the case with the Haldane conjecture in antiferromagnetic spin chains, their pursuit often derives deep insights
and invokes new developments in quantum condensed matter physics. Here, we put forth a simple and general
scheme for generating such effects in any spatial dimension through the use of anisotropic interactions, and a
setup within reasonable reach of state-of-the-art cold-atom implementations. We demonstrate its utility through
a detailed analysis of the magnetization behavior of a specific one-dimensional spin chain model, an anisotropic
antiferromagnet in a transverse magnetic field, unraveling along the way the quantum origin of finite-size effects
observed in the magnetization curve that had previously been noted but not clearly understood.
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Introduction. It often happens that a pivotal development
in quantum magnetism is triggered by the discovery of a spin
parity effect (SPE), a phenomenon in which the behavior of
a magnetic system sharply depends on the parity of twice
the spin quantum number S. The Haldane conjecture on an-
tiferromagnetic spin chains [1–3], the prime example of an
SPE, asserts that a spectral gap exists between the ground
state (GS) and excited states for integer S, whereas the cor-
responding spectrum is gapless for half-odd-integer S. While
this claim is now long established, the activity that ensued has
since evolved into themes central to present day condensed
matter physics. An example with far-reaching consequences
to quantum many-body systems is the no-go theorem of Lieb,
Schultz, and Mattis (LSM), which in its original form pro-
hibits the existence of a unique and featureless gapped GS in
an S = 1/2 Heisenberg chain [4]. Among its extensions are
those to general S [5–12], higher dimensions [13–23], various
symmetries [19–22,24–28], and electron systems [24–26,29].
The quantum dynamics of solitons [30–32] and skyrmions
[33] in chiral magnets hosting Dzyaloshinskii-Moriya interac-
tions is another active research front where SPEs have recently
been identified; there, the soliton/skyrmion states were found
to have spin-parity-dependent crystal momenta.

Given how SPEs continue to shed new light on quantum
condensed matter, it is desirable to have a generic and com-
prehensive scheme with which to generate them. The purpose
of this Letter is to put forth just such a method. Our approach
incorporates anisotropic interactions as its key element and
works in any spatial dimension, which is to be compared with
how SPEs, including those mentioned above, usually have
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dimension-specific origins. We are also motivated by rapid
theoretical [34] and experimental [35,36] progress in cold-
atom physics that have come a long way toward implementing
higher-S quantum spin systems with strong anisotropy.

To best illustrate our strategy, we apply it to a one-
dimensional (1D) quantum spin system which has the merit
of (1) being amenable to detailed analysis and (2) exhibiting
a clear SPE that manifests itself in raw finite-size numerical
data. Feasibility aside, this problem turns out to be interesting
in its own rights: The finite-size effect studied, while long
known, has a topological significance (in the sense of Haldane
[37]) that had gone unnoticed. The anisotropy-induced SPE in
this model is nontrivial in that it evades detection by LSM-
type arguments. Finally, it can be considered an immediate
target for cold-atom implementations. Generalizations to a far
wider range of quantum magnets will be discussed afterwards.

Model and exact diagonalization. The Hamiltonian of our
choice is

Ĥ = J
L∑

j=1

Ŝ j · Ŝ j+1 − H
L∑

j=1

Ŝz
j + K

L∑
j=1

(
Ŝy

j

)2
. (1)

The J (> 0) and H terms are the exchange and Zeeman inter-
actions, respectively, while the K (� 0) term is an easy-plane
single-ion anisotropy. L stands for the number of sites. We
impose a periodic boundary condition, with the system always
consisting of an even number of sites.

We display in the first two rows of Fig. 1 how the GS
expectation value of the magnetization, mz := 1

L

∑L
j=1 〈Ŝz

j〉GS
,

evolves as a function of H . Here, J is set to unity. The numer-
ical exact diagonalization was performed for various values
of S with the use of QuSpin [38–40]. Numerics for other
parameter choices are given in the Supplemental Material
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FIG. 1. Magnetization mz vs magnetic field H curves obtained by numerical calculations. L is set to 8 for all panels. The violet and green
lines represent that the GS has crystal momenta 0 and π , respectively. Top and middle panels: Results for zero and large anisotropy in the
original model. Bottom panels: Results in the XYX model that are obtained by the mapping for large K and half-odd-integer spins.

(SM) [41]. The jumps in the magnetization are due to level
crossings (LCs) between the GS and the first excited state;
such features had been noted [63–66] but not fully understood.
We find that they are accompanied by the alternation in the
GS’s crystal momentum between two values, 0 (violet) and
π (green). Furthermore, a marked difference in behavior was
found depending on the magnitude of K . This is summarized
in the tabular information below, where we indicate by Nc the
number of LCs:

Nc Odd 2S Even 2S
K = 0, small K LS LS

K � J L/2 0
(2)

When K is small or zero the jumps are present irrespective of
the spin parity, while in the strongly anisotropic regime K �
J they manifest themselves only when S is a half-odd integer.
We discuss the two cases in turn.

K = 0: XX model and Tomonaga-Luttinger liquid (TLL).
Our objective here is to explain the LCs with Nc = LS be-
tween the 0- and π -momentum states for K = 0 (top panels
in Fig. 1). Before dealing with the full model Eq. (1), it is
instructive to warm up with the spin-1/2 XX model, ĤXX =
J

∑L
j=1(Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1) − H

∑L
j=1 Ŝz

j , which allows for an
intuitive understanding of the momentum switching. The
Jordan-Wigner (JW) transformation [67] maps this model into
a noninteracting spinless fermion,

ĤXX =
L∑

l=1

(J cos kl − H )â†
kl

âkl + LH

2
, (3)

where âkl is the annihilation operator of the JW fermion
carrying momentum kl . The Hamiltonian commutes with the
fermion number operator N̂a := ∑L

l=1 â†
kl

âkl , where the sum
is taken over kl = (2l − 1)π/L when Na is even, while kl =
2(l − 1)π/L for odd Na. Block-diagonalizing ĤXX within
eigensectors of N̂a, we show in Fig. 2(a) the energy eigen-
values ENa (H ) as a function of H , where plots for even (odd)
Na are colored in violet (green). As the magnetic field H is

ramped up the GS eigenvalue of N̂a increases by unit incre-
ments which translates back to the number of up spins in
the original model, N̂a = Ŝz

tot + L/2, where Ŝz
tot = ∑L

j=1 Ŝz
j .

We depict the cosine term in Eq. (3) for Na = 4 and 5 in
Figs. 2(b) and 2(c), respectively. Clearly the total momentum
ktot := 〈∑L

l=1 kl â
†
kl

âkl 〉 (mod 2π ) is zero for even Na, and π

for odd Na. Returning now to the Heisenberg model Eq. (1)
with K = 0, this momentum-counting argument no longer ap-
plies as the

∑L
j=1 JŜz

j Ŝ
z
j+1 term generates interactions between

the JW fermions. Using the Bethe ansatz, however, the total
momentum ktot can be shown to remain unaffected, despite
the phase shift each momentum kl receives from particle scat-
tering [41,68]. Whether the GS momentum is 0 or π is thus
determined solely by the parity of the number of up spins.

The preceding argument was limited to S = 1/2. To gener-
alize to arbitrary spin, we incorporate the powerful machinery
of the TLL theory, known to correctly capture (for higher S
cases as well) the behavior of the gapless, linear dispersion
of the K = 0 model, i.e., the Heisenberg model under an
applied magnetic field. In this framework, a low-energy ex-
cited state is fully characterized by a quartet of integer-valued
quantum numbers: �N (charge excitation), �D (current

FIG. 2. (a) Energy eigenvalues of the spin-1/2 XX chain with
L = 8 for each N̂a sector. Momentum-energy relations for H = 0 in
the sectors with Na = 4 and 5 are shown in (b) and (c), respectively.
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FIG. 3. Energy dispersions of the spin-1/2 Heisenberg chain
with L = 24 for (a) H/J = 0 and (b) 1. In both panels, the GS
is positioned at (�E ,�k) = (0, 0), and the other points show the
spectrum of excited states. Each blue (red) point represents the spec-
trum in the �Sz

tot = �N = 0 (1) sector. Sets of quantum numbers
(�N,�D, N+, N−) are shown for some characteristic points. The
translucent lines are guides for the eyes.

excitation), and N± (right/left-moving particle-hole pair). The
corresponding energy eigenvalue and momentum are given by
[69]

�E = 2πv

L

[
(�N )2

4KL
+ KL(�D)2 + N+ + N−

]
+ μ�N,

(4)

�k = 2πρ�D + 2π

L
[�N�D + N+ − N−] + π�N, (5)

where KL, v, μ, and 2πρ are each the Luttinger liquid param-
eter, the excitation’s velocity, the chemical potential, and the
intrinsic momentum [70,71]. The last term in Eq. (5) arises
from antiferromagnetic correlations inherent to our lattice
model; retaining it on taking the continuum limit is cru-
cial. The only quantum number coupling to a magnetic field
is �N ; it then follows that the state (�N,�D, N+, N−) =
(1, 0, 0, 0), which amounts to a change in momenta by �k =
π , always becomes the next GS as the field is increased. The
quantity 〈Ŝz

tot〉GS, which is conserved when K = 0, increases
by one each time a crossover with �N = 1 takes place.
Accordingly the value of 〈Ŝz

tot〉GS undergoes the sequence:
0 → 1 → · · · → LS. This is in agreement with the relation
Nc = LS [Eq. (2)], which we extracted from the magnetization
processes in the top panels of Fig. 1.

Figures 3(a) and 3(b) show in full detail the energy dis-
persions of the spin-1/2 Heisenberg model, which we use
to check the validity of the above picture. States for which
�Sz

tot := 〈Ŝz
tot〉 − 〈Ŝz

tot〉GS (= �N ) is 0 and 1 are each plotted
as blue and red points. The low-energy spectrum contains
conformal towers, located at k = 0,±2πρ for �Sz

tot = 0 (blue
lines), and at k = π, π ± (2πρ + 2π/L) for �Sz

tot = 1 (red
lines). The results are consistent with Eqs. (4) and (5); in
particular, ρ is equal to 1/2 for the “half-filling” case H = 0
[cf. Fig. 2(b)].

Z2 symmetry and crystal momentum. We proceed to
nonzero K cases, where Ŝz

tot is not conserved. We can still

FIG. 4. Energy levels of the K model on the jth site. The GS
degeneracy is two (one) in odd-2S (even-2S) systems.

take advantage of a discrete Z2 × ZT
2 symmetry of the Hamil-

tonian of Eq. (1), where the unitary part is generated by
Ẑ := ⊗L

j=1 eiπ (S−Ŝz
j ), i.e., a π rotation of all spins with respect

to the z axis. Noting that Ẑ2 = 1 for any S, the Hamiltonian
can be block diagonalized into sectors labeled by the Z2

values Ẑ = ±1: Ĥ = Ĥ(+) ⊕ Ĥ(−). The following is true for
arbitrary positive values of K :

Theorem 1. When the GS of the Hamiltonian Eq. (1) is a
simultaneous eigenstate with Ẑ = +1 (−1), it has a crystal
momentum 0 (π ).

A sketch of the proof goes as follows; the full details
are given in the SM [41]. Let |m〉 := |m1m2 · · · mL〉 (mj =
−S,−S + 1, . . . , S) be the usual spin basis such that Ŝz

j |m〉 =
mj |m〉. Introducing a signed basis |m̃〉 := (−1)δ(m) |m〉 with
δ(m) := ∑L

j=1 j(S − mj ), one can show that (i) off-diagonal
elements of the Hamiltonian are nonpositive, and (ii) both
eigensectors with Ẑ = ±1 are irreducible. From (i) and
(ii), the Perron-Frobenius theorem [72,73] applied to the
Hamiltonian block Ĥ(±) leads to the uniqueness of the GS
in each eigensector given by |� (±)

GS 〉 = ∑
m∈V (±) a(m) |m̃〉,

where a(m) > 0 and V (±) := {m | Ẑ |m̃〉 = ± |m̃〉}. Fur-
ther, the one-site translation operator T̂ affects the sign of
the basis: (−1)δ(T̂ (m)) = (−1)

∑
j (S−mj )(−1)δ(m) = Ẑ (−1)δ(m).

Combining these, a little algebra shows that T̂ |� (±)
GS 〉 =

±|� (±)
GS 〉.

Theorem 1 implies that the LCs between 0- and π -
momentum states are characterized by the parity switching of
Ŝz

tot , although Ŝz
tot itself is in general not conserved. Moreover,

as long as Ẑ is preserved, the LCs can survive even when the
translation symmetry is broken.

Large K: Perturbation theory. We now address the SPE
arising at large K (middle panels in Fig. 1). This can be
understood in terms of a perturbation theory applicable for
K � J, H . The nonperturbative Hamiltonian is just Ĥ0 =
K

∑L
j=1(Ŝy

j )
2, which reduces to a single-site problem: Re-

membering that K is positive, the GS of Ĥ0 is just a product
state of doublets |Sy

j = ± 1
2 〉 residing on each site when S is a

half-odd integer. Meanwhile a unique GS |Sy
j = 0〉 is formed

for integer S (Fig. 4). Since the magnitude of the energy gap
from the GS is of order O(K ), excited states are negligible in
discussing the large-K physics. In other words, at low energies
our model in the large-K limit translates into effective spin-0
and spin-1/2 systems for integer and half-odd-integer S cases,
respectively [74]. In the former case, the GS is unique and
trivial even when the perturbation Ĥ − Ĥ0 is switched on, as
long as K � J, H is satisfied, explaining the absence of LCs.
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This GS can be identified with the so-called large-D phase, a
gapped phase known to be topologically trivial [75–79].

The situation is quite different in half-odd-integer spin
cases owing to the GS degeneracy of the nonperturba-
tive Hamiltonian. Working within a first-order perturbation
scheme, we derive the following effective spin-1/2 XYX
model,

Ĥmap = J̃
L∑

j=1

(
ŝx

j ŝ
x
j+1 + �ŝy

j ŝ
y
j+1 + ŝz

j ŝ
z
j+1

) − H̃
L∑

j=1

ŝz
j, (6)

where ŝ j is the effective spin-1/2 operator on the jth site; see
the SM for derivations [41]. The coefficients are defined as
J̃ := J/�, H̃ := H/

√
� with � := (S + 1/2)−2. Notice that

the single-ion anisotropy of the original Hamiltonian has ef-
fectively transformed here into an anisotropy of the exchange
interaction. Numerical calculations for Ĥmap are shown in the
bottom panels of Fig. 1, where we find a good agreement
between the obtained magnetization curve in the low-field
regime with those of the original model (middle panels of
Fig. 1). This reduction to effective spin-1/2 systems naturally
explains the entry Nc = L/2 in Eq. (2).

Generalization to higher dimensions and implementation.
Crucially one notices that anisotropy-induced SPEs are not
specific to our model, Eq. (1): In the presence of a dominant
K term, the spectrum always reduces to Fig. 4 in the large-K
limit, regardless of the spatial dimension D, the lattice geome-
try, or the Hamiltonian itself. Our perturbative scheme applies
therefore to a much wider variety of spin systems.

Consider how this works for nearest-neighbor Heisenberg
models on D-dimensional hypercubic lattices in the absence
of external fields. As in D = 1, the spectral gap ∼O(K ) re-
mains robust for integer spins, while the low-energy physics
of the half-integer spin systems are represented by effective
spin-1/2 XYX models. The latter spontaneously breaks the
spin rotation symmetry around the y axis, accompanied by a
gapless Nambu-Goldstone mode.

Though new features arise, this SPE persists when terms
which disrupt spin ordering (e.g., frustrated exchange and
four-body interactions) are added. A trivially gapped state
continues to form for integer spins, whereas the effective
spin-1/2 model for the half-odd-integer spin case can now
also sustain a degenerate spin-Peierls state [57,80–83] as well
as a topologically ordered phase (see the SM for digressions
[41]).

Somewhat surprisingly, this dichotomy arises even under con-
ditions where the LSM theorem [4–29] predicts no SPE. The
foregoing discussion on Eq. (1), a 1D model with only an
on-site Z2 × ZT

2 symmetry, in fact serves as an example of
this highly nontrivial case. A dominant K term thus constitutes
a simple but powerful point of departure for creating SPEs.

Finally, we comment on the implications for experiments.
Higher-S systems of finite size are becoming accessible with
recent cold-atom technologies. Indeed, the 1D Hamiltonian
Eq. (1), at least for S = 1, has recently been implemented in
ultracold 87Rb atoms in an optical lattice, where the single-ion
anisotropy is controllable [35,36]. Although ferromagnetic
correlations were realized in these experiments, it is possible
to make them antiferromagnetic by using negative tempera-
ture states [84,85]. There are also reasons to anticipate the
relevance of our approach to magnetic materials as well. No-
tably, our numerical results show that SPEs persist even when
K and J are of the same order (see Fig. S1 in SM [41]), a
regime better suited for materials search. Moreover, we expect
traces of the SPE to be detectable in the thermodynamic limit,
to which actual materials correspond: Half-odd-integer spin
systems would exhibit a small hysteresis in the magnetiza-
tion curve due to the dense LCs, as observed in a classical
chiral magnet [86]. This is not the case with integer spin
systems.

Summary. We analyzed an antiferromagnetic spin chain
with easy-plane anisotropy, focusing on LCs between states
with momenta 0 and π which alternately appear as a trans-
verse magnetic field is increased. At zero or small anisotropy
the LCs were accounted for using TLL theory and exact sym-
metry arguments. At strong anisotropy the LCs occur only
for half-odd-integer spins. We showed how the latter is a
realization of a very generic anisotropy-induced SPE, whose
implementation is likely within reach of cold-atom technolo-
gies and magnetic materials science.
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