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Determination of the Néel vector in rutile altermagnets through x-ray magnetic
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We present a numerical simulation of x-ray magnetic circular dichroism (XMCD) at the L2,3 edge of Mn in a
representative rutile altermagnet MnF2 using a combination of density functional theory plus exact diagonaliza-
tion of the atomic model. We explore how the dichroic spectra vary with the orientation of the light propagation
vector and the Néel vector. An exact relationship between the XMCD spectra for different orientations of the
Néel vector, valid in the absence of the valence spin-orbit coupling and core-valence multipole interaction, is
derived and its approximate validity for the full Hamiltonian verified by numerical calculation. This relationship
allows one to determine the in-plane orientation of the Néel vector using the XMCD spectra alone.
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Introduction. Altermagnets, a new species on the mag-
netism evolutionary tree, have split from antiferromagnets
recently [1,2]. Owing to their space-group symmetry, al-
termagnets facilitate the presence of spin-polarized bands
[1–11], anomalous Hall effect [5,9,12–17], odd magneto-
optical effects [14,18,19], and a number of other phenomena
[20] with odd Néel vector dependence. The key element
is the rotational or mirror symmetry, which links atoms on
the distinct magnetic sublattices. This is different from the
translational or inversion symmetry seen in conventional anti-
ferromagnets and results in time-reversed states with opposite
Néel vectors being macroscopically distinct. The orientation
of the Néel vector, including its sign, is thus an important
question. Here, we show that the x-ray magnetic circular
dichroism (XMCD) alone can answer it in some structures.

Much of the early studies on altermagnetism focused on
RuO2 [3,21–24], a metal with the rutile structure. Despite a
considerable theoretical and experimental effort the altermag-
netism of RuO2 is far from understood, as the magnetic order
in a bulk RuO2 remains controversial [25–28]. Moreover a
large magnetic field is needed to tilt the magnetic moments
away from the [001] easy-axis direction in order to allow
finite odd magneto-optical effects such as circular dichroism
[18,29] or the anomalous Hall effect [21].

These effects are facilitated by the spin-orbit coupling
(SOC), which allows the spin long-range order of non-
relativistic origin to influence the current response, observed
in transport and optical experiments. However, SOC acts also
in the reverse direction. The coupling of spins to the current
breaks the spin SU(2) symmetry, leading to magnetocrys-
talline anisotropy or possibly inducing weak ferromagnetism
as a result of canting of the local moments [30]. The latter
disturbs the fully compensated magnetic state of an altermag-
net and must be taken into account in the analysis of the
experimental data [21]. XMCD takes advantage of SOC being
naturally separated into a dominant core SOC and a minor

valence SOC. The latter may give rise to a weak ferromagnetic
XMCD signal, but its contribution to the XMCD spectra in
lighter elements such as 3d metals is marginal [19,31].

Given the aforementioned uncertainty concerning the mag-
netism of RuO2 [27] it is desirable to establish the behavior
of XMCD in an isostructural material that possesses a well-
established magnetic order. MnF2 is a perfect candidate [6].
It crystallizes in the rutile structure, see Fig. 1, and its mag-
netism has been thoroughly studied. The antiferromagnetic
order sets in at around 67 K [32] with magnetic moments
along the [001] direction [33–35] similarly to RuO2. In con-
trast to the metallic RuO2, MnF2 is a Mott insulator where
the Mn2+ configuration gives rise to a large spin moment of
S ≈ 5/2 and an orbital singlet. Together with a small SOC in
the 3d shell this results in a weak single-ion anisotropy. When
a strong enough magnetic field is applied along the [001]
direction, the moments reorient themselves perpendicularly
to it, that is, into the ab plane. Meanwhile, the sublattice
magnetizations stay antiparallel to each other with a slight tilt
towards the field direction. The field required for this spin-flop
transition is around 9 T [35,36]. The direction of the Néel
vector within the ab plane is unknown.

Methods. We perform a density functional theory (DFT)
calculation for the experimental structure of MnF2 [37] using
the WIEN2K package [38]. The crystal field within the Mn 3d
shell is derived from the DFT bands using the WANNIER90
and WIEN2WANNIER packages [39,40], see the Supplemen-
tal Material (SM) for the computational details [41]. Since
MnF2 is a large-gap Mott insulator, the Mn2+ atomic model
adequately accounts for the Mn L2,3-edge x-ray absorption
spectroscopy (XAS) spectrum dominated by the intra-atomic
multiplet effects as shown by the early studies by de Groot
et al. [42]. Recent experimental and theoretical work on iso-
electronic MnTe [19], which employed both the atomic model
as well as the dynamical mean-field theory, came to the same
conclusion. Therefore we use the atomic model where the
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FIG. 1. The rutile structure of MnF2 with various orientations of
local spin moments.

lattice information is encoded in the sublattice-dependent
crystal field. The staggered spin polarization described by the
Néel vector L = S1 − S2 is generated in the simulation by
adding a Zeeman field of 0.01 eV in the desired direction,
which is sufficient to achieve the saturated moment of approx-
imately 5μB. We use a Hund’s coupling constant J = 0.86 eV,
which is standard for Mn2+ systems [19,43]. We include SOC
in the Mn 2p and 3d shells and incorporate the Slater integrals
for the 2p-3d core-valence interaction, following the atomic
Hartree-Fock calculation as described in Refs. [44,45]. More
details can be found in the Supplemental Material (SM) [41].

The XMCD spectrum �F (ω) = F+(ω) − F−(ω) is the
difference of the absorption spectra for the right and left
circularly polarized light propagating along the direction k̂,
obtained by the Fermi golden rule

F±(ω; k̂, L) =
∑

f

|〈 fL|T̂ ±
k̂

|iL〉|2δ(ω − E f i;L). (1)

Here |iL〉 and | fL〉 are the eigenstates of the Hamiltonian,
E f i;L is the excitation energy [46], and T̂ ±

k̂
are the dipole

operators for the right- and left-hand polarization with respect
to the propagation vector k̂ [47]. Thanks to the immobility of
the core hole the x-ray absorption spectrum is a sum over
the site contributions. In the dipole approximation the depen-
dence on L and k̂ has the form �F (ω; k̂, L) = 2 Im hL(ω) · k̂.
The axial vector h(ω) = (σ a

zy(ω), σ a
xz(ω), σ a

yx(ω)), represent-
ing the antisymmetric part of the conductivity tensor σ(ω), is
the finite frequency equivalent of the Hall vector [1,18,48].

Results. Symmetry of the rutile structure [5,18] implies
that XMCD is not allowed for L ‖ c, i.e., h = 0. However,
it is allowed if L has a finite projection in the ab plane.
First, we consider an idealized situation with magnetic mo-
ments entirely in the ab plane, i.e., L ⊥ c and m1 + m2 = 0.
Figure 2 shows the XAS and XMCD spectra at the Mn L2,3

edges calculated for the Néel vectors L̂ = [110] and [010].
The corresponding Hall vectors are parallel (ĥ = [110]) and

FIG. 2. The XAS calculated for the two circular polarizations
(red and blue) at the Mn L2,3 edge together with the XMCD inten-
sities (shaded) for different orientations of the Néel vector L and
x-ray propagation vector k. The calculated spectral intensities are
broadened by a Lorentzian of 0.15 eV (HWHM). The experimental
Mn L2,3-edge XAS spectrum taken from Ref. [42] is shown for
comparison (the experimental baseline was offset for the sake of
clarity.)

perpendicular (ĥ = [100]) to L, respectively [18]. The spectra
for ĥ = [001] can be found in SM [41]. The XAS line shape
agrees well with the experimental data [42]. Relatively large
XMCD intensities are predicted at both the Mn L2 and L3

edges in the present theory; see Figs. 2(a) and 2(b).
The similarity of the spectra in Figs. 2(a) and 2(b) is not

accidental. As shown in Ref. [18] the two spectra are related
by symmetry if the valence SOC and the multipole part of
the core-valence (CV) interaction are neglected. This raises
questions about the general orientation of L in the ab plane.
In the following we extend the analysis of Ref. [18] and
show that there is a unique relationship between the in-plane
orientation of the Néel vector L and the XMCD spectrum
characterized by the Hall vector hL(ω). By reversing this
relationship, the measured hL(ω) can be used to determine
an unknown orientation of L in the sample.

In the absence of the valence SOC and the CV interaction,
the valence spin is decoupled from the rest of the system.
The states (including excited states) corresponding to different
orientations of L are related by a valence spin rotation. Fol-
lowing Ref. [18] we fix the coordinate system so that x̂ = k̂
and ẑ = [001] (see SM [41]) and use dipole operators in the
helicity basis along ẑ, which is also the quantization axis for
spin. Equation (1) for these coordinates becomes [49]

�F (ϕ, α) =
∑

f

〈 fϕ,α|T̂ + − T̂ −|iϕ,α〉〈iϕ,α|T̂ 0| fϕ,α〉

× δ(ω − E f i ) + c.c.

≡ (T + − T −)T 0 + c.c., (2)

where the angles ϕ and α capture the orientation of the MnF6

octahedra and the local moment, respectively, relative to the
light propagation vector k̂. The dependence of the single site
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FIG. 3. The orientation of the Hall vector h (black arrow) and
the local spin moments (blue arrows) in the ab plane of the rutile
structure.

XMCD on ϕ and α has a simple form [18,41],

�F (ϕ, α) = (eiαT +
↑ − e−i(2ϕ−α)T −

↑ )T 0
↓

+ (ei(2ϕ−α)T +
↓ − e−iαT −

↓ )T 0
↑ + c.c. (3)

Upon summation over the two Mn sites we get

1

2

[
�F (ϕ, α) + �F

(
ϕ + π

2
, α + π

)]

= ei(2ϕ−α)T +
↓ T 0

↑ − e−i(2ϕ−α)T −
↑ T 0

↓ + c.c.

= A(ω) cos(2ϕ − α), (4)

where the bottom line comes from the fact that (4) must vanish
for ϕ = 0 and α = π

2 . In Fig. 4 we check the validity of (4) by
an explicit numerical calculation.

Equation (4) has a simple geometrical interpretation. If
one starts with L pointing along [110] or [11̄0] and rotates it
around the c axis, the corresponding Hall vector h(ω) rotates
by the same angle in the opposite direction [see Fig. 3(b)],
while its ω dependence remains unchanged, i.e., ĥ is a mirror
image of L̂ with respect to the (110) or (11̄0) plane [50]:

hL(ω) = A(ω)ĥ = A(ω)M[110]L̂. (5)

Note the geometrical meaning of ĥ as the direction of light
propagation for which the XMCD signal is maximal. This
formula applies to any structure with the magnetic sublattices
related by a fourfold rotation axis and another rotation axis
perpendicular to it, which determines the zero of ϕ in (4).
Without the latter condition an additional B(ω) sin(2ϕ − α)
contribution to (4) may appear.

Next, we assess the validity of Eq. (4) in the presence of
both the valence SOC and the CV interaction. To this end we
vary the orientation of L within the ab plane and compute the
XMCD spectra for k̂ = L̂ and k̂ = L̂ × ẑ. This corresponds

(a) (b)

(c) (d)

(e) (f)

FIG. 4. The Mn L3-edge XMCD intensities calculated for vari-
ous angles ϕ, with 0◦ and 45◦ corresponding to L̂ = [110] and [010],
respectively. The valence SOC and CV interaction are switched off
in (a), (b). The XMCD intensities in panels (a), (b) collapse onto a
single curve upon division by cos(2ϕ) and sin(2ϕ), respectively, as
required by (4). In (c), (d) the same spectra as in (a), (b) calculated
with full Hamiltonian are shown. Panels (e), (f) show the spectra
from (c), (d) divided by cos 2ϕ and sin 2ϕ, respectively.

to varying ϕ while fixing α = 0 and α = 90◦, respectively, in
Eq. (4). Without the valence SOC and the CV interaction the
numerical XMCD spectra perfectly follow cos 2ϕ and sin 2ϕ

dependencies given by (4); see Figs. 4(a) and 4(b). With the
valence SOC and the CV interaction turned on, the XMCD
spectra in Figs. 4(c) and 4(d) still follow the cos 2ϕ and
sin 2ϕ dependencies to a good accuracy. This is demonstrated
in Figs. 4(e) and 4(f) by dividing the spectra with cos 2ϕ

and sin 2ϕ, respectively, which leads to a collapse on almost
identical curves. It is not clear to us why the rescaled spectra
group into two groups, i.e., why the differences between the
curves within the panels (e) and (f) are smaller than the differ-
ence between the panels. We can conclude that, although not
exact, Eq. (5) is rather fulfilled even for the full Hamiltonian
including the valence SOC and the CV interaction.

Although the easy axis of MnF2 is parallel to [001], the
Néel vector L can be flopped into the ab plane by a field of
9–10 T [35,36] along the c axis, which causes a small canting
of the Mn moments S1 and S2 into the [001] direction. The net
magnetization along the c axis for fields close to the spin-
flop transition was estimated to be μz = 0.3μB and 0.5μB in
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FIG. 5. The XMCD intensities at the Mn L2,3 edge for (left)
x-ray propagation vector k̂ = [110] and (right) k̂ = [001] for the
Neél vector L̂ = [110] with a small tilt of the Mn magnetic moment
along the z axis of μz = 0.3μB at Mn1 (top) and μz = 0.5μB at
Mn2 (middle). The total XMCD intensities are shown in the bottom
panels.

the two Mn sites [35]. In Fig. 5(a), we simulate the effect
of canting on the XMCD spectra for L̂ = [110]. The net
magnetization along the c axis gives rise to a finite hz com-
ponent of the Hall vector. The magnitude of XMCD for k̂ =
[001] in Fig. 5(b) is comparable to the purely altermagnetic
effect for k̂ = [110] despite the out-of-plane component of
the local magnetic moments being an order of magnitude
smaller than the in-plane one. Similarly to the experimental
observation on MnTe [19] the altermagnetic (k̂ = [110]) and
ferromagnetic (k̂ = [001]) components of the XMCD spectra
exhibit distinct shapes. This result can be used to estimate the
impact of potential misalignment in an experimental setup.

Finally, we calculate the linear dichroism (XMLD) in
Fig. 6, which provides the standard x-ray spectroscopic tool to
determine the direction of the Néel vector in antiferromagnets
[51,52], but which cannot distinguish the Néel vectors with
opposite orientation, which are of particular interest in alter-
magents. Our aim is to show the distinct profiles of the XMLD
and XMCD spectra, which facilitates the identification and
removal of any potential signal contamination arising from
imperfect polarization in an experimental implementation.

Discussion. Next, we compare XMCD in the spin-flopped
phase of MnF2 and α-MnTe. Both compounds are S = 5/2
altermagnetic Mn2+ insulators and the presence or absence
of the effect as well as the orientation of the XMCD Hall
vector h depends on the orientation of the Néel vector L,
but behaves differently when L is rotated in the ab plane.
In α-MnTe, h points along the c axis and changes sign when

FIG. 6. The XMLD intensities at the Mn L2,3 edge for the x-ray
propagation vector k̂ = [001] and the Néel vector L̂ = [110] (left)
and L̂ = [010] (right). The XMLD is defined for the two x-ray
polarization vectors ε ‖ [110] (red) and ε ‖ [110] (blue). A small tilt
of the Mn magnetic moment along the z axis with the values (μz)
indicated in the panels is considered in the simulation. The total
XMLD intensities are shown in the bottom panels.

rotating L, vanishing at six nodal points [16,19]. In MnF2, the
shape of XMCD spectrum remains approximately unchanged,
but h rotates in the ab plane in the opposite sense to the
rotation of L. In both compounds the valence SOC has a minor
impact on the XMCD spectra. On the other hand, the role of
CV multipole interaction is very different due to the different
symmetries of the crystal fields in the two compounds.

In α-MnTe, with h ⊥ L geometry, XMCD completely van-
ishes if the valence SOC and the CV interaction are absent.
This is caused by the presence of local (threefold) rotation axis
parallel to h as explained in Ref. [19]. The h ⊥ L geometry
takes place also in MnF2 for L ‖ [100]; however, there is no
local rotation axis parallel to h in this case, and there XMCD
is allowed even if the valence SOC and the CV interaction are
absent. These terms modify the shape of the spectra, Fig. 4,
but do not change the magnitude of XMCD substantially.
Therefore the key interaction for the appearance of XMCD
in α-MnTe is a mere perturbation in MnF2. Different origin of
the XMCD is also reflected in the XMCD magnitudes, which
in MnF2 is about five times larger than in α-MnTe.

We have studied the x-ray magnetic circular dichroism in
the spin-flop phase of MnF2. Using an approximate symmetry,
we have found a simple relationship between the light prop-
agation vector maximizing the XMCD, ĥ, and the in-plane
Néel vector L in the rutile structure, which allows a unique
determination of L from the angular dependence of XMCD.
Comparing MnF2 and α-MnTe, we have shown that even in
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isoelectronic compounds XMCD may originate in different
terms in the Hamiltonian depending on their symmetries.
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K. Geishendorf, Z. Šobáň, G. Springholz, K. Olejník, L.
Šmejkal, J. Sinova, T. Jungwirth, S. T. B. Goennenwein, A.
Thomas, H. Reichlová, J. Železný, and D. Kriegner, Sponta-
neous anomalous Hall effect arising from an unconventional
compensated magnetic phase in a semiconductor, Phys. Rev.
Lett. 130, 036702 (2023).

[17] M. Naka, Y. Motome, and H. Seo, Anomalous Hall effect in an-
tiferromagnetic perovskites, Phys. Rev. B 106, 195149 (2022).

[18] A. Hariki, Y. Takahashi, and J. Kuneš, X-ray magnetic circular
dichroism in RuO2, Phys. Rev. B 109, 094413 (2024).

[19] A. Hariki, A. Dal Din, O. J. Amin, T. Yamaguchi, A. Badura,
D. Kriegner, K. W. Edmonds, R. P. Campion, P. Wadley, D.
Backes, L. S. I. Veiga, S. S. Dhesi, G. Springholz, L. Šmejkal,
K. Výborný, T. Jungwirth, and J. Kuneš, X-ray magnetic cir-
cular dichroism in altermagnetic α-MnTe, Phys. Rev. Lett. 132,
176701 (2024).

[20] H. Watanabe, K. Shinohara, T. Nomoto, A. Togo, and R.
Arita, Symmetry analysis with spin crystallographic groups:
Disentangling effects free of spin-orbit coupling in emergent
electromagnetism, Phys. Rev. B 109, 094438 (2024).

[21] Z. Feng, X. Zhou, L. Šmejkal, L. Wu, Z. Zhu, H. Guo, R.
González-Hernández, X. Wang, H. Yan, P. Qin, X. Zhang, H.
Wu, H. Chen, Z. Meng, L. Liu, Z. Xia, J. Sinova, T. Jungwirth,
and Z. Liu, An anomalous Hall effect in altermagnetic ruthe-
nium dioxide, Nat. Electron. 5, 735 (2022).

[22] S. W. Lovesey, D. D. Khalyavin, and G. van der Laan, Magnetic
properties of RuO2 and charge-magnetic interference in Bragg
diffraction of circularly polarized x-rays, Phys. Rev. B 105,
014403 (2022).

[23] H. Bai, L. Han, X. Y. Feng, Y. J. Zhou, R. X. Su, Q.
Wang, L. Y. Liao, W. X. Zhu, X. Z. Chen, F. Pan, X. L.
Fan, and C. Song, Observation of spin splitting torque in a
collinear antiferromagnet RuO2, Phys. Rev. Lett. 128, 197202
(2022).

[24] Y. Guo, J. Zhang, Z. Zhu, Y.-y. Jiang, L. Jiang, C. Wu, J. Dong,
X. Xu, W. He, B. He, Z. Huang, L. Du, G. Zhang, K. Wu, X.
Han, D.-f. Shao, G. Yu, and H. Wu, Direct and inverse spin
splitting effects in altermagnetic RuO2, Adv. Sci. 11, 2400967
(2024).

[25] T. Berlijn, P. C. Snijders, O. Delaire, H.-D. Zhou, T. A. Maier,
H.-B. Cao, S.-X. Chi, M. Matsuda, Y. Wang, M. R. Koehler,
P. R. C. Kent, and H. H. Weitering, Itinerant antiferromagnetism
in RuO2, Phys. Rev. Lett. 118, 077201 (2017).

[26] Z. H. Zhu, J. Strempfer, R. R. Rao, C. A. Occhialini, J.
Pelliciari, Y. Choi, T. Kawaguchi, H. You, J. F. Mitchell, Y.
Shao-Horn, and R. Comin, Anomalous antiferromagnetism in
metallic RuO2 determined by resonant x-ray scattering, Phys.
Rev. Lett. 122, 017202 (2019).

L100402-5

https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevB.99.184432
https://doi.org/10.7566/JPSJ.88.123702
https://doi.org/10.1126/sciadv.aaz8809
https://doi.org/10.1103/PhysRevB.102.014422
https://doi.org/10.1103/PhysRevMaterials.5.014409
https://doi.org/10.1103/PhysRevB.102.144441
https://doi.org/10.1073/pnas.2108924118
https://doi.org/10.1103/PhysRevX.12.021016
https://arxiv.org/abs/2105.12738
https://doi.org/10.1038/s41578-022-00430-3
https://doi.org/10.1063/5.0005017
https://doi.org/10.1103/PhysRevB.102.075112
https://doi.org/10.1103/PhysRevB.103.L180407
https://doi.org/10.1103/PhysRevLett.130.036702
https://doi.org/10.1103/PhysRevB.106.195149
https://doi.org/10.1103/PhysRevB.109.094413
https://doi.org/10.1103/PhysRevLett.132.176701
https://doi.org/10.1103/PhysRevB.109.094438
https://doi.org/10.1038/s41928-022-00866-z
https://doi.org/10.1103/PhysRevB.105.014403
https://doi.org/10.1103/PhysRevLett.128.197202
https://doi.org/10.1002/advs.202400967
https://doi.org/10.1103/PhysRevLett.118.077201
https://doi.org/10.1103/PhysRevLett.122.017202


HARIKI, OKAUCHI, TAKAHASHI, AND KUNEŠ PHYSICAL REVIEW B 110, L100402 (2024)

[27] A. Smolyanyuk, I. I. Mazin, L. Garcia-Gassull, and R. Valentí,
Fragility of the magnetic order in the prototypical altermagnet
RuO2, Phys. Rev. B 109, 134424 (2024).

[28] M. Hiraishi, H. Okabe, A. Koda, R. Kadono, T. Muroi, D. Hirai,
and Z. Hiroi, Nonmagnetic ground state in RuO2 revealed by
muon spin rotation, Phys. Rev. Lett. 132, 166702 (2024).

[29] N. Sasabe, M. Mizumaki, T. Uozumi, and Y. Yamasaki, Ferroic
order for anisotropic magnetic dipole term in collinear anti-
ferromagnets of (t2g)4 system, Phys. Rev. Lett. 131, 216501
(2023).

[30] K. P. Kluczyk, K. Gas, M. J. Grzybowski, P. Skupiński, M. A.
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