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Detecting symmetry fractionalization in gapped quantum spin liquids by magnetic impurities
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We study the Kondo effect of spin-1/2 magnetic impurities in gapped Z2 spin liquids on two-dimensional
lattices. We find that if the impurity is placed at a high-symmetry location, a nontrivial spinon fractionalization
class of the impurity site symmetry group will necessarily lead to a non-Kramers doublet in the Kondo screening
regime, protected by associated crystalline symmetries. This is in sharp contrast to a featureless screening
phase in the usual Kondo effect. We demonstrate this symmetry-protected topological degeneracy by an exactly
solvable model and by the large-N theory. Based on this effect, we discuss how thermodynamic measurements
in the limit of dilute magnetic impurities can be used to detect symmetry fractionalization in gapped Z2 spin
liquids.
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Introduction. Quantum spin liquids (QSLs) [1–3] have at-
tracted much interest in the past few decades due to their
exotic properties transcending the Landau scheme of symme-
try breaking. In particular, the presence of anyons which obey
fractional statistics [4] is among the most exciting manifesta-
tions of the topological order and long-range entanglement in
QSLs [5,6], with potential applications in topological quan-
tum computations [7]. A number of QSL candidate materials
with various crystalline symmetries have been discovered ex-
perimentally [3,8–10].

Meanwhile, there is a gap between theoretical diagnosis
and experimental measurements to identify QSLs. On one
hand, various theoretically computable quantities have been
proposed to sharply characterize topological orders, such as
topological entanglement entropy [11,12] and modular ma-
trices [13,14]. On the other hand, most existing experiments
aim at ruling out long-range orders in the low temperature,
deterred by the difficulty of directly probing unique fea-
tures of QSLs. In particular, compared to gapless U(1) spin
liquids with clear signatures in inelastic neutron scattering
(INS) [15] or thermal transport [3,8], a gapped symmetric
QSL is more featureless and harder to detect experimentally.
While the long-range entanglement and fractional statistics,
as a definitive character of topological orders, is difficult
to access experimentally, the fractional symmetry quantum
number [16] (formally known as symmetry fractionalization
[5,17–20]) of anyons provide extra features to characterize
and identify the topological order, which is usually easier
to probe experimentally. In the well-known example of frac-
tional quantum Hall effects (FQHEs), indeed the fractional
charge is experimentally observed in the nineties, much ear-
lier than the recently confirmed fractional statistics [21]. One
question arises naturally: can symmetry fractionalization be
experimentally detected as a direct evidence for a QSL state?

For gapped QSLs, which is the focus of this work, there
are two major challenges to experimental detection of frac-
tionalization. First of all, the fractionalized excitations such
as spinons are charge neutral, therefore insensitive to charge
transport probes which played a crucial role in identifying

fractionalization in FQHEs [21]. Secondly, a gapped symmet-
ric QSL usually has no features both in the bulk and on the
boundary, making it very hard to access experimentally. This
is unlike the U(1) spin liquids, whose gapless excitations can
be probed by INS in the case of emergent photons [15], or
thermal transport in the case of spinon Fermi surfaces [3,8].
Is it possible to experimentally identify a gapped QSL? Previ-
ously, INS spectroscopy has been proposed to exhibit features
of fractional statistics [22] and spinon symmetry fractional-
ization [5,23]. Recently, two-dimensional coherent nonlinear
spectroscopy has been suggested to reveal both fractionalized
spinon excitations [24,25] and their fractional statistics [26] in
quantum spin liquids. In this work, we look into magnetic im-
purities and Kondo effects in gapped QSLs, and show that they
can provide distinct thermodynamic signatures of symmetry
fractionalization in QSLs, in the Kondo screening regime.

The Kondo effect in QSLs has previously been studied both
in theories [27–34] and in experiments [35–37], focusing on
gapless QSLs. In this paper, we explore the Kondo effect in
gapped Z2 QSLs. Similar to the distinctions between Kondo
effects in metals and in insulators (with a vanishing density of
states), the Kondo effect in gapped Z2 QSLs differs qualita-
tively from gapless QSLs. In particular, due to the energy gap
for spinon excitations, there is a finite threshold of Kondo cou-
pling strength to screen the magnetic impurity [38–43]. Most
remarkably, we find that when a half-integer-spin impurity
is placed at a high-symmetry location in the crystal hosting
a gapped Z2 QSL, the Kondo screening phase will feature a
non-Kramers doublet localized at the impurity site, protected
by fractionalized crystalline symmetries in the Z2 QSL. This
symmetry-protected degeneracy lead to distinct signatures in
the thermodynamics, such as specific heat, which can serve as
“smoking gun” evidence for symmetry fractionalization in a
gapped QSL. This phenomena is demonstrated by an exactly
solvable model and large-N parton mean-field theory, which
agree with each other.

Main results. We first present the major results in Fig. 1
and Tables I–III. Consider a gapped symmetric Z2 spin liquid
on a two-dimensional lattice, whose Hilbert space consists of
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FIG. 1. High-symmetry impurity sites that can be used to detect
the symmetry fractionalization of spinons in a gapped symmetric Z2

spin liquid, on the (a) square, (b) kagome, and (c) triangular lattices
in two dimensions.

a spin-1/2 (or a Kramers doublet) on each lattice site. A spin-
1/2 magnetic impurity located at a certain high-symmetry
position of the lattice can be used to diagnose the sym-
metry fractionalization class [17–19] of the Z2 spin liquid
phase. Specifically, when such a magnetic impurity is coupled
symmetrically to the Z2 spin liquid, in the Kondo screening
regime, there may or may not be a twofold degeneracy (a
non-Kramers doublet) protected by the crystalline symmetry
of the impurity site, depending on the fractionalization class
of spinons in the Z2 spin liquid.

Figure 1 illustrates the three lattices enumerated in this
work, i.e., the square, kagome, and triangular lattices. In the
presence of SO(3) spin rotational symmetry, the classifica-
tions of symmetric Z2 spin liquids on these lattices [44,45]
are summarized in Tables I–III. A part of the symmetry frac-
tionalization data can be detected by the presence or absence
of non-Kramers doublets for Kondo-screened magnetic im-
purities located at different high-symmetry sites, such as a
plaquette center, a nearest-neighbor link center, or on a mirror
plane.

In a gapped system with a vanishing density of states,
a finite Kondo coupling strength is required to enter the
Kondo screening regime [38–43], where the system typically
reaches a featureless paramagnetic ground state. The proposed
non-Kramers doublet protected by crystalline symmetries at
the impurity site of the Z2 spin liquid is therefore a striking and
unusual phenomenon. Below we describe the physical picture
behind this observation.

TABLE I. All gapped Z2 spin liquids of spin-1/2’s on the
square lattice (G = p4m × ZT2 ), characterized by 26 fractionalization
classes [44,45], and their realizations in the Schwinger boson [46]
and Abrikosov fermion [5] representations. Three of the six indepen-
dent Z2 invariants can be detected by magnetic impurities located at
sites A, B, and C in Fig. 1(a).

Algebraic
identity

ω ∈ H2(G,A) ωe [46] ωε [5]
Impurity

site

(Rx )2 ωRx ,Rx (−1)p4 ησ –

(My )2 ωMy,My (−1)p3+p4 ησ ηxpx –

(C4Rx )2 ωC4Rx ,C4Rx (−1)p4+p7 ησ ησC4 –

MxMyM−1
x M−1

y
ωMx ,My

ωMy ,Mx
(−1)p1 ηxy A

(MyT )2 ωMyT ,MyT (−1)p3+p8+1 −ηtηxpx B

RxMyR−1
x M−1

y
ωRx ,My

ωMy ,Rx
(−1)p2 ηxpy C

TABLE II. All gapped Z2 spin liquids of spin-1/2’s on the
kagome lattice (G = p6mm × ZT2 ), characterized by 23 fractional-
ization classes [44,45], and their realizations in the Schwinger boson
[47] and Abrikosov fermion [48] representations. One of the three
independent Z2 invariants can be detected by magnetic impurities
located at site A in Fig. 1(b).

Algebraic
identity

ω ∈ H2(G,A) ωe [46] ωε [5]
Impurity

site

(Rx )2 ωRx ,Rx (−1)p2+p3 ησ –

(Ry )2 ωRy,Ry (−1)p2 ησ ησC6 –

RxRyR−1
x R−1

y
ωRx ,Ry

ωRy ,Rx
(−1)p1 η12 A

A gapped Z2 spin liquid hosts three types of anyons (or
superselection sectors): bosonic spinon e, vison m, and their
bound state ε = e × m, known as a fermionic spinon [50]. In
a symmetric Z2 spin liquid on a lattice with an odd number of
spin-1/2’s in each unit cell, spinons e and ε must carry spin-
1/2 each, while vison m is spinless [51]. As a result, when a
spin-1/2 magnetic impurity is coupled to such a Z2 spin liquid,
to reach a spin-singlet ground state, it can only be screened by
a spinon e or ε. The same conclusion holds if we replace spin-
1/2 by a Kramers doublet with T 2 = −1 in the argument.

In the presence of crystalline and time reversal symme-
tries, different gapped Z2 spin liquids are distinguished by
their symmetry fractionalization classes, classified by second
group cohomology H2(G,A), where the symmetry group is
G = SG × ZT2 (SG being the space group), and A = Z2 × Z2

is the fusion group of Abelian anyons in the Z2 spin liquid
[17]. Thanks to the SO(3) spin rotational symmetry, the vison
fractionalization class is uniquely fixed on the three lattices
[52,53], leading to the classification shown in Tables I–III
[44,45], characterized by projective representations of G car-
ried by spinons. Consequently, the singlet bound state formed
by the impurity spin and the screening cloud of spinon can
carry a projective representation of the impurity site symme-
try group. This leads to the non-Kramers degeneracy at the
impurity site, protected by both crystalline and time reversal
symmetries.

There are two types of impurity sites of particular interest
to this work: (1) the impurity site lies at the intersection of
two mirror planes, such as sites A and C in Fig. 1; and (2)
the impurity site lies on a mirror plane, such as site B in

TABLE III. All gapped Z2 spin liquids of spin-1/2’s on the
triangular lattice (G = p6mm × ZT2 ), characterized by 23 fractional-
ization classes [44,45], and their realizations in the Schwinger boson
[47] and Abrikosov fermion [49] representations. One of the three
independent Z2 invariants can be detected by magnetic impurities
located at site A in Fig. 1(c).

Algebraic
identity

ω ∈ H2(G,A) ωe [46] ωε [5]
Impurity

site

σ 2 ωσ,σ (−1)p2 ησ –

(My )2 ωMy,My (−1)p2+p3 ησC6 –

σMyσ
−1M−1

y
ωσ,My

ωMy ,σ
(−1)p1 η12 A
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Fig. 1. In case (1), since the two mirror symmetries Mx and
My commute in the Hilbert space of the impurity spin, if they
anticommute on the spinon screening the impurity spin (i.e.,
ωMx,My/ωMy,Mx = −1), the bound state of impurity spin-1/2
and spinon will carry a projective representation of the site
symmetry group Gs = ZMx

2 × Z
My

2 , leading to a twofold de-
generacy protected by the mirror symmetries. On the other
hand, if the two mirror actions commute on the spinon (i.e.,
ωMx,My/ωMy,Mx = +1), the bound state will carry a linear rep-
resentation of the site symmetry and hence no degeneracy
in the screening regime. In case (2), the impurity spin-1/2
on a mirror (Mx) plane carries a projective representation
(MxT )2 = −1. If the spinons screening the impurity carry a
linear representation with ωMxT ,MxT = +1, their bound state
forms a projective representation of the site symmetry group
Gs = ZMx

2 × ZT2 , leading to a twofold non-Kramers degener-
acy protected by both mirror Mx and time reversal symmetries.
In contrast, if the spinon carries a projective representation
with ωMxT ,MxT = −1, the bound state would instead form a
linear representation (MxT )2 = +1 with no degeneracy in the
screened phase. This shows how the response of a Z2 spin
liquid to impurity spin-1/2’s can diagnose a part of the spinon
fractionalization data in the spin liquid phase, as summarized
in Tables I–III. While this manuscript focuses on Kondo impu-
rities in Z2 spin liquids, the theory framework can be applied
to the impurity problem in a general symmetry-enriched topo-
logical order [17–19], which we discussed in Sec. A.3 of the
Supplemental Material [54] (see also Ref. [55] therein).

Methods. We use two methods to demonstrate the
symmetry-protected non-Kramers degeneracy induced by a
spin-1/2 impurity in Z2 spin liquids, in the Kondo screening
regime. We focus on case (1) of impurity site symmetry Gs =
ZMx

2 × Z
My

2 , where the impurity spin-1/2 lies at the intersec-
tion of two mirror planes Mx,y. First, we construct an exactly
solvable model by modifying the toric code, to show the exact
degeneracy protected by two mirror symmetries. Next, we
use the large-N approach to solve the Kondo problem in a
symmetric Z2 spin liquid, and to compute the temperature
dependence of thermodynamic quantities.

First, we present an exactly solvable model illustrated in
Fig. 2. The bulk Z2 spin liquid is described by

Ĥbulk = −
∑

s

As−
∑

p

Bp

−
∑

s

�

[
(As+1)

2
Ps(S =0)+ (1 − As)

2
Ps(S =1/2)

]
,

(1)

where As and Bp are the star and plaquette operators in
Kitaev’s toric code [50]. In addition to one qubit on each link,
there is a three-dimensional Hilbert space of spin 0 ⊕ 1

2 on
each site or vertex (see Fig. 2). In the limit � � 1, each e
and ε particle will carry spin-1/2 of the site or vertex Hilbert
space, while m particles are spinless. The fractionalization
class associated with the impurity site symmetry group Gs =
ZMx

2 × Z
My

2 is given by [17]

ωe
Mx,My

ωe
My,Mx

=
ωm

Mx,My

ωm
My,Mx

= +1,
ωε

Mx,My

ωε
My,Mx

= −1. (2)

FIG. 2. An exactly solvable model for a spin-1/2 impurity in a
Z2 spin liquid with SU(2) symmetry. The squares on link centers
are qubits in the toric code [50]. Each black dot on a star/vertex
represents a Hilbert space of spin 0 ⊕ 1/2. The red dot denotes the
spin-1/2 impurity with a site symmetry Gs = ZMx

2 × Z
My
2 [54].

Next, we introduce a spin-1/2 impurity located at the center
of the plaquette (1234) in Fig. 2, which is coupled to the bulk
spin liquid as follows:

Himp = J
4∑

i=1

�Si · �Simp + Ec(A1 + A2 + A3 + A4 − 3)2

+ �εBp[1234]. (3)

In addition to the usual Kondo coupling J , we also introduce
(1) a Coulomb repulsion Ec for spinons, which makes sure
the impurity is screened by one spinon, and (2) an energy �ε

coupled to the plaquette operator on the plaquette [1234], to
control which type of spinons (e vs ε) will screen the impu-
rity spin. Assuming Ec � 1, J , the Kondo screening regime
happens when J > 4/3, leading to four degenerate states in
the low-energy manifold where a single spinon is located
at one neighboring site (out of 1,2,3,4). When �ε < 1, the
bosonic spinons cost less energy and will screen the impurity,
and the fourfold degenerate can be completely lifted with
a unique paramagnetic ground state without breaking any
symmetry [54]. This is consistent with the trivial fractional-
ization class of e particles in (2). When �ε > 1, however,
the fermionic spinons cost less energy and are responsible
for the Kondo screening. As detailed in the Supplemental
Material [54], the four-dimensional low-energy space can be
split into two doublets, each of which forms an irreducible
projective representation of the impurity site symmetry group
Gs = ZMx

2 × Z
My

2 . As a result, a twofold degeneracy protected
by two mirror symmetries Mx,y will emerge in the Kondo
screening regime, as indicated by the nontrivial fractionaliza-
tion class (2) of ε particles. Therefore, we have demonstrated
the correspondence between nontrivial fractionalization class
of spinons screening the impurity, and protected twofold de-
generacy in the Kondo screening regime.

Next, we use a large-N mean-field theory to solve the
Kondo problem in symmetric Z2 spin liquids. Both the bulk
and impurity spins are represented by fermionic partons with
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FIG. 3. The temperature dependence of (a) uniform magnetic
susceptibility χ (T ) and (b) entropy S(T ) contributed by Kondo im-
purities in different regimes: the unscreened regime of free moments
at the impurity sites (green), the Kondo screening regime in Z2 spin
liquids with a trivial (blue) vs nontrivial (red) spinon fractionalization
class. The calculations are performed for two distant impurities with
site symmetry Gs = ZMx

2 × Z
My
2 on a 20 × 20 lattice [54].

Sp(2N ) symmetry [56]:

Sab+ = 1
2

(
ca†
↑ cb

↓ + cb†
↑ ca

↓
)
, Sab,z = 1

2

(
ca†
↑ cb

↑ − cb†
↓ ca

↓
)
, (4)

with 1 � a, b � N . They reduce to the familiar SU(2) spin-
1/2 case when N = 1. The model consists of a Z2 spin liquid
in the bulk described by parton mean-field ansatz of Sp(2N )
partons

Hbulk =
N∑

a=1

∑
i, j

Ji, jψ
a,†
i ui, jψ

a
j + H.c., (5)

where we denote ψa
i = (ca

i,↑, ca†
i,↓)T , and the Kondo coupling

between a Sp(2N ) impurity spin and its neighboring spins:

Himp =
∑

〈 j,imp〉

J

N
Sab

j · Sba
imp + J ′

N3

(
Sab

j · Sba
imp

)2
(6)

As detailed in the Supplemental Material [54] (see also
Ref. [57] therein), the bulk parton ansatz can be exactly re-
alized in solvable models in analogy to Kitaev’s honeycomb
model [58], and choosing different link parameters {ui j} can
lead to either trivial or nontrivial fractionalization classes for
fermionic spinons {ψa

i }, with MxMyM−1
x M−1

y = ±1. A self-
consistent mean-field calculation, which becomes exact in
the large N limit, reveals a Kondo screening phase separated
from the unscreened phase by a Kondo temperature TK (J ),
for Kondo couplings beyond a finite threshold J > Jc [54].
In the Kondo screening regime with T < TK (J ), while the
trivial fractionalization class (MxMyM−1

x M−1
y = +1) shows a

unique paramagnetic ground state, the nontrivial fractional-
ization class (MxMyM−1

x M−1
y = −1) exhibits two degenerate

ground states which cannot be mixed by any local pertur-
bations, preserving mirror symmetries Mx,y [54]. This again
demonstrated our conclusion that a nontrivial spinon fraction-
alization class will lead to symmetry-protected zero modes
localized at high-symmetry impurity sites.

Experimental implications. The large-N mean-field theory
also allows us to predict distinct experimental signatures of
the anomalous Kondo screening phase described above. The
temperature dependence of uniform magnetic susceptibility
χ (T ) and the entropy S(T ) = ∫ T

0
Cv (t )

t dt are shown in Fig. 3.

The impurity contribution is shown in the figure suscepti-
bility χ (T ) and specific heat Cv (T ), by subtracting the bulk
contribution of Hamiltonian Hbulk from the total amount of
Hbulk + Himp. Three different regimes can be differentiated
from each other by inspecting the susceptibility and entropy
(by integrating the specific heat) at low temperatures: (1) In
the unscreened regime, the magnetic impurity behaves as a
free moment, leading to χ (T ) ∼ 1/T and a finite entropy of
kB ln 2 per impurity, colored green in Fig. 3. This scenario
also applies to the situations where the magnetic impurity
is underscreened or overscreened, leaving a residual local
moment near the impurity. (2) In the Kondo screening regime,
for Z2 spin liquid with trivial fractionalization class, Kondo
screening leaves a unique paramagnetic ground state below
the Kondo temperature, and therefore exponentially decaying
thermodynamic responses χ (T ),Cv (T ) ∼ e−�/kBT , as colored
blue in Fig. 3. (3) A Z2 spin liquid with a nontrivial fractional-
ization class, on the other hand, features a symmetry-protected
non-Kramers doublet (twofold degeneracy) localized at each
impurity site in the Kondo screening regime. As a result, while
the susceptibility vanishes exponentially at low temperatures
χ (T ) ∼ e−�/kBT , there is a low-energy entropy of kB ln 2 per
impurity below the Kondo temperature, as colored red in
Fig. 3. The sharp differences between the three scenarios
provide clear experimental features to detect a gapped Z2 spin
liquid with a nontrivial symmetry fractionalization class for
spinons.

Theoretically we only discussed the case of isolated
impurities in the large-N self-consistent mean-field theory
described earlier. In real materials, we expect our predictions
in Fig. 3 to hold in the case of dilute magnetic impurities,
where the average distance r between neighboring impuri-
ties is much larger than the bulk correlation length ξ of the
gapped spin liquid. In this case, the splitting of the symmetry
protected zero modes localized at impurity sites will be small
∼Je−C0r/ξ , where C0 is a constant of order one. This will lead
to a peak in specific heat at low temperature T ∼ Je−C0r/ξ .
The splitting of protected degeneracy can also be caused
by crystalline symmetry breaking due to, e.g., Jahn-Teller
effect, which can smear out the plateau of residue entropy
in Fig. 3(b). Detailed calculations regarding broken crys-
talline symmetry are shown in Sec. C.5 in the Supplemental
Material [54].

Among the candidate materials of quantum spin liquids,
Herbertsmithite [59] is most relevant to our proposal. Nuclear
magnetic resonance measurements [60] pointed to a spin liq-
uid ground state with a finite gap of around 10 K , a small frac-
tion of the intralayer Cu-Cu exchange interaction J � 200 K .
Previous resonant x-ray scattering results revealed 15% in-
tersite impurities [61] between the kagome layers of Cu2+

ions, where excessive spin-1/2 Cu2+ ions occupy the inter-
layer A sites in Fig. 1(b) (“intersites”) of Zn2+ ions. Neutron
scattering results [62] suggested a coupling strength of about
10 K between the intersite Cu impurities, comparable to the
bulk gap in the kagome layer. Therefore, Herbertsmithite is a
potential material candidate our theory proposal can apply to.

Concluding remarks. In this work, we show that when
magnetic impurities with half-integer spins are coupled to
symmetric Z2 spin liquids in an isotropic magnet with SU(2)
symmetry, a spinon will form a singlet bound state with
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the impurity in the Kondo screening regime. This bound
state will feature a symmetry-protected twofold degener-
acy, if the spinon fractionalization class of the impurity site
symmetry is nontrivial, therefore leading to a non-Kramers
doublet localized at the impurity site. We further show that
this local degeneracy in the Kondo screening regime can be
distinguished from other scenarios by the low-temperature
behaviors of magnetic susceptibility and specific heat, hence
unveiling a different way to detect symmetry fractionalization
in QSLs.

In the future, it will be insightful to apply the angle
proposed in this work to examine the candidate materials

of QSLs, where magnetic impurities are known to exist at
high-symmetry sites, e.g., in Herbertsmithite [60]. Theoret-
ically, this work also provides a different idea to probe
fractionalization in models of strongly correlated electrons,
by studying the impurity problem, e.g., using numerical
methods.

Acknowledgments. We thank Biao Huang for discussions
and related collaborations at an early stage of this work. This
work is supported by the National Science Foundation (NSF)
under Award No. DMR 1653769 (Y.M.L.), and by the Center
for Emergent Materials at The Ohio State University, a NSF
MRSEC, through NSF Award No. DMR-2011876 (S.L.).

[1] L. Balents, Spin liquids in frustrated magnets, Nature (London)
464, 199 (2010).

[2] L. Savary and L. Balents, Quantum spin liquids: a review, Rep.
Prog. Phys. 80, 016502 (2017).

[3] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[4] Fractional Statistics and Anyon Superconductivity, edited by F.
Wilczek (World Scientific, Singapore, 1990).

[5] X.-G. Wen, Quantum orders and symmetric spin liquids, Phys.
Rev. B 65, 165113 (2002).

[6] X.-G. Wen, Quantum Field Theory of Many-body Systems: From
the Origin of Sound to an Origin of Light and Electrons (Oxford
University, New York, 2007).

[7] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[8] K. Kanoda and R. Kato, Mott physics in organic conductors
with triangular lattices, Annu. Rev. Condens. Matter Phys. 2,
167 (2011).

[9] J. Wen, S.-L. Yu, S. Li, W. Yu, and J.-X. Li, Experimental
identification of quantum spin liquids, npj Quantum Mater. 4,
12 (2019).

[10] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E.
Nagler, Concept and realization of Kitaev quantum spin liquids,
Nat. Rev. Phys. 1, 264 (2019).

[11] A. Kitaev and J. Preskill, Topological entanglement entropy,
Phys. Rev. Lett. 96, 110404 (2006).

[12] M. Levin and X.-G. Wen, Detecting topological order in a
ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).

[13] E. Keski-Vakkuri and X.-G. Wen, The ground state structure
and modular transformations of fractional quantum Hall states
on a torus, Int. J. Mod. Phys. B 07, 4227 (1993).

[14] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A.
Vishwanath, Quasiparticle statistics and braiding from ground-
state entanglement, Phys. Rev. B 85, 235151 (2012).

[15] O. Benton, O. Sikora, and N. Shannon, Seeing the light: Exper-
imental signatures of emergent electromagnetism in a quantum
spin ice, Phys. Rev. B 86, 075154 (2012).

[16] R. B. Laughlin, Nobel lecture: Fractional quantization, Rev.
Mod. Phys. 71, 863 (1999).

[17] A. M. Essin and M. Hermele, Classifying fractionalization:
Symmetry classification of gapped z2 spin liquids in two di-
mensions, Phys. Rev. B 87, 104406 (2013).

[18] N. Tarantino, N. H. Lindner, and L. Fidkowski, Symmetry frac-
tionalization and twist defects, New J. Phys. 18, 035006 (2016).

[19] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, Symmetry
fractionalization, defects, and gauging of topological phases,
Phys. Rev. B 100, 115147 (2019).

[20] X. Chen, Symmetry fractionalization in two dimensional topo-
logical phases, Rev. Phys. 2, 3 (2017).

[21] D. E. Feldman and B. I. Halperin, Fractional charge and frac-
tional statistics in the quantum Hall effects, Rep. Prog. Phys.
84, 076501 (2021).

[22] S. C. Morampudi, A. M. Turner, F. Pollmann, and F. Wilczek,
Statistics of fractionalized excitations through threshold spec-
troscopy, Phys. Rev. Lett. 118, 227201 (2017).

[23] A. M. Essin and M. Hermele, Spectroscopic signatures of crys-
tal momentum fractionalization, Phys. Rev. B 90, 121102(R)
(2014).

[24] W. Choi, K. H. Lee, and Y. B. Kim, Theory of two-dimensional
nonlinear spectroscopy for the Kitaev spin liquid, Phys. Rev.
Lett. 124, 117205 (2020).

[25] R. M. Nandkishore, W. Choi, and Y. B. Kim, Spectroscopic
fingerprints of gapped quantum spin liquids, both conventional
and fractonic, Phys. Rev. Res. 3, 013254 (2021).

[26] M. McGinley, M. Fava, and S. A. Parameswaran, Signatures
of fractional statistics in nonlinear pump-probe spectroscopy,
Phys. Rev. Lett. 132, 066702 (2024).

[27] G. Khaliullin and P. Fulde, Magnetic impurity in a system of
correlated electrons, Phys. Rev. B 52, 9514 (1995).

[28] K. Dhochak, R. Shankar, and V. Tripathi, Magnetic impurities
in the honeycomb Kitaev model, Phys. Rev. Lett. 105, 117201
(2010).

[29] R. L. Doretto and M. Vojta, Quantum magnets with weakly con-
fined spinons: Multiple length scales and quantum impurities,
Phys. Rev. B 80, 024411 (2009).

[30] P. Ribeiro and P. A. Lee, Magnetic impurity in a U(1) spin
liquid with a spinon fermi surface, Phys. Rev. B 83, 235119
(2011).

[31] M. Vojta, A. K. Mitchell, and F. Zschocke, Kondo impurities
in the Kitaev spin liquid: Numerical renormalization group so-
lution and gauge-flux-driven screening, Phys. Rev. Lett. 117,
037202 (2016).

[32] S. D. Das, K. Dhochak, and V. Tripathi, Kondo route to spin
inhomogeneities in the honeycomb Kitaev model, Phys. Rev. B
94, 024411 (2016).

L100401-5

https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1146/annurev-conmatphys-062910-140521
https://doi.org/10.1038/s41535-019-0151-6
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1142/S0217979293003644
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevB.86.075154
https://doi.org/10.1103/RevModPhys.71.863
https://doi.org/10.1103/PhysRevB.87.104406
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1016/j.revip.2017.02.002
https://doi.org/10.1088/1361-6633/ac03aa
https://doi.org/10.1103/PhysRevLett.118.227201
https://doi.org/10.1103/PhysRevB.90.121102
https://doi.org/10.1103/PhysRevLett.124.117205
https://doi.org/10.1103/PhysRevResearch.3.013254
https://doi.org/10.1103/PhysRevLett.132.066702
https://doi.org/10.1103/PhysRevB.52.9514
https://doi.org/10.1103/PhysRevLett.105.117201
https://doi.org/10.1103/PhysRevB.80.024411
https://doi.org/10.1103/PhysRevB.83.235119
https://doi.org/10.1103/PhysRevLett.117.037202
https://doi.org/10.1103/PhysRevB.94.024411


SHUANGYUAN LU AND YUAN-MING LU PHYSICAL REVIEW B 110, L100401 (2024)

[33] A. Kolezhuk, S. Sachdev, R. R. Biswas, and P. Chen, Theory
of quantum impurities in spin liquids, Phys. Rev. B 74, 165114
(2006).

[34] W.-Y. He and P. A. Lee, Magnetic impurity as a local probe of
the U(1) quantum spin liquid with spinon fermi surface, Phys.
Rev. B 105, 195156 (2022).

[35] T. D. Yamamoto, H. Taniguchi, and I. Terasaki, Dynamical
coupling of dilute magnetic impurities with quantum spin liq-
uid state in the s = 3

2 dimer compound Ba3ZnRu2O9, J. Phys.:
Condens. Matter 30, 355801 (2018).

[36] M. Gomilšek, R. Žitko, M. Klanjšek, M. Pregelj, C. Baines, Y.
Li, Q. M. Zhang, and A. Zorko, Kondo screening in a charge-
insulating spinon metal, Nat. Phys. 15, 754 (2019).

[37] Y. Chen, W.-Y. He, W. Ruan, J. Hwang, S. Tang, R. L. Lee, M.
Wu, T. Zhu, C. Zhang, H. Ryu, F. Wang, S. G. Louie, Z.-X.
Shen, S.-K. Mo, P. A. Lee, and M. F. Crommie, Evidence for a
spinon Kondo effect in cobalt atoms on single-layer 1T-TaSe2,
Nat. Phys. 18, 1335 (2022).

[38] D. Withoff and E. Fradkin, Phase transitions in gapless Fermi
systems with magnetic impurities, Phys. Rev. Lett. 64, 1835
(1990).

[39] K. Satori, H. Shiba, O. Sakai, and Y. Shimizu, Numerical
renormalization group study of magnetic impurities in super-
conductors, J. Phys. Soc. Jpn. 61, 3239 (1992).

[40] T. Saso, 1/N and quantum Monte Carlo studies of a magnetic
impurity in an insulator with a small gap, J. Phys. Soc. Jpn. 61,
3439 (1992).

[41] Y. Itoh, The Kondo effect for a vanishing density of states near
the Fermi energy, J. Phys. Soc. Jpn. 62, 2184 (1993).

[42] K. Takegahara, Y. Shimizu, N. Goto, and O. Sakai, Magnetic
impurity in nonmetallic systems, Phys. B: Condens. Matter 186-
188, 381 (1993).

[43] K. Chen and C. Jayaprakash, Kondo effect in Fermi systems
with a gap: A renormalization-group study, Phys. Rev. B 57,
5225 (1998).

[44] Y.-M. Lu, Symmetry-protected gapless Z2 spin liquids, Phys.
Rev. B 97, 094422 (2018).

[45] Y. Qi and M. Cheng, Classification of symmetry fractionaliza-
tion in gapped z2 spin liquids, Phys. Rev. B 97, 115138 (2018).

[46] X. Yang and F. Wang, Schwinger boson spin-liquid states on
square lattice, Phys. Rev. B 94, 035160 (2016).

[47] F. Wang and A. Vishwanath, Spin-liquid states on the triangular
and Kagomé lattices: A projective-symmetry-group analysis of
Schwinger boson states, Phys. Rev. B 74, 174423 (2006).

[48] Y.-M. Lu, Y. Ran, and P. A. Lee, z2 spin liquids in the
s = 1

2 Heisenberg model on the kagome lattice: A projective
symmetry-group study of Schwinger fermion mean-field states,
Phys. Rev. B 83, 224413 (2011).

[49] Y.-M. Lu, Symmetric Z2 spin liquids and their neighboring
phases on triangular lattice, Phys. Rev. B 93, 165113 (2016).

[50] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[51] M. P. Zaletel and A. Vishwanath, Constraints on topologi-
cal order in Mott insulators, Phys. Rev. Lett. 114, 077201
(2015).

[52] Y. Qi, M. Cheng, and C. Fang, Symmetry fractionalization of
visons in Z2 spin liquids, arXiv:1509.02927.

[53] Y.-M. Lu, G. Y. Cho, and A. Vishwanath, Unification of bosonic
and fermionic theories of spin liquids on the kagome lattice,
Phys. Rev. B 96, 205150 (2017).

[54] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.L100401 for details on symmetry frac-
tionalization in Z2 spin liquids, the exactly solvable model and
the large-N model.

[55] Y. Qi and L. Fu, Detecting crystal symmetry fractionalization
from the ground state: Application to z2 spin liquids on the
kagome lattice, Phys. Rev. B 91, 100401(R) (2015).

[56] Y. Ran and X.-G. Wen, Continuous quantum phase transi-
tions beyond Landau’s paradigm in a large-N spin model,
arXiv:cond-mat/0609620.

[57] J. B. Marston and I. Affleck, Large-n limit of the Hubbard-
Heisenberg model, Phys. Rev. B 39, 11538 (1989).

[58] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[59] M. R. Norman, Colloquium: Herbertsmithite and the search for
the quantum spin liquid, Rev. Mod. Phys. 88, 041002 (2016).

[60] M. Fu, T. Imai, T.-H. Han, and Y. S. Lee, Evidence for a gapped
spin-liquid ground state in a kagome Heisenberg antiferromag-
net, Science 350, 655 (2015).

[61] D. E. Freedman, T. H. Han, A. Prodi, P. Müller, Q.-Z. Huang,
Y.-S. Chen, S. M. Webb, Y. S. Lee, T. M. McQueen, and
D. G. Nocera, Site specific x-ray anomalous dispersion of
the geometrically frustrated Kagomé magnet, Herbertsmithite,
ZnCu3(OH)6Cl2, J. Am. Chem. Soc. 132, 16185 (2010).

[62] T.-H. Han, M. R. Norman, J.-J. Wen, J. A. Rodriguez-Rivera,
J. S. Helton, C. Broholm, and Y. S. Lee, Correlated impuri-
ties and intrinsic spin-liquid physics in the kagome material
Herbertsmithite, Phys. Rev. B 94, 060409(R) (2016).

L100401-6

https://doi.org/10.1103/PhysRevB.74.165114
https://doi.org/10.1103/PhysRevB.105.195156
https://doi.org/10.1088/1361-648X/aad5ac
https://doi.org/10.1038/s41567-019-0536-2
https://doi.org/10.1038/s41567-022-01751-4
https://doi.org/10.1103/PhysRevLett.64.1835
https://doi.org/10.1143/JPSJ.61.3239
https://doi.org/10.1143/JPSJ.61.3439
https://doi.org/10.1143/JPSJ.62.2184
https://doi.org/10.1016/0921-4526(93)90579-U
https://doi.org/10.1103/PhysRevB.57.5225
https://doi.org/10.1103/physrevb.97.094422
https://doi.org/10.1103/PhysRevB.97.115138
https://doi.org/10.1103/PhysRevB.94.035160
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevB.83.224413
https://doi.org/10.1103/PhysRevB.93.165113
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevLett.114.077201
https://arxiv.org/abs/1509.02927
https://doi.org/10.1103/PhysRevB.96.205150
http://link.aps.org/supplemental/10.1103/PhysRevB.110.L100401
https://doi.org/10.1103/PhysRevB.91.100401
https://arxiv.org/abs/cond-mat/0609620
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1021/ja1070398
https://doi.org/10.1103/PhysRevB.94.060409

