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Anomalous transport in the kinetically constrained quantum East-West model
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We study a chaotic particle-conserving kinetically constrained model, with a single parameter which allows us
to break reflection symmetry. Through extensive numerical simulations we find that the domain wall state shows
a variety of dynamical behaviors from localization all the way to ballistic transport, depending on the value of
the reflection breaking parameter. Surprisingly, such anomalous behavior is not mirrored in infinite-temperature
dynamics, which appear to scale diffusively, in line with expectations for generic interacting models. However,
studying the particle density gradient, we show that the lack of reflection symmetry affects infinite-temperature
dynamics, resulting in an asymmetric dynamical structure factor. This is in disagreement with normal diffusion
and suggests that the model may also exhibit anomalous dynamics at infinite temperature in the thermodynamic
limit. Finally, we observe low-entangled eigenstates in the spectrum of the model, a telltale sign of quantum
many-body scars.
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Introduction. Out-of-equilibrium properties of many-body
systems present one of the central problems in quantum
statistical mechanics. Of particular interest are the different
universality classes of dynamics found in various models.
Typically, generic chaotic models are expected to behave dif-
fusively [1–10], although slower dynamics were observed in
disordered systems [4,11–16].

Recently, however, it was shown that certain chaotic kinet-
ically constrained models (KCMs) can exhibit superdiffusive
dynamics at infinite temperature [17]. Such nondiffusive be-
havior was observed both in particle [18] and energy transport
[17]. Additionally, anomalous dynamics can also arise at the
level of pure states [19–24], as in the celebrated PXP model,
where certain states show long-lived oscillations in the density
of domain walls [21,25].

Besides anomalous dynamical features, kinetically con-
strained models, first introduced in the context of classical
glasses [26–28], also host other remarkable phenomena.
These range from Hilbert space fragmentation [29–35] to
quantum many-body scars [21,36–45], defining the novel
paradigm of weak ergodicity breaking [46].

A paradigamtic example of KCMs is the celebrated quan-
tum East model [19]. The quantum East model hosts a
localization transition in the ground state [22,47] and ex-
tremely slow dynamics [19,47], while its Floquet version has
shown localized behavior [48] as well as an exactly solvable
point in parameter space [49]. However, the model only has a
single conserved charge, the energy, which itself is not present
in the Floquet version.

A recent work [24] introduced a particle-conserving ver-
sion of the quantum East model. The combination of U (1)
symmetry and kinetic constraints leads to classical and quan-
tum Hilbert space fragmentation, i.e., fragmentation in an
entangled basis [35], and to a dramatic effect on dynam-
ics, which show superdiffusive behavior in certain initial
states [24].

In this Letter we explore the interplay between reflection
symmetry and kinetic constraints. Specifically, we focus on
the dynamics of a constrained hopping model, inspired by the
particle-conserving quantum East model [24]. In the original
model hopping is allowed between two neighboring sites if the
site immediately to the right of the pair is occupied. Here, we
add the reflection-symmetric West constrained hopping term,
with a potentially different amplitude. This also allows parti-
cle hopping when the nearest neighbor on the left is occupied,
regardless of the state of the right neighbor. The addition of
this term breaks both classical and quantum fragmentation,
allowing us to study infinite-temperature transport in the dom-
inant fragment of the Hilbert space and control the reflection
symmetry.

In spite of the absence of fragmentation and chaotic
level spacing statistics, the spectrum of the Hamiltonian still
presents intriguing characteristics [50]. In particular, we find
a large number of zero modes which depends on particle
parity and a set of weakly entangled eigenstates reminiscent
of quantum many-body scars [21,36].

Studying the dynamics of the domain wall state [51,52], a
simple and experimentally accessible initial state, we discover
the presence of a rich phase diagram dependent on the ratio
of the two hopping terms. In our simulations we observe a
full spectrum of different dynamical behaviors of the domain
wall state ranging from completely localized to a surprising
ballistic behavior, in spite of the chaotic nature of the model.
This suggests that ballistic transport, typically observed in in-
tegrable models, which has been related to superconductivity
[53,54], can also be observed in the dynamics of pure states of
certain generic chaotic models. Upon increasing the West hop-
ping term beyond the symmetric point, where the two hopping
amplitudes are equal, the state recovers the expected diffusive
spreading. However, when the East constraint is completely
suppressed, we again observe anomalous dynamics, this time
with superdiffusive scaling up to the available times.
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FIG. 1. (a) Particles move with different hopping amplitudes
JE = 1 − JW depending on whether the constraint is applied from
the left or the right neighbor. (b) As JW is changed from 0 to 1,
the dynamical behavior of the left domain wall (LDW) state, shown
here for the small case of N = 4 particles and L = 8 sites, changes
dramatically. Its dynamics show a transition from fully localized
at JW = 0 to ballistic for JW � 1/2 and to the expected diffusive
behavior as JW is increased further. However, at the opposite extreme
(JW = 1) the dynamics appear to enter an anomalous superdiffusive
regime. Here, the dynamical exponent z corresponds to that from
Eq. (3), computed only from the LDW state.

Using tensor-network methods, we further probe infinite-
temperature dynamics which indicate diffusive scaling. How-
ever, analyzing the dynamical structure factor at infinite
temperature [55], we observe long-lived asymmetry. This fi-
nite asymmetry is at odds with normal diffusion and shows
another intriguing anomaly of transport in this model.

Model. We study kinetically constrained hard-core bosons
on a one-dimensional lattice of L sites. Hopping among differ-
ent sites is allowed only in certain configurations, as encoded
in the system Hamiltonian

Ĥ = JW

L−2∑
i=1

n̂i(ĉ
†
i+2ĉi+1 + H.c.)

+ JE

L−2∑
i=1

(ĉ†
i+1ĉi + H.c.)n̂i+2 = JE ĤE + JW ĤW , (1)

where ĤE (ĤW ) is the U (1)-conserving East (West) Hamilto-
nian, ĉ†

i is the hard-core boson creation operator, and n̂i = ĉ†
i ĉi

is the particle number operator. The action of the two kinetic
constraints is sketched in Fig. 1(a). Particles can hop only if
their nearest neighbor to the left (West) or to the right (East) is
occupied, with amplitudes JW and JE , respectively. Through-
out this Letter, we fix the two hopping parameters such that
JE + JW = 1. As we will show in the following, varying the
parameter JW leads to the dramatic change in dynamics of the
domain wall state [51,52] depicted in Fig. 1(b).

Besides being particle conserving, the Hamiltonian
(1), with periodic boundary conditions, is also translation
invariant. At the symmetric point JE = JW = 1/2 the system
is further reflection symmetric. As opposed to the closely
related quantum East model, no additional symmetry emerges
and the system does not exhibit Hilbert space fragmentation
away from JW ∈ {0, 1}, at least within the half-filling sector
on which we focus in this Letter. Despite the absence of

Hilbert space fragmentation, the analysis of the spectrum
and of the eigenstates of the Hamiltonian yields interesting
observations [50]. On one hand the study of the level spacing
distribution confirms that the system is overall chaotic. On
the other, we notice the presence of a small number of weakly
entangled eigenstates, reminiscent of quantum many-body
scars. Finally, the spectrum presents an anomalously large
number of zero modes, which appear only for even particle
numbers N = L/2.

Domain wall dynamics. We now focus on the dynamics
after a quantum quench in our system with open boundary
conditions. Our protocol consists of initializing the system in
the left domain wall state,

|LDW〉 = | • • • · · · •︸ ︷︷ ︸
N

◦ ◦ ◦ · · · ◦︸ ︷︷ ︸
L−N

〉 n̂i|•〉 = |•〉,
n̂i|◦〉 = 0,

(2)

which at JW = 0 is an exact zero-energy eigenstate of the
Hamiltonian. We then suddenly switch the West hopping am-
plitude to its final value JW ∈ (0, 1].

To study the dynamics of |LDW〉 we perform numerical
simulations over an extensive number of system sizes L ∈
[14, 100], using exact techniques for L � 24 and approximate
matrix-product-state time evolution using the time-evolving
block-decimation (TEBD) algorithm [56] for L > 24 [50].
Our analysis focuses on the instantaneous dynamical expo-
nent z(t ) defining the dynamical behavior of the state [57].
For interacting chaotic systems such as the one we study,
particle spreading in generic high-temperature ensembles is
expected to be diffusive (z = 2). Deviations from this behav-
ior are known in integrable models [58], which can present
ballistic (z = 1) and superdiffusive (1 < z < 2) transport
[9,10,55,59–62], and in disordered systems with subdiffusive
dynamics (z > 2) [4,12]. Here, instead, we focus on a single
pure state, similarly to previous studies of the domain wall
state in the XXZ chain [51,52], with weight over the entire
spectrum. To numerically obtain the instantaneous dynamical
exponent, we take the logarithmic derivative of the particle
flow from the domain wall,

δN (t ) =
N∑

i=1

〈n̂i(t = 0)〉 − 〈n̂i(t )〉, δN (t ) ∝ t1/z, (3)

1

z
= d log δN

d log t
. (4)

In Fig. 2 we show the particle dynamics of the domain
wall quench [Figs. 2(a)–2(d)] as well as the instantaneous
dynamical exponent [Figs. 2(e)–2(h)] at different values of
JW , highlighting the variety of different behaviors in our
model. When JW < 1/2 the dynamics of |LDW〉 initially are,
as expected, relatively slow due to the combination of dom-
inant East constraint and large particle density in the left
half [Fig. 2(a)]. Surprisingly, however, the transport exponent
shows clear ballistic scaling z = 1 [Fig. 2(e)]. This behavior
persists up to times proportional to the system size due to
finite-size effects. A similar behavior, although with much
faster particle spreading, is observed for JW = 1/2, shown in
Figs. 2(b) and 2(f). In both cases the results indicate ballistic
dynamics of |LDW〉 in the thermodynamic limit.

As the hopping amplitude is increased even further, en-
tering the regime where JW > JE , the domain wall recovers
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FIG. 2. Density dynamics of |LDW〉 dramatically changes as JW is tuned across the symmetric point JW = 1/2 [(a)–(d)]. While the model
is fully chaotic and its infinite-temperature dynamics appear to scale diffusively, for JW � 1/2, |LDW〉 shows ballistic behavior [(a), (b)].
However, as JW > 1/2 [(c), (d)], the |LDW〉 state deviates from the ballistic regime. This clearly emerges looking at the instantaneous
dynamical exponent z(t ), whose inverse is shown in (e)–(h). For JW � 1/2 [(e), (f)] the dynamical exponent presents a long plateau at z−1 = 1
corresponding to ballistic behavior. This eventually changes when finite-size effects are observed at a critical time τ ∝ L. Therefore we extract
z from times where the largest two system sizes have not yet diverged in order to avoid the finite-size effects. For 1/2 < JW < 1 (g), the inverse
dynamical exponent quickly decays below 1, relaxing at long times to a value close to diffusion z−1 = 1/2. Finally, as the East contribution
vanishes, JW = 1 (h), |LDW〉 acquires an unexpected superdiffusive behavior, with the dynamical exponent rapidly oscillating at first, and
later approaching a value well above diffusion. The dashed lines in the bottom row correspond to diffusive and ballistic behavior (red and
green, respectively). The data were generated for JW = 1/3, 1/2, 2/3, 1 using exact methods for L � 24 and TEBD with bond dimension
χ = [1536, 2048] for L � 26.

the expected diffusive behavior, as shown by the dynamical
exponent 1/z → 1/2 in Fig. 2(g). However, at the extreme
point JW = 1, where only the West Hamiltonian participates
in the dynamics, the domain wall state acquires yet another
unexpected dynamical exponent. As shown in Fig. 2(h), after
a series of initial oscillations damping with systems size, 1/z
approaches a superdiffusive value, which at the timescales
attainable by our simulations is approximately 1/z ≈ 0.8.

While superdiffusion in the particle-conserving East model
was recently observed [24] with exact diagonalization, here
we discover that introducing the additional West constraint
and tuning the asymmetry between the two yields the rich
dynamical phase diagram for the domain wall state shown in
Fig. 1(b). In particular, the presence of a ballistic state in an
otherwise chaotic model is highly atypical [63]. Finally, we
mention that for JW 	 JE we notice a striking difference in
dynamics depending on the particle number N (akin to the
number of zero modes discussed previously). For even N ,
particles are confined within a small region and cannot ex-
plore the full lattice, while for odd N they spread ballistically
through the whole chain [50].

Persistent asymmetry at infinite temperature. To further
characterize the dynamics in the model, we analyze the dy-
namical exponent of mixed states close to infinite temperature
ρ0 = ⊗iρ

(i)
0 ,

ρ
(i)
0 =

(
1/2 + μ(i) 0

0 1/2 − μ(i)

)
,

μ(i) =
{
μ0, i � L/2,

−μ0, i > L/2,
(5)

with μ0 	 1 [61]. Using TEBD, we simulate the dynamics
of a system of L = 512 sites in a wide parameter range JW ∈
[0.15, 0.5] and μ ∈ [0.001, 0.1].

First, we focus on the dynamical exponent z. To get an
estimate of its value, we perform a collapse of the density
profiles at different times, shown in Fig. 3. Given the dynam-
ical exponent, density dynamics are expected to be captured
by a scale-invariant function f (x/t1/z ). The different curves in
Fig. 3 collapse on one another within a broad range of times as
the space axis is rescaled by

√
t , suggesting diffusive scaling.

This observation is further confirmed by the dynamical expo-
nent approaching z = 2 at late times, as reported in the inset.
Similar results are obtained for other values of the hopping
parameters [50]. The usual diffusive behavior, then, seems to

FIG. 3. Mixed state density profiles at different times
t ∈ [75, 300] collapse on one another upon rescaling the x
axis by

√
t suggesting diffusive scaling at infinite temperature. The

diffusive scaling is further confirmed by the dynamical exponent
approaching z−1 ≈ 0.5 at late times, as shown in the inset. The data
shown here are for JW = 1/2, μ = 0.01, and χ = 384.
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FIG. 4. The extrapolation of the skewness S for μ → 0 shows a
finite long-time value for JW < 1/2, indicating persistent asymmetry
even in the absence of the initial chemical potential step. The late
time behavior of the skewness as a function of JW shows a monotonic
decrease of the asymmetry as JW → 0. Due to reflection symmetry,
a mirrored behavior appears with positive S at JW > 1/2. The data
were obtained by extrapolating the intercept of a linear fit of S(t ) vs
μ for values of μ ∈ [0.001, 0.05]. The system size is L = 512 sites,
and the bond dimension used was χ = 448.

be recovered at high temperature. We note that tiny but nonva-
nishing faster-than-diffusive corrections would be difficult to
identify and thus cannot be ruled out. Therefore, there could
be other states that share the same ballistic behavior as the
|LDW〉 state, so long as they remain a sufficiently small or
vanishing fraction of the Hilbert space size.

In a diffusive system, particle spreading is expected to be
symmetric around the central chemical potential step μ. Our
model, however, is inherently asymmetric and could deviate
from this behavior. To characterize this possible asymmetry,
we analyze the particle density gradient �ni,i+1 = |〈n̂i〉μ −
〈n̂i+1〉μ|, which is related to the dynamical structure factor
S(x, t ) = 〈n̂x(t )n̂0(0)〉 = limμ→0

1
μ
�nx,x+1 [55]. Here, 〈Ô〉μ

represents the expectation value of the operator with the weak
domain wall initial state from Eq. (5).

The asymmetric constraints in our Hamiltonian together
with the asymmetric initial state, instead, yield rather a skewed
distribution (see Supplemental Material [50] for some exam-
ples). To quantitatively capture the amount of asymmetry in
the state at a given time, we calculate the discrete skewness of
the dynamical structure factor,

S =
∑

y

P�n(y)

(
y − μ1

σ

)3

. (6)

Here, P�n is the normalized particle density gradient, and μ1

and σ are the corresponding mean and standard deviation.
For all finite μ, the skewness relaxes to a finite negative

value at long times. As we take the linear response limit
μ → 0 and the asymmetry of the initial state vanishes, how-
ever, S is expected to vanish proportionally following the
expectations for normal diffusion. Using a linear fit, we ex-
trapolate the skewness at μ = 0 [50], which we show in Fig. 4.

Surprisingly, whenever JW �= JE a finite skewness persists
at μ = 0. At the symmetric point, instead, skewness vanishes,
as expected due to the symmetries in that case. Comparing
Sμ→0 at late times we observe a monotonic increase of the
skewness as a function of JW , crossing zero at the symmetric
point.

While this may be expected for an asymmetric model,
the asymmetric diffusive behavior we observe deviates from

expectations for diffusion. This suggests that, while the bare
transport exponent is not affected by the kinetic constraint,
dynamics in general are, revealing a novel anomalous dynam-
ical feature caused by the interplay of kinetic constraints and
a lack of reflection symmetry.

Conclusions. In this Letter we studied the influence of
kinetic constraints in combination with breaking reflection
symmetry on the dynamical properties of quantum many-body
systems. Specifically, we generalized the particle-conserving
quantum East model [24] allowing also for West constrained
hopping. While the system exhibits chaotic level spacing
statistics, we find a pure state with anomalous dynamics.
Within a range of the model parameter JW , the dynamics
from the LDW state exhibit several different types of transport
ranging from the more typical insulating and diffusive dynam-
ics to superdiffusion and even ballistic dynamics, typically
associated to integrable systems [64–66]. The discovery of
anomalous dynamics in the LDW state invites further research
into the model, specifically identifying other states sharing
similar dynamics would be extremely insightful. Furthermore,
the observation of ballistic dynamics in a generic state in a
chaotic model invites further research into models with broken
reflection symmetry in order to understand the underlying
properties that give rise to such dynamics.

We further observed diffusive scaling at infinite temper-
ature, consistent with the model’s ergodic nature. However,
the finite asymmetry we observed implies that the dynamics
are not described by a diffusion equation with a constant
diffusion coefficient. Indeed, due to the nature of the model,
one might argue that the diffusion constant should depend on
the particle density, which could explain our observations,
however, the exact nature of this dependence remains an
open question. Interestingly, the direction of the asymmetry
suggests the existence of many states moving faster to the
left, in contrast to the LDW state moving ballistically to
the right. These discrepancies present interesting open ques-
tions for future research, which would allow us to improve
our understanding on the effects of breaking reflection sym-
metry on the dynamical properties of many-body quantum
systems.

Moving from dynamical to spectral properties, we ob-
serve certain anomalies in the spectrum. Prominently, our
model hosts a set of weakly entangled eigenstates, reminiscent
of quantum many-body scars [21,36], and an anomalously
large number of zero modes only for even particle number.
Here, similarly to the PXP model, these weakly entangled
eigenstates are not engineered [67], hence the model repre-
sents a potential avenue to improve our understanding of scars
in other similar models.
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[63] T. Iadecola and M. Žnidarič, Exact localized and ballistic eigen-
states in disordered chaotic spin ladders and the Fermi-Hubbard
model, Phys. Rev. Lett. 123, 036403 (2019).

[64] C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-
Meisner, W. Brenig, and A. Revcolevschi, Magnon heat
transport in (Sr, Ca, La)14Cu24O41, Phys. Rev. B 64, 184305
(2001).

[65] A. V. Sologubenko, T. Lorenz, H. R. Ott, and A. Freimuth,
Thermal conductivity via magnetic excitations in spin-chain
materials, J. Low Temp. Phys. 147, 387 (2007).

[66] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.
Greiner, Quantum simulation of antiferromagnetic spin chains
in an optical lattice, Nature (London) 472, 307 (2011).

[67] N. Shiraishi and T. Mori, Systematic construction of counterex-
amples to the eigenstate thermalization hypothesis, Phys. Rev.
Lett. 119, 030601 (2017).

[68] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor
software library for tensor network calculations, SciPost Phys.
Codebases, 4 (2022).

L100304-6

https://doi.org/10.1103/PhysRevLett.122.220603
https://doi.org/10.1103/PhysRevB.100.184312
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1038/s42005-020-0364-9
https://doi.org/10.1103/PhysRevLett.124.160604
https://doi.org/10.1103/PhysRevLett.127.150601
https://doi.org/10.1103/PhysRevB.106.144306
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1103/PhysRevE.108.034207
https://doi.org/10.1103/PhysRevLett.132.080401
https://doi.org/10.1103/PhysRevLett.132.120402
http://link.aps.org/supplemental/10.1103/PhysRevB.110.L100304
https://doi.org/10.1103/PhysRevE.59.4912
https://doi.org/10.1103/PhysRevE.71.036102
https://doi.org/10.1126/science.aal5304
https://doi.org/10.1073/pnas.2205048119
https://doi.org/10.1103/PhysRevLett.122.210602
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevX.11.031023
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevLett.123.036403
https://doi.org/10.1103/PhysRevB.64.184305
https://doi.org/10.1007/s10909-007-9317-x
https://doi.org/10.1038/nature09994
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.21468/SciPostPhysCodeb.4

