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Driven-dissipative light-matter systems can exhibit collective nonequilibrium phenomena due to loss and gain
processes on the one hand and effective photon-photon interactions on the other hand. As a generic example
we study a bosonic lattice system implemented via an array of driven-dissipative coupled nonlinear resonators
with linearly increasing resonance frequencies across the lattice. The model also describes a driven-dissipative
Bose-Hubbard model in a tilted potential without a particle-conservation constraint. We numerically predict a
diverse range of stationary and nonstationary states resulting from the interplay of the tilt, tunneling, on-site
interactions, and loss and gain processes. Our key finding is that, under weak on-site interactions, the bosons
mostly condense into a selected, single-particle Wannier-Stark state without exhibiting the expected Bloch oscil-
lations. As the strength of the on-site interactions increase, a nonstationary regime emerges which, surprisingly,
exhibits periodic Bloch-type oscillations. As a direct consequence of the driven-dissipative nature of the system
we predict a highly nontrivial phase diagram including regular oscillating as well as chaotic dynamical regimes.
While a straightforward photonic implementation using microwave or optical modes is possible, such dynamics
might also be observable for an ultracold gas in a vertical lattice with gravity or a tilted external potential.
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Introduction. The Bose-Hubbard model is a paradigmatic
model in condensed-matter physics for describing strongly
correlated interacting bosons on a lattice [1,2]. Dissipative
behavior in these systems, typically induced by coupling with
external degrees of freedom, lead to a range of complex
phenomena, including emergent phase transitions [3–5], pair
coherent states [5], dissipation-induced correlations [6], and
pair condensation within density-induced tunneling where
dissipation can emerge intrinsically [7,8]. Given that the Bose-
Hubbard model is well-suited for bosonic systems, could it
(or similar models) also be used to describe strongly corre-
lated multiphoton states? Although photons do not directly
interact with each other, they can effectively interact through
their interaction with matter (particularly in nonlinear Kerr
media), which could give rise to intriguing collective phe-
nomena analogous to condensate matter. Indeed, this research
direction was postulated almost 20 years ago [9,10] and has
been actively developed since then [11,12].

Nevertheless there is a major difference between parti-
cle and photon systems: while the matter-particle number is
strictly conserved, photons can appear and disappear due to
absorption, spontaneous or stimulated emission, and exter-
nal photon sources. This causes open photonic systems to
be inherently out of equilibrium [13] and even stationary
sates are typically not determined simply by temperature and
entropy, but rather by the dynamical balance of gain and
loss. Intriguing nonequilibrium phenomena can thus appear in
composite light-matter systems [14–17] and, in particular, in
quantum fluids of light [18]. The most notable example is the
observation of the quasiequilibrium Bose-Einstein condensate
(BEC) of exciton polaritons—bosonic quasiparticles com-
posed of a mixture of an exciton (an electron-hole pair) and a
cavity photon—in a semiconductor microcavity [19–22] and

the BEC of photons interacting via molecules in a multimode
optical microcavity [23]. Despite the driven-dissipative nature
of these systems, they still exhibit an effective thermalization
process to which one can attribute an effective temperature.
This stands in a sharp contrast to a typical laser operation,
where the thermalization is completely ineffective and the
photon gas is far out-of-equilibrium.

Finally, substantial progress has been achieved in investi-
gating correlated many-body effects with photons [11,12]. In
earlier investigations, the focus was on establishing connec-
tions between driven-dissipative steady states and equilibrium
many-body phases. These included the prediction of a phase
transition from a superfluid to a Mott-insulator state for
photons via the photon-blockade effect in coupled cavities
[9,10,24–28]. More recently the focus was shifted towards
the intriguing realm of the driven-dissipative regime, where
nonequilibrium steady-state phases exhibit distinct properties
in comparison to thermally equilibrium cases [29–31]. For ex-
ample, the boundary between monostable and bistable phases
in a driven-dissipative model resembles characteristic Mott
insulator lobes, but the mean photon density is not constant
within these regions [29]. In a wider context, various ideas
and schemes have also been put forward to simulate geo-
metric phases and gauge potentials for photons, opening the
possibility for realizing nonequilibrium topological photonic
states [32,33].

In this Letter, we investigate a driven-dissipative array of
coupled nonlinear resonators with linearly increasing reso-
nant frequencies (see Fig. 1). In our generic model, bosons
are continuously injected into the system. Bosons are then
redistributed via nearest-neighbor mode couplings until they
eventually dissipate (for example, photon leakage through
imperfect cavity mirrors). The dynamics of the system can
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FIG. 1. Schematic sketch of the model consisting of an abstract
array of driven-dissipative coupled nonlinear resonators with on-site
interaction strength χ and linearly increasing detunings � j , mimick-
ing a constant force of F = �ω. Coherent pumps (η j) inject bosons,
which can hop between adjacent resonators at a constant rate J .
Losses κ are modeled using the quantum Heisenberg equations (3).

be effectively captured by a driven-dissipative Bose-Hubbard
model in a tilted potential without particle conservation. De-
spite the conceptual simplicity, the model, as we demonstrate,
exhibits a variety of intriguing stationary and nonstationary,
nonequilibrium phenomena controllable by the system pa-
rameters. A key result of our study is that, for sufficiently
weak on-site interactions, bosons dynamically condense into
a selected, spatially localized state due to explicit U (1) sym-
metry breaking (Fig. 2), instead of exhibiting the expected

FIG. 2. Nonequilibrium dynamics of the system for a weak on-
site interaction strength χ = 10−2 and the lattice tilt �ω = 0.5. The
system reaches a spatially localized steady state in a long time. The
expectation values of the particle number operators 〈n̂ j (t )〉 in the
course of time evolution in the first-order cumulant expansion (i.e.,
mean field) for (a) j0 = 0 and (b) j0 = 5. (c) The time evolution
of the expectation value of the total boson number operator 〈N̂〉 for
j0 = 0 in both first- and second-order cumulant expansion. (d) The
distribution of 〈n̂ j (t f )〉 over lattice sites in the stationary state for
j0 = 0 [cf. panel (a)]. To a very good approximation, the distribution
is proportional to the probability density of a single WS state (see
also Fig. 3), signaling a nonequilibrium Bose condensation into a
WS state. The mean field is quite accurate in this weakly interacting
regime.

FIG. 3. (a) Steady-state fidelity Pn(t f ) between the mean-field
wave function |ψ (t f )〉 and the WS basis states |�n〉. To a very good
approximation, the condensate wave function is either proportional
to only one WS state or is a superposition of a few WS states as in
an antiresonant case (see the discussion in the main text). (b) The
dominant eigenvalue N0 of the single-particle density matrix as a
function of �ω remains close to the total number of bosons N ,
indicating a high-condensate fraction.

Bloch oscillations [34,35]. Specifically, the condensate wave
function is often close to a single Wannier-Stark (WS) state,
with only small contributions from neighboring WS states
(Fig. 3). Interestingly, increasing the strength of local on-site
interactions drives the system into a nonstationary regime
(Fig. 4), where the bosonic density undergoes periodic Bloch-
type oscillations over time which are induced by interactions
(Fig. 5) [36–38]. This contrasts sharply with the irreversible
decay of Bloch oscillations in interacting atoms within a one-
dimensional tilted lattice [39–43]. Notably, both regimes are
independent of initial conditions and the choice of the pumped
resonator, stemming directly from the driven-dissipative na-
ture of the system. The generic nature of our model suggests
that experimental realization is feasible on various platforms,
including superconducting circuits [44–46], photonic crystal
structures [47], waveguide-coupled optical cavities [48], cou-
pled photonic microcavities [49,50], exciton polariton lattices
[51], cold atoms coupled to photonic crystals [52], and atom-
filled transverse multimode cavities [53]. Although photonic
implementation seems most promising, we note that such dy-
namics might also be observable for an ultracold gas in a ver-
tical lattice with gravity or a titled optical potential [54,55].

Model and its Hamiltonian. Consider an array of cou-
pled resonators (labeled by j ∈ Z) with linearly increasing
resonant frequencies ω j ∝ j, each containing a Kerr-like
nonlinear medium. Coherent pumps with the frequency ωp

continuously inject bosons into the resonator modes. Each
resonator is coupled to two adjacent resonators, which leads
to a coherent hopping of bosons in the resonator lattice. The
Hamiltonian of the system is given by [56] (see also Ref. [57]
therein)

Ĥ =
∑

j

[
h̄� j â

†
j â j − J (â†

j â j+1 + H.c.) + χ â†2
j â2

j

]

+ h̄
∑

j

η j (â j + â†
j ), (1)

with â j and â†
j being bosonic operators annihilating and

creating a boson in the jth resonator, respectively. Here
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FIG. 4. Mean-field nonequilibrium many-body phase diagram of
the system in the parameter plane of the force �ω vs the on-site inter-
action strength χ . (a) Relative change of the total boson number over
a long-time evolution �n [Eq. (7)] reveals three regimes: stationary
steady-state phase (deep blue), dynamically unstable chaotic regime
(light blue), and nonstationary regular oscillatory states (warm col-
ors). (b) Time-averaged maximal fidelity between the mean-field
wave function |ψ〉 and the WS basis states |�n〉 is complementary to
panel (a) and reveals particularly a series of narrow bands that can be
explained on a single-particle level as pumping antiresonances; see
the discussion in the main text. The dashed (dotted) lines correspond
to zeros of the Bessel function J0 (J1). Note that interactions slightly
shift the positions of the antiresonances.

we have defined

� j = ω j − ωp ≡ �ω( j − j0) (2)

as the resonator-pump detuning. Moreover, J is the nearest-
neighbor tunneling-amplitude rate, χ is the on-site interaction
strength due to the effective Kerr nonlinearity, and η j is the
pumping rate of the jth resonator. Bosonic losses κ , assumed
to be the same throughout the lattice, are taken into account
via the quantum Heisenberg equations of motion,

dâ j

dt
= i

h̄
[Ĥ , â j] − κ â j . (3)

The Hamiltonian (1) is an effective time-independent
Hamiltonian expressed in the rotating frame of the coherent
pumps, which is quite general and can be applied to many
experimental scenarios (for example, such a Hamiltonian can
be designed within a circuit-QED setup [45], but is also an

FIG. 5. Mean-field dynamics of the expectation values of the
number operators 〈n̂ j (t )〉 for different interaction strengths: (a) χ =
0.13 in the oscillatory regime, and (b) χ = 0.135 in the chaotic
regime. Stationary and different nonstationary solutions are distin-
guished by monitoring (c) the relative change of the total boson
number over a long-time evolution and (d) the time-averaged maxi-
mal fidelity. The lattice tilt is set to �ω = 0.5 for all panels.

effective lowest-Bloch-band Hamiltonian of ultracold
atoms in driven dissipative optical lattices [55], see also
Refs. [11,12]). The first line of the Hamiltonian (1) describes
the familiar equilibrium Bose-Hubbard model in a tilted
lattice. While in the noninteracting limit the equilibrium
model features well-known Bloch oscillations [34,35],
it has been recently shown that strong interactions can
lead to disorder-free many-body localization [58,59] (for
related experiments, see Ref. [60]). The second line of the
Hamiltonian (1) introduces a coherent pumping, which along
with the environment decay κ [see Eq. (3)] explicitly breaks
the U (1) symmetry of the system associated with the particle
number conservation [56]. In the following we show that this
lack of the particle conservation and the explicitly broken
U (1) symmetry due to the loss and gain processes have
fundamental consequences in both statics and dynamics of
the system.

Consequences of explicit U(1) symmetry breaking: State
selection. In order to gain some physical intuition, let us start
with the the noninteracting limit, χ = 0. In the WS basis, the
Heisenberg equations of motion read [56] as

i
db̂n

dt
= (�n − iκ )b̂n + η̃n, (4)

where b̂n = ∑
j βn, j ân, η̃n = ∑

j βn, jη j , and βn, j =
J j−n(2J/�ω), with Jk being the Bessel function of the
first kind of order k. The equations of motion (4) readily yield

b̂n(t ) = e−it (�n−iκ ) b̂n(0) + e−it (�n−iκ ) − 1

�n − iκ
η̃n. (5)
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If ∀nη̃n = 0, the solutions correspond to damped Bloch
oscillations [56]. If additionally κ = 0, one then recovers
the common Bloch oscillations and the choice of j0 in
Eq. (2) becomes arbitrary as it only adds an irrelevant phase
factor.

In the long-time limit t � κ−1 � J−1, regardless of the
choice of initial conditions b̂n(0), the Bloch oscillations are
completely damped out and the system reaches a steady state
with the WS mode occupations,

〈n̂n〉 = η̃2
n

(�ω)2(n − j0)2 + κ2
. (6)

As can be seen from Eq. (6), now j0 plays an essential role.
In particular, by properly choosing j0 ∈ Z, one can select
dynamically a single WS mode (n = j0) to be microscop-
ically occupied. However, we note this approach does not
work when η̃ j0 = 0, which happens for some specific ratios of
J/�ω. In these cases, one encounters a sequence of pumping
antiresonances, which leads to the occupation a few adjacent
WS states instead. Furthermore, these antiresonances are re-
sponsible for nontrivial phase boundaries between stationary
and nonstationary states as shown in Fig. 4, which we delve
into in the last section.

The above simple analysis is valid qualitatively also for
sufficiently small on-site interactions, which we confirm nu-
merically in the following. In numerical simulations we set
J = h̄ = 1 (as the unit of energy), κ = 10−2, and ∀ j â j (0) = 0,
and we calculate the expectation values of the relevant oper-
ators using the cumulant expansion in both first (i.e., mean
field) and second order [56,61]. Moreover, for the sake of
simplicity and without loss of generality, we consider only
a single resonator pumping, η j = ηδ j,0, but different choices
do not change our main conclusions [56]. Finally, with the
exception of Fig. 2, we also fix j0 = 0.

Nonequilibrium condensation in the weakly interacting
regime. Now, we turn our attention to the weakly interact-
ing regime, χ 	 1. As in the noninteracting case, in the
weakly interacting regime, the many-body bosonic system
still occupies macroscopically a single or a few one-particle
WS states with a high degree of coherence. In Fig. 2,
we show the expectation value of the number operators
n̂ j = â†

j â j as well as the total boson-number operator N̂ =∑
j n̂ j . As can be seen, in each case the system reaches

a spatially localized stationary steady state which, for the
chosen parameters, is proportional to a single WS state with
n = j0.

To further quantify this observation, we calculate the
fidelity Pn(t ) = |〈�n|ψ (t )〉|2 between the mean-field wave
function |ψ (t )〉 and the WS basis states |�n〉. The distribution
of Pn is illustrated in Fig. 3(a) in steady states, showing it is
centered around n = j0 = 0 [cf. Eq. (6)]. In general two dis-
tinct scenarios are possible: (i) The mean-field wave function
consists predominantly of a single WS state, or (ii) it has con-
tributions from a few different WS states. As Fig. 3(a) shows,
for �ω = 0.5 [as in Figs. 2(a) and 2(d)] the wave function
is close to the central WS state, while for �ω = 0.35 two
additional modes n = ±1 are also significantly occupied at
the macroscopic level. This is because of the aforementioned

pumping antiresonances, where the population of the n =
±1 (n = 0) mode is completely suppressed at �ω ≈ 0.522
(�ω ≈ 0.362) due to hitting a zero of the J1 (J0) Bessel
function.

In order to confirm that we deal with Bose condensa-
tion, we consider the single-particle reduced density matrix
ρ̂1(x, x′) = 〈ψ̂†(x)ψ̂ (x′)〉, whose eigenvalues determine the
occupation probabilities of the natural orbitals [62]. The high-
est occupation number quantifies the level of coherence in
the system. Although we can expand the field operators in
any orthogonal basis, we choose the Wannier basis ψ̂ (x) =∑

j w j (x)â j and calculate the eigenvalues of 〈â†
j âl〉 in a steady

state of the system in the second-order cumulant expansion
[56]. Indeed, as can be seen from Fig. 3(b), the highest
eigenvalue N0 is very close to the total number of bosons
N = 〈N̂〉, supporting the interpretation of a dynamical BEC.
In contrast to the distribution of Pn as shown in Fig. 3(a),
the highest eigenvalue of the reduced density matrix is only
weakly affected by the lattice tilt �ω. Hence, we infer that the
condensate wave function is either close to a single WS state
or is a superposition of a few WS states.

Nonstationary phases in the strongly interacting regime.
Above we showed that in the noninteracting and weakly in-
teracting regimes bosons can condensate into a one or a few
selected WS states and reach a steady state. However, with
increasing the interaction strength χ , the stationary states
lose their stability and intriguing nonstationary solutions ap-
pear. Figure 4(a) depicts the nonequilibrium many-body phase
diagram of the system in the parameter plane of {χ,�ω}
and contains three main regimes: stationary steady states
(deep blue), a dynamically unstable chaotic regime (light
blue), and nonstationary regular oscillatory states (warm
colors). The three phases are distinguished by the relative
change of the total boson number over a long-time evolution,
defined as

�n = maxt 〈N̂ (t )〉 − mint 〈N̂ (t )〉
avgt 〈N̂ (t )〉 , (7)

with maxt , mint , and avgt denoting, respectively, the maximal,
minimal, and average value of a quantum-averaged observable
during a long-time evolution (where the initial transient dy-
namics of the system has been neglected). Although the phase
diagram is dominated by the stationary and dynamically un-
stable chaotic regimes, regions of regular oscillatory dynamics
appear mostly on boundaries between the two regimes (see
also Fig. 4(b), showing the time-averaged maximal fidelity,
and the Supplemental Material [56]).

Interestingly, bosons in the regular oscillatory regime
tunnel between a few neighboring lattice sites perform-
ing spatially confined oscillations reminiscent of standard
Bloch oscillations (see Fig. 5). Unlike standard Bloch os-
cillations that tend to decay in interacting systems [39–43],
in our driven-dissipative model, oscillatory solutions are, in
fact, induced by the on-site interactions and persist over
long-time dynamics, even beyond the mean-field regime, al-
though with quantitative differences [56], as expected from
the literature [63,64]. These solutions can be conceptualized
as multimode limit cycles (as shown in the Supplemental
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Material [56]) within driven-dissipative systems, where the
steady-state solutions of equations of motion exhibit dynamic
instability [65–73].

Summary, conclusions, and perspectives. In summary, we
studied an array of coupled nonlinear resonators with lin-
early increasing resonant frequencies, which is equivalent
to a U (1)-symmetry-broken driven-dissipative Bose-Hubbard
model with a tilted potential. It could be equally implemented
based on frequency-equidistant weakly coupled modes of a
single resonator. Our semianalytical analysis reveals a range
of both stationary and nonstationary nonequilibrium phenom-
ena. Notably, bosons condense into selected, stationary WS
states under sufficiently weak on-site interactions. As the
strength of interactions increases, we observe a transition to
a nonstationary dynamical regime marked by periodic Bloch-
like oscillations over time. Unlike the equilibrium counterpart,
these regular oscillations are induced by the interactions and
do not decay over time.

Our research sheds light on the intricate behavior of
driven-dissipative coupled resonator systems, emphasizing
the role of explicit U (1) symmetry breaking and interac-
tions in shaping their dynamics. These findings hold promise
for applications such as coherent light storage [74–76],

light confinement [77–79], generation of nonclassical many-
photon states [80–82], and distributed quantum sensing
[83–85]. While our focus in this Letter has been on weakly
interacting systems, we underscore the importance of delv-
ing deeper into dynamics beyond perturbation regimes.
Specifically, it is interesting to explore the nonstationary
states in many-body regimes, particularly in the context
of ergodicity breaking [86,87] and Stark many-body lo-
calization [88]. Another intriguing scenario is to extend
our driven-dissipative model to a topological setting, where
exotic nonequilibrium topological effects are expected to
appear [89–92].

The data presented in this article are available from
Ref. [93].
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