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The Riemann hypothesis is a major open problem in number theory. It asserts that the nontrivial zeros of the
Riemann zeta function ζ (x) occur on the critical line, i.e., for x = u + iy with u = 1

2 , in the complex plane. We
discuss the physical realization of the zeros of ζ (x) on the critical line by means of a 1D nonperiodic lattice
with sites at positions z j = d ln( j + 1) ( j ∈ {0, 1, 2, . . .}) along the z axis with d a length and the form factors
of the sites modulated by (−1) j+1e−αz j with αd playing the role of u. On the critical line, αd = 1

2 . We find
quasitransparent states when y = kd

2 is the imaginary part of a zero of ζ (x) on the critical line with k the wave
vector of the particle between sites z j and z j+1.
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The Riemann hypothesis [1]—that the nontrivial zeros [2]
of the Riemann zeta function ζ (x) lie on the critical line
(CL) x = u + iy with u = 1

2 in the complex plane—is a major
open problem in number theory, bearing on the distribution of
the prime numbers, and is a component of Hilbert’s eighth
unsolved problem [3]. ζ (x) is also related to range of dis-
parate physical and engineered systems as well as problems
in applied mathematics [4–11]. Notably, the statistics of the
nontrivial zeros of ζ (x) appear to follow the statistics of the
eigenvalues of a Gaussian unitary ensemble, described by
complex Hermitian matrices with Gauss distributed elements,
which has been suggested to indicate a deep connection be-
tween ζ (x) and the quantum mechanics of classically chaotic
systems lacking time-inversion invariance [12–17]. Indeed,
the formal similarities have motivated a potential search for
a quantum Hamiltonian whose eigenvalues give the nontrivial
zeros of ζ (x).

The present work focuses on the realization of a physi-
cal system, namely a one-dimensional nonperiodic lattice or
chain, in the spirit of other nonperiodic chains, such as the
Fibonacci or Thue-Morse chain, whose scattering properties
and electronic structure are closely related to ζ (x). The sys-
tem under consideration does not provide the sought-after
Hamiltonian (for one thing, the system we study has only one
degree of freedom). Specifically, upon a judicious choice of
parameters, the transport properties of the chain can be used
to find the nontrivial zeros of ζ (x) on the CL. What must be
emphasized here is that a simple physical system can pro-
vide insight into a fundamental problem in mathematics and,
moreover, the system we propose exhibits unusual transport
properties in its own right.

While computing the zeros of ζ (x) has become a cot-
tage industry [18,19], it has been noted that ζ (x) can also
be obtained as the spectrum of a logarithmic-time sequence
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of Dirac δ functions [20]. This suggests physically realizing
ζ (x) in space, instead of time, as a logarithmic chain (LC)
to be defined shortly. Since the standard series expression
for ζ (x) = ∑∞

n=1 n−x is not convergent on the CL, a point
missed in Ref. [20], we use the Dirichlet eta function, for
which η(x) = (1 − 21−x )ζ (x). The zeros of η(x) consequently
coincide with those of ζ (x) provided u �= 1. Our main interest
is the CL, for which u = αd = 1

2 , though other values can also
be considered. Our aim again is to physically realize the zeros
of ζ (x) on the CL in the properties of a potentially attainable
structure. Namely, we consider a suitably designed LC (to be
specified in the next paragraph), and show that the states for
which kd

2 is the imaginary part of a zero of ζ (x) on the CL
are quasitransparent in the sense that the Landauer resistance
goes to zero as |λ|

kd → 0 approximately to fourth order in |λ|
kd ,

with λ a parameter characterizing the on-site potentials of
the LC (see below) and k the particle’s wave vector between
sites where it acts as a free particle, i.e., kd =

√
Ē , where Ē

is an energy eigenvalue in dimensionless units. Transparent
states, namely those states for which the Landauer resistance
goes to zero as chain length becomes infinite, in quasiperiodic
lattices have received considerable attention [21–25]. For the
LC, we shall see that states connected with the nontrivial zeros
of ζ (x) on the CL are almost transparent or quasitransparent
whereas other states have distinct scaling of the resistance.
The underlying mechanism for quasitransparency in the LC
is distinct from transparency in other studied quasiperiodic
chains. In particular, the spectra of a number of quasiperi-
odic chains such as Fibonacci, Thue-Morse, and Gauss chains
[26–29] are singular-continuous yet may support delocalized
states [30]. The spectrum of the nonperiodic LC, instead, is
continuous, yet exhibits isolated states that are transparent in
a limiting sense. We shall see that these quasitransparent states
are connected to the vanishing of the LC’s structure factor
(SF) S(2k) at the nontrivial zeros of ζ (x).

We start with the SF S(k) assuming form factor
(−1) j+1e−αz j at site z j = d ln( j + 1) ( j ∈ {0, 1, 2, . . .}) with
d a length (without loss of generality, taken below as 1)
and α > 0, as shown in Fig. 1. Thus, the magnitude of
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FIG. 1. Schematic diagram showing site positions on z axis and
scattering amplitudes (form factors) as the dots of the LC with
sites at z = z j = d ln( j + 1). The scattering amplitude of site j is
(−1) j+1e−αz j . Without loss of generality, we choose d = 1.

the form factors of successive sites is attenuated by α >

0, and the signs of the form factors alternate so that the
SF yields a result closely related to η(x) as we see just
below. S(k) gives the diffraction pattern in the first Born
approximation (neutron, x ray, or optical depending on the
relevant field undergoing scattering with k the wave vector
along the chain) and also provides insight into the elec-
tronic structure of the chain. The line in the complex plane
u + iy with u = αd = 1

2 is the CL, the focus of this study,
which, according to the Riemann hypothesis, contains the
nontrivial zeros of ζ (x). The LC then is defined by the
distribution f (z) = ∑N−1

j=0 (−1) j+1e−αzδ(z − z j ) with α > 0.
The Fourier transform is F (k) = ∫ ∞

−∞dz f (z)e−ikz and S(k) =
|F (k)|2. Explicitly, F (k) = η(αd + ikd ) for N → ∞ and
S(k) = |η(αd + ikd )|2.

In Fig. 2(a) is shown S(k) (black) and |ζ (αd + ikd )|2 (red)
for αd = 1

2 , illustrating that the zeros of S(k) coincide with
those of ζ (x) on the CL. Figure 2(b) plots |η( 1

8 + ikd )|2
(black) and 8|η( 7

8 + ikd )|2 (red); the prefactor 8 is chosen so
that all curves have visually comparable scale. Neither of the
curves in (b) has a zero. To emphasize, S(k) achieves zeros
coinciding with those of ζ (x), i.e., on the CL, only for the
value αd = 1

2 provided the Riemann hypothesis is correct.
We turn to the solution of the Schrödinger equation in

a Kronig-Penney model where the logarithmic sites present
Dirac δ-function potentials [29]. To a great extent, properties
of nonperiodic chains are largely similar whether considered
in a tight-binding model or employing continuum models
[28]. In the present case, however, we do not pursue a

FIG. 2. (a) The structure factor S(k) = |η( 1
2 + ikd )|2 of the LC

(black). Also shown is |ζ ( 1
2 + ikd )|2 (red). Both curves exhibit the

zeros of ζ (x) on the CL. (b) |η( 1
8 + ikd )|2 (black) and 8|η( 7

8 + ikd )|2
(red) evaluated off the critical line. Neither curve in (b) possesses
zeros.

tight-binding approach as, we shall see, we need the actual
logarithmic spatial arrangement of sites in the distribution
f (z) to realize η(x). In the cases of many quasiperiodic chains,
tight-binding models preserve the underlying quasiperiodic-
ity. The LC, however, is not a quasiperiodic chain in the sense
that the Fibonacci chain and others are. Indeed, we have made
desultory attempts at implementing diagonal and off-diagonal
tight-binding models for the LC without apparent success.

Continuing with the Kronig-Penney model, a practical LC
might have potentials differing from Dirac δ functions; how-
ever, based on experience with other nonperiodic chains, this
is not expected to significantly alter our conclusions. Dirac
δ-function potentials provide simple numerical means to ana-
lyzing the electronic structure of nonperiodic chains.

The Hamiltonian is H = − h̄2

2m∗
∂2

∂z2 + h̄2

2m∗
λ
d f (z) with m∗ the

effective mass and λ giving the on-site potential strength.
For brevity, define the normalized Hamiltonian H̄ = 2m∗

h̄2 H to
give the scaled Schrödinger equation H̄ψ = Ēψ with Ē an
eigenvalue of H̄ and ψ the corresponding eigenfunction. Since
between sites on the LC the electron acts as a free particle with
wave vector k, kd =

√
Ē .

In Ref. [29], we obtain the transfer matrix TN for an N-site
LC with TN = QN MQN−1M · · · MQ2MQ1MQ0, where M =
I + iγ D is the transfer matrix across the jth site, D has entries
D1,l = 1 and D2,l = −1 for l ∈ {1, 2}, I is the 2 × 2 identity
matrix, and γ = λ

2kd . The transfer matrix between sites j − 1
and j is

Qj =
[

exp[−ik(z j − z j−1)] 0
0 exp[ik(z j − z j−1)]

]
. (1)

TN can be expanded as TN = ∑N−1
n=0 (iγ )nTn with

Tn =
N−1∑

p>p′>p′′>···>p(n−1)=0

QN QN−1 · · · Qp+1DQp

· · · Qp′+1DQp′ · · · Qp(n−1)+1DQp(n−1) · · · Q1Q0, (2)

where p( j) is p with j primes.
We explore conditions for which states are quasitransparent

employing the Landauer transport formalism [31,32]. The
dimensionless resistance for state k in an N-site LC for a
given value of αd is [33,34] ρ(N ) = 1

2 ( 1
2 Tr T †

N TN − 1). It
is useful to define an auxiliary measure of the Landauer re-

FIG. 3. R(N ) as a function of Ē = k2 for αd = 1
2 on the CL with

N = 20. Dark (light) colors indicate low (high) Landauer resistance
as indicated on the legend. The vertical bars occur at the zeros of
ζ (x) on the CL.

L081406-2



QUASITRANSPARENT STATES IN THE LOGARITHMIC … PHYSICAL REVIEW B 110, L081406 (2024)

FIG. 4. R(N ) (black) and perturbation-theory expression ln[1 + 2γ 2S(2k)] (red) as functions of kd for (a) λ = 1 and (b) λ = 10 with
αd = 1

2 for N = 150. The black and red curves largely overlap.

sistance R(N ) = ln[2ρ(N ) + 1] = ln 1
2 Tr T †

N TN . Based on the
above [35], we expand Tr T †

N TN to second order in γ to give
R(N ) ≈ ln[1 + 2γ 2S(2k)]. Thus, R(N ) will be very small at
zeros of S(2k) giving rise to quasitransparency. The 2 in the
argument of the SF is connected to the momentum transfer in
an elastic scattering process.

Figure 3 shows R(N ) as a function of Ē = k2 and λ

for αd = 1
2 . The vertical bands are at zeros of ζ (x) on the

CL, though the picture becomes more complex at higher
|λ|. While Fig. 3 provides a global view of R(N ), for
quantitative purposes, we show in Fig. 4 R(N ) (black) and
the perturbation-theory expression ln[1 + 2γ 2S(2k)] (red) as
functions of kd with αd = 1

2 for (a) λ = 1 and (b) λ = 10 all
for N = 150. We note that the respective red and black curves
almost entirely overlap, indicating the perturbative expression
is accurate when |λ|

kd 
 1. In fact, the leading correction to
R(N ) is O(λ2) unless S(2k) = 0. In that case, the leading
correction is O(λ3); however, due to the alternating signs of
the form factor, odd-order terms are small, so in practice the
most significant correction is O(λ4) at zeros of ζ (x) on the
CL. This is what we call quasitransparency.

In Fig. 5 is plotted R(N ) (black) and perturbation-theory
expression ln[1 + 2γ 2S(2k)] (orange) as functions of N for
λ = 1 and αd = 1

2 for (a) kd/2 = y21, (b) y21+y22

2 , (c) y22, (d)
y22+y23

2 , (e) y23, (f) y23+y24

2 , (g) y24, and (h) y24+y25

2 with yn the

imaginary part of the nth zero of ζ (x) on the CL. R(N ) at the
zeros on the CL have numerical values far less than those off
the zeros. The behaviors of R(N ) at the zeros on the CL and
off the zeros are clearly distinct. In the former case, R(N ) ≈ 0,
while in the latter, R(N ) → constant �= 0. The former is an
example of a quasitransparent state, viz., a state for which
R(N ) ≈ 0. We mention in passing that for kd/2 in Fig. 5,
panels (b), (d), (f), and (h), which do not correspond to zeros
of ζ (x), the curious scaling of R(N ), i.e., to a constant rather
than exponential (localized state) or power law (critical state),
is due to the logarithmic spatial nature of the LC, the alter-
nating sign of the scattering amplitudes, and their exponential
falloff. As N increases at a fixed k, the sites of the LC play a
decreasing average in scattering a propagating wave function
on the LC.

In Fig. 6 we plot R(N ) for N = 1000 on the CL for the
same values of kd as in Fig. 5 as functions of λ. Note that for
cases where kd/2 = yn, the state is approximately transparent
in |λ| � 10. Also note the flat bottoms of the curves in the
quasitransparent region, in contrast to states for which kd

2 does
not correspond to the imaginary part of a zero on the CL.
One might think heuristically that the factor (−1) j+1e−αz j just
balances the decrease in logarithmic cite spacing z j+1 − z j

FIG. 5. R(N ) (black) and perturbation-theory expression ln[1 + 2γ 2S(2k)] (orange) as functions of N for λ = 1 and αd = 1
2 for (a) kd/2 =

y21, (b) (y21 + y22)/2, (c) y22, (d) (y22 + y23)/2, (e) y23, (f) (y23 + y24)/2, (g) y24, and (h) (y24 + y25)/2, where yn is the imaginary part of the
nth zero of ζ (x) on the CL.
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FIG. 6. R(N ) for N = 1000 and αd = 1
2 as functions of λ for (a) kd/2 = y21, (b) (y21 + y22 )/2, (c) y22, (d) (y22 + y23)/2, (e) y23, (f)

(y23 + y24)/2, (g) y24, and (h) (y24 + y25)/2.

with increasing j for αd = 1
2 . That this is not so is proven

by the points raised above as well as the fact that states are
quasitransparent for neither αd > 1

2 nor < 1
2 .

We thus identify quasitransparent states, i.e., transparent
in the limit λ→0, but approximately transparent for |λ|

kd 
1,
corresponding to yn = kd

2 the imaginary part of zeros on the
CL by building a LC with αd = 1

2 . This suggests that the N-
scaling of the transport properties can be used to identify zeros
of ζ (x) by the energies of states with low Landauer resistance.
The LC can be employed as a filter to pass electrons whose
energies correspond to zeros on the CL of ζ (x). Realizing
LCs might be possible in suitably designed chain molecules
or in semiconductor heterostructures [36]. The existence of

such quasitransparent states in the LC is itself of interest
given the focus of much work on localized versus delocalized
state in various nonperiodic chains [28]. If a structure could
be produced where αd could be tuned to and away from 1

2 ,
the effects discussed here might be of interest to induce a
metal-insulator-like transition in a LC. Moreover, although
we do not pursue it here, a grating with an LC amplitude
modulation, for example, can produce a diffraction pattern
related to ζ (x) given by the SF of such a lattice, with the nulls
corresponding to the nontrivial zeros on the CL. More broadly,
in view of the importance of the Riemann hypothesis, a new
physical realization of the nontrivial zeros of ζ (x) provides an
experimental probe of a central problem in number theory.
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[26] A. Sütő, J. Stat. Phys. 56, 525 (1989); J. Bellissard, B. Iochum,
E. Scoppola, and D. Testard, Commun. Math. Phys. 125, 527
(1989).

[27] J. Bellissard, A. Bovier, and J.-M. Ghez, Commun. Math. Phys.
135, 379 (1991); A. Bovier and J.-M. Ghez, ibid. 158, 45
(1993).

[28] A. Jagannathan, Rev. Mod. Phys. 93, 045001 (2021).
[29] D. S. Citrin, Phys. Rev. B 107, 125150 (2023); 107, 235144

(2023).
[30] E. Maciá and F. Domínguez-Adame, Phys. Rev. Lett. 76, 2957

(1996).

[31] B. Sutherland and M. Kohmoto, Phys. Rev. B 36, 5877
(1987).

[32] B. S. Andereck and E. Abrahams, in Physics in One Dimension,
edited by J. Bernasconi and T. Schneidere (Springer, New York,
1981), pp. 317–320.

[33] M. Kohmoto, Phys. Rev. B 34, 5043 (1986).
[34] E. Maciá, International Scholarly Research Notices 2014,

165943 (2014).
[35] D. S. Citrin, Phys. Lett. A 480, 128978 (2023).
[36] R. Merlin, IEEE J. Quantum Electron. 24, 1791

(1988).

L081406-5

https://doi.org/10.1007/BF01044450
https://doi.org/10.1007/BF01218415
https://doi.org/10.1007/BF02098048
https://doi.org/10.1007/BF02097231
https://doi.org/10.1103/RevModPhys.93.045001
https://doi.org/10.1103/PhysRevB.107.125150
https://doi.org/10.1103/PhysRevB.107.235144
https://doi.org/10.1103/PhysRevLett.76.2957
https://doi.org/10.1103/PhysRevB.36.5877
https://doi.org/10.1103/PhysRevB.34.5043
https://doi.org/10.1155/2014/165943
https://doi.org/10.1016/j.physleta.2023.128978
https://doi.org/10.1109/3.7108

