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No bulk thermal currents in massive Dirac fermions
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We calculate the energy current flowing in the bulk of a (2+1)-dimensional system of massive Dirac fermions
and along a (1+1)-dimensional domain wall generated by flipping the sign of the particle mass. We show that,
at low temperatures and in the long-wavelength limit, the system does not support a bulk thermal Hall current
proportional to the temperature gradient. The only such contribution is due to states localized at the domain wall.
This puts an end to a controversy existing in the literature and amends previous results obtained via first-order
perturbation calculations.
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Introduction. The thermal Hall effect mirrors the Hall ef-
fect in the realm of energy transport, i.e., a transverse heat
current emerges when a temperature gradient is established.
Such an effect has been studied in a variety of systems,
such as multiferroics [1], topological insulators [2], magnets
[3–6], quantum spin liquids [7–9], and strongly correlated
systems [10–16], to name a few, and it also constitutes an im-
portant diagnostics of neutral excitations. From a theoretical
standpoint, thermal responses can be calculated by using Lut-
tinger’s “trick” [17], by exploiting the equivalency that exists
in the linear-response regime between a nonflat metric tensor
(also termed “gravitational potential” in what follows, in anal-
ogy with the electric potential) and temperature fluctuations
in generating energy currents [17–19]. In this scheme, the
Hamiltonian is perturbed by introducing a nontrivial metric
tensor that couples to the system’s energy density. The first
derivative of the metric tensor then defines the gravitational
field (analogous to the electric field and equivalent to the
thermal gradient within linear response) that generates the
longitudinal and/or Hall thermal currents [17–22].

Recently, a controversy has arisen about whether thermal
Hall currents proportional to the gravitational field (i.e., to
the temperature gradient) can be supported in the system’s
bulk [20,23,24], or whether such currents are always propor-
tional to higher-order gradients of the temperature fluctuations
[25–29]. References [25,26] were the first to point out a
fundamental difference between the charge and thermal Hall
effects. They showed that, in contrast to transverse charge
currents that arise in response to uniform electric fields, within
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a gravitational Chern-Simons action no thermal Hall current
is generated in response to a uniform gravitational field (tem-
perature gradient) in the bulk of a (2+1)-dimensional gapped
system. This result was challenged by Refs. [20,23,24]. In
particular, Ref. [23] found a bulk contribution proportional to
the first derivative of the gravitational potential, when calcu-
lating the thermal Hall response to first order in the metric
tensor and in the long-wavelength limit. Since the gravita-
tional Chern-Simons action does not support a bulk thermal
Hall current generated by a uniform gravitational field, if the
system indeed exhibits an inflow bulk current, it implies that
the gravitational Chern-Simons action does not completely
describe the system. There could be other effective actions,
such as a torsional Chern-Simons term [28,30], that better
describe the system.

More recent analytical and numerical works [27–29] are in
agreement with the earlier findings of Refs. [25,26]. However,
in deriving their results, Refs. [27–29] use different methods
compared to Refs. [20,23,24]. Specifically, Ref. [27] employs
a low-energy effective bulk theory similar to the approach
in Ref. [26]. Reference [28] is based on a hydrostatic ef-
fective action. Reference [29], on the other hand, relies on
numerical calculations on a lattice model. These methods are
significantly different from those in Refs. [20,23,24], which
are based on analytical calculations from microscopic theories
and boundary theories derived from microscopic approaches.
It is therefore unclear whether these latter works present short-
comings that can be remedied to get results consistent with the
rest of the literature [25–29]. The scope of this Letter is thus to
put an end to such controversy by showing, with an analytical
calculation based on the massive Dirac fermion model, which
closely follows that of Ref. [23], that it is indeed possible to
obtain the correct results by including all-order contributions
in the metric tensor to the system’s free energy. By doing so,
we show that the bulk thermal Hall response proportional to
a uniform gravitational field (temperature gradient) vanishes.
Thus, the thermal Hall response in the long-wavelength limit
features only boundary contributions. Since the massive Dirac
fermion model is the continuum low-energy theory for many
topological insulator models [31–34], our results indicate that
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FIG. 1. The boundary located at x1 = 0 separates two (2+1)-
dimensional bulk massive Dirac fermion systems, whose masses
are equal but of opposite sign: negative in the half plane x1 < 0
and positive in the half plane x1 > 0. A boundary current jbdry

E

flows along the edge, i.e., in the x2 direction, and bulk currents
j1
E flow across the boundary. These currents satisfy the continuity

equation given in Eq. (1). The textured background represents a
nonuniform gravitational potential, which varies in the x2 direction.
This system is equivalent to the interface between two different
topological insulators, with their left and right ends connected to heat
baths kept at different temperatures. The equilibrium temperature of
the edge mode, as described in Eq. (2), matches that of the upstream
heat bath [35,36]. Throughout this Letter, temperature T is treated as
uniform in both space and time. Any spatial variation in temperature
is interpreted as a variation in gravitational potential [17,18].

for these gapped systems, there is no thermal Hall bulk cur-
rent proportional to the temperature gradient. In turn, these
systems can be described by the gravitational Chern-Simons
theory.

In this Letter we consider the system of Fig. 1, i.e., a
(1+1)-dimensional boundary located at x1 = 0 and oriented
along the direction x2 which separates two (2+1)-dimensional
bulk massive Dirac fermion systems. We assume their masses
in the two half spaces, x1 > 0 and x1 < 0, to be equal in mag-
nitude but opposite in sign, as shown in Fig. 1. The continuity
of energy currents imposes that a bulk thermal Hall current
must necessarily exist to account for boundary anomalies.
This is to say that, if a (1+1)-dimensional current jbdry

E flows
along the boundary, then the bulk current j1

E flowing across
the boundary must satisfy the continuity equation [37]

j1
E (x1 = −0) = − j1

E (x1 = +0) = 1
2∂2 jbdry

E . (1)

This equation is central in what follows in proving that the
bulk current j1

E (x1) can only be proportional to the derivative
of the gravitational field (i.e., to the second derivative of the
temperature fluctuations).

On the contrary, the calculation of Ref. [23] suggests that
the boundary current is directly proportional to the metric
tensor. If this were true, according to Eq. (1), the bulk thermal
Hall current would be proportional to the first derivative of the
metric, and therefore to the temperature gradient. However,
these findings are derived from lowest-order approximations
of the quantities involved: Higher-order corrections could dra-
matically alter this conclusion.

To show that this is indeed the case, we follow the method
used in Ref. [23] but we calculate contributions to the ther-
mal current to all orders in the gravitational potential in the

long-wavelength limit. We omit terms in the boundary current
that depend on the derivatives of the metric, since such terms
would correspond to contributions to the bulk thermal Hall
current proportional to at least the second derivative of the
gravitational potential. Our all-order calculation shows that
the long-wavelength energy current flowing along a boundary
located at x1 = 0 is

jbdry
E (x2) = πT 2

12
, (2)

i.e., it depends only on the uniform equilibrium temperature T
and does not contain any term proportional to the gravitational
potential itself (i.e., to the temperature fluctuations away from
equilibrium). According to the thermal generalization of the
Streda formula [38], we can use the result of Eq. (2) to find the
thermal Hall conductivity, κH = −sgn(m)πT/12 [26,33,38].

Equation (2) implies that ∂2 jbdry
E = 0 and therefore one

can immediately conclude that there is no bulk thermal
Hall current which is proportional to the gravitational
field (temperature gradient). Thus, by following the same
method presented in Ref. [23], our all-order calculation
corrects their approximate result. Going beyond the long-
wavelength approximation, one would include contributions
to the boundary energy current of Eq. (2) that are pro-
portional to the first derivative of the metric tensor. These
in turn translate, via Eq. (1), into leading-order contribu-
tions to the bulk thermal Hall current that are proportional
to the second derivative of the temperature fluctuations
away from equilibrium. This result is in agreement with
the effective theories of Refs. [25,27] and numerical results
of Ref. [29].

The model. The action for (2 + 1)-dimensional Dirac
fermions coupled to a gravitational field is (hereafter, we set
h̄ = 1) [39]

S =
∫

x,t

√
gψ̄

[
i

2

(
eμ

αγ α−→∇ μ − ←−∇ μγ αeμ
α

) − m

]
ψ, (3)

where
∫

x,t = ∫
d2xdt and the covariant derivative

−→∇ μ (
←−∇ μ)

acts on the right (left) two-component spinor field ψ . Ex-
plicitly,

−→∇ μψ = −→
∂ μψ + [γα, γβ]ω αβ

μ ψ/8, where
−→
∂ μ is the

derivative over the temporal (μ = 0) and spatial (μ = x, y)
directions, while ω αβ

μ = e α
ν eν ′

β�ν
μν ′ − eν

β∂μe α
ν is the spin con-

nection [40]. Finally, the combinations γ 0γ 1, γ 0γ 2, and γ 0

correspond to the usual Pauli matrices σx, σy, and σz, re-
spectively. In Eq. (3), we have introduced the metric gμν ,
whose determinant, in modulus, is g. The factor

√
g en-

sures invariance of the action under changes of coordinates.
Throughout this Letter, we use the greek indices μ, ν =
0, 1, 2 and α, β, . . . = 0̂, 1̂, 2̂ to denote the environment and
locally flat (or internal) coordinates, respectively. In what fol-
lows, when we refer to spacelike directions only, we will use
the latin letters i, j = 1, 2 for the environment coordinates,
and a, b = 1̂, 2̂ for the internal coordinates. The Minkowski
metric in the locally flat space-time is taken to be ηαβ =
diag(+1,−1,−1). The environment and flat metrics, gμν and
ηαβ , respectively, are related by a vielbein field e α

μ according
to the identity [40] gμν = e α

μ e β
ν ηαβ . From Eq. (3), we define
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the energy-momentum tensor

τμ
ν = e α

ν τμ
α = −e α

ν

1√
g

δS

δe α
μ

, (4)

and the Hamiltonian acting in an effectively locally flat space-
time as

H =
∫

x

√
gψ̄

[
i

2
e0

αγ αω0 + i

2
ω0γ

αe0
α

− i

2
e j

αγ α−→∇ j + i

2
←−∇ jγ

αe j
α + m

]
ψ. (5)

In curved space-time, the energy current is related to
the energy-momentum tensor via ji

E = √
gτ i

ν=0 = √
gg0μτ iμ

[26]. Because of the Lorentz invariance of massive Dirac
fermions, τμν = τ νμ. Thus, we can rewrite ji

E = √
gg0μτμi =√

gg0μgiντμ
ν . Assuming a perturbation of the Luttinger’s type

[17], the vielbein becomes [26] e 0̂
μ = δ 0̂

μ (1 + φg), and e a
μ =

δ a
μ . In this case, the expectation value of the energy current is

given by [41]

j2
E (x) = −[1 + φg(x)]2 δF

δe 2̂
0 (x)

. (6)

The partition function and the free energy are defined ac-
cording to the usual relations as Z = Tr(e−βH ) and F =
−β−1 ln Z , respectively. Here, Tr(. . .) denotes the trace in
the Fock space [42]. To derive these equations, we used
that δe0

α/δe 2̂
0 = 0 and δ

√
g/δe 2̂

0 = 0, which we rigorously
demonstrate to hold true for a perturbation of the Luttinger’s
type in the Supplemental Material [41].

Boundary fermions. Consider a boundary at x1 = 0
between the gapped bulk at x1 < 0 with negative mass
and that at x1 > 0 with positive mass (see also Fig. 1).
The boundary is extended in the whole x2 direction. The
Hamiltonian for boundary fermions can be derived by
employing the standard method used in Ref. [23]. Details are
given in the Supplemental Material [41] for completeness.
The full Hamiltonian of Eq. (5) is split it into three
parts, H = ∫

d2xψ†[H0 + H1 + H2]ψ , where we defined
e α
μ = δ α

μ + h α
μ /2, eμ

α = δμ
α − hμ

α/2, and h/2 = √
g − 1,

H0 = − i

2
γ 0̂δ j

αγ α−→
∂ j + i

2
←−
∂ jγ

0̂γ αδ j
α + m,

H1 = h

2
H0 +

(
1 + h

2

)(
h j

α/2
)(

iγ 0̂γ α−→
∂ j − i

←−
∂ jγ

0̂γ α
)
,

H2 =
(

1 + h

2

)
i

2

(
δμ

α − hμ
α/2

)
γ 0̂

(
γ αωμ + ωμγ α

)
. (7)

Additionally, we assume the deviations h, h α
μ , and hμ

α in
Eq. (7) to be small. Therefore, in the following calculations
we treat H0 as the unperturbed Hamiltonian, while H1 and
H2 are treated perturbatively. We assume that the metric
depends only on x2 near the boundary. Thus, in Luttinger’s
case [17], φg(x) = φg(x2). Then the two directions x1 and
x2 are completely decoupled in the boundary Hamiltonian.
The wave function of the boundary mode obtained from the
Hamiltonian H0 then factorizes into the product of a plane
wave in the x2 direction, ψ2(x2), and of a two-components
evanescent spinor wave function in the x1 direction, ψ1(x1):

ψ (x1, x2) = ψ2(x2)ψ1(x1). The formal solution of the
evanescent spinor is given by [23]

ψ1(x1) = exp

[
iγ 1

∫ x1

0
dx′1m(x′1)

]
|s〉. (8)

The two-component spinor |s〉 corresponding to the boundary
state satisfies iγ 1|s〉 = sgn(m)|s〉, where sgn(m) indicates the
sign of the mass in the half space x1 < 0. The other eigenstate
of iγ 1 corresponds to a state that cannot be normalized [23].
Therefore, the boundary Hamiltonian obtained from the
unperturbed bulk Hamiltonian H0 is H̃0 = i sgn(m)∂2.

The derivation of the interaction terms H1 and H2 term
is more involved. We therefore relegate it to the Supplemen-
tal Material [41] and quote only the final result, i.e., H̃1 =
ζ (x2)[− i

2 (
−→
∂ 2 − ←−

∂ 2)] and H̃2 = 0, with

ζ (x2) = 1
2

(
h − h2

2̂ − h2
0̂

) − 1
4 h

(
h2

2̂ + h2
0̂

)
, (9)

where, according to our choice of mass signs, sgn(m) = −1,
i.e., the same as in Ref. [23].

We are now in the position to derive the effective boundary
free energy at finite temperature, and from it the boundary en-
ergy current. To do so, we use the Hamiltonian (7) to write the
partition function as Z = ∫

Dψ∗Dψ exp(−Sbdry[ψ∗, ψ, ζ ])
with imaginary-time boundary action [42]

Sbdry =
∫

x2,τ

ψ∗(x2, τ )(∂τ + H̃0 + H̃1)ψ (x2, τ ), (10)

where
∫

x,τ = ∫ β

0 dτ
∫

dx. Performing the integration over
the fermionic fields, the effective free-energy functional
of the gravitational field is obtained as F bdry[ζ ] =
β−1Sbdry[ζ ]. The effective action can be expressed as
Sbdry[ζ ] = ∑∞

l=1 Tr[(G0�)l ]/l , where the trace is to
be taken over real space x2 and imaginary time τ

[41], up to a constant which is independent of ζ . The
inverse Green’s function and self-energy in momentum
space are defined as G−1

0 (k, τ ; k′, τ ′) = −δk,k′ (∂τ +
k)δ(τ, τ ′) and �(k, τ ; k′, τ ′) = [ζ (k − k′)(k + k′)
/2]δ(τ, τ ′).

At low temperature, the Fermi distribution function f (p)
can be approximated using the Sommerfeld expansion as
f (p) 
 θ (−p) − (π2T 2/6)dδ(p)/d p. Based on the method
provided in Refs. [23,43], after some lengthy algebra [41],
we obtain the following complete expression for the boundary
free energy up to order T 2 in the long-wavelength limit [44],

F bdry[ζ ] = πT 2

12

∫ ∞

−∞
dx2 ζ (x2)

1 + ζ (x2)
. (11)

This equation is one of the central results of our Letter. In
what follows we will use it to derive the boundary energy
current and show that it is independent of φg under the long-
wavelength approximation.

Energy current. We begin by recalling Eq. (6) which
we now specify for the boundary case jbdry

E (x2) = −2[1 +
φg(x2)]2[δF bdry[ζ ]/δh 2̂

0 (x2)]. Therefore, the energy current
flowing along the boundary can be read off from the boundary
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effective free energy in Eq. (11) as

jbdry
E (x2) = −2

πT 2

12

[1 + φg(x2)]2

[1 + ζ (x2)]2

δζ (x2)

δh 2̂
0 (x2)

. (12)

The derivation of the functional derivative of ζ (x2) is in gen-
eral a difficult task. In the Supplemental Material [41] we
have carried it out for the case in which ζ (x2) is Luttinger’s
gravitational potential [17], i.e., a local dilation or contraction
of space. Setting ζ (x2) = φg(x2) and we have found that

δζ (x2)

δh 2̂
0 (x2)

∣∣∣∣∣
e 0̂
μ=δ 0̂

μ (1+φg),e a
μ=δ a

μ

= −1

2
. (13)

Combining Eqs. (12) and (13), we obtain the energy bound-
ary current under the long-wavelength approximation given
previously in Eq. (2).

Finally, we can use Eq. (2) to calculate the system’s thermal
Hall conductivity based on the Streda formula [23,38,45].
Because of the definition of energy magnetization Mz

E in terms
of energy current [18], the boundary energy current satis-
fies the relation jbdry

E = −[Mz
E (x1 = +∞) − Mz

E (x1 = −∞)]
[23], we get Mz

E = −sgn(m)πT 2/24. Here, we restored the
sign of the mass m using the fact that the bulk energy
magnetization Mz

E is odd under parity transformation, so it
has opposite signs in the two half planes: Mz

E (x1 = −∞) =
−Mz

E (x1 = +∞) [23]. Therefore, the thermal Hall conductiv-
ity is then given by the thermal generalization of the Streda
formula [23,38,45] for the quantized thermal Hall effect,

κH = ∂Mz
E

∂T
= −sgn(m)

πT

12
. (14)

This corresponds to a quantized thermal Hall conductivity
with Chern number C = sgn(m)/2.

Conclusion. In this Letter, we consider the boundary modes
existing at a domain wall between two (2+1)-dimensional
massive Dirac fermion systems of opposite masses [23]. By
systematically resumming all-order contributions in powers
of the metric tensor at low temperature and in the long-
wavelength limit, we have obtained a rigorous expression for
the boundary free energy. From this, we have derived the
boundary current generated by a gravitational potential of
the Luttinger’s type (i.e., a local dilation or contraction of
space). We find that, at least in the low-temperature region,
higher-order corrections significantly alter the results of exist-
ing first-order calculations [23]. We show that there is no bulk
thermal Hall current proportional to the first derivative of the
gravitational potential (i.e., proportional to the temperature
gradient). Only the boundary supports such contributions, in
agreement with numerical simulations [29]. In other words,
tidal forces (higher-order gradients) are necessary in order
to induce bulk thermal Hall currents [25]. Beyond the long-
wavelength approximation, this method can also be used to
calculate the bulk inflow current to higher-order tempera-
ture derivatives, such as the nonlinear thermal Hall effect
[22,46–48]. Finally, using the generalization of the Streda
formula to the thermal Hall effect, we recover the quantized
thermal Hall conductivity for (2+1)-dimensional massive
Dirac fermions with Chern number equal to sgn(m)/2.
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