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Nonlinear Hall effect on a disordered lattice
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The nonlinear Hall effect has recently attracted significant interest due to its potential as a promising spectral
tool and for device applications. A theory of the nonlinear Hall effect on a disordered lattice is a crucial step
towards explorations in realistic devices, but has not yet been addressed. We study the nonlinear Hall response on
a lattice, which allows us to introduce strong disorder numerically. We reveal a disorder-induced Berry curvature
that was not discovered in previous perturbation theories. The disorder-induced Berry curvature induces a
fluctuation of the nonlinear Hall conductivity, which anomalously increases as the Fermi energy moves from
the band edges to higher energies. More importantly, the fluctuation may explain those observations in recent
experiments. We also find signatures of localization of the nonlinear Hall effect. This Letter shows a territory of
the nonlinear Hall effect yet to be explored.
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Introduction. The nonlinear Hall effect behaves as a trans-
verse Hall voltage nonlinearly responding to a longitudinal
driving current [1–8]. It has attracted much attention, as a new
experimental tool to reveal a number of emergent physics,
such as the Berry curvature dipole [3–5], Berry-connection
polarizability, and quantum metric [6–10]. A theory of the
nonlinear Hall effect on a disordered lattice is a crucial step
towards explorations in realistic devices, but has not yet been
addressed.

In this Letter, we study the nonlinear Hall effect on a
disordered lattice [Fig. 1(a)]. With the lattice treatment, we
can introduce strong disorder, allowing us to explore essential
topics of quantum transport, e.g., fluctuation and localization
[11–15]. Our calculations reveal two findings in the nonlinear
Hall response. (i) A fluctuation of the nonlinear Hall con-
ductivity, which increases anomalously as the Fermi energy
moves from the band edges [the black arrows in Fig. 1(b)]
to higher energies [the blue data in Fig. 1(b)] arises from a
different mechanism of the nonlinear Hall effect, as a result
of a disorder-induced Berry curvature [Fig. 2], thus it can
neither be revealed in the perturbation theories nor measured
in the linear Hall conductivity. This fluctuation may explain
the recent experiments [Figs. 1(c) and 1(d)], where larger non-
linear Hall conductivity fluctuations were observed at higher
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energies [3,4], but cannot be understood by the universal con-
ductance fluctuation [12,16,17] or the perturbation theories.
(ii) The second feature is an “Anderson localization,” but in
the nonlinear response thus is different from the previous
scenarios [13–15]. Our findings reveal a large territory of the
nonlinear Hall effect yet to be explored.

Model and the supercell method. We adopt the minimal
model for the nonlinear Hall effect, i.e., the tilted two-
dimensional (2D) massive Dirac model [18],

H = tkx + (m − αk2)σz + v(kyσx − kxσy), (1)

where (kx, ky) are the wave vectors, k2 = k2
x + k2

y , σx, σy, σz

are the Pauli matrices, 2m is the gap, t breaks the inversion
symmetry by tilting the Dirac cone along the x direction, and
α is introduced to regulate topological properties as k → ∞.
The time reversal of the model contributes equally to the Berry
dipole, so it is enough to study this model only. Moreover, the
tight-binding lattice version of the Hamiltonian is presented
in Sec. SI of Supplemental Material [19]. The Hamiltonian ac-
counts for only half of the Brillouin zone, and its time-reversal
partner is in the other half of the Brillouin zone. Because of
time-reversal symmetry, the Berry curvature from one half of
the Brillouin zone cancels with that from the other half, so
we do not have the linear Hall effect. In contrast, the Berry
curvature dipole from one half of the Brillouin zone is the
same as that from the other half, so we have the nonlinear
Hall effect [1,18].
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FIG. 1. (a) In the nonlinear Hall effect, a double-frequency trans-
verse current J2ω is induced by a low-frequency (10–1000 Hz)
electric field Eω. Supercells (dashed boxes, L for side length) allow
introducing strong disorder numerically on a lattice (the lattice-site
colors here show a single disorder configuration). The supercell can
converge to an infinite disordered lattice within a reasonable compu-
tational power, while maintaining the lattice translational symmetry
(i.e., kx and ky are still good quantum numbers). (b) The calculated
nonlinear Hall effect in terms of the Berry curvature dipole 〈Dyxx〉
[calculated using Eq. (2)] exhibits stronger fluctuations at a higher
Fermi energy EF when disorder W �= 0, indicated by the standard
deviation bars after averaging over 5000 disorder configurations. The
calculated fluctuation in (b) gives an explanation to the unexpected
higher-energy stronger fluctuations of Dyxx observed in experiments
[(c) and (d), adopted from Refs. [3,4]].

The previous perturbation theories reveal that disorder
plays an important role in the nonlinear Hall effect, but the
exploration was limited to weak disorder [20–28]. To deal
with stronger disorder, we project the model on a 2D square
lattice and introduce the Anderson disorder [13–15,29–42],
in terms of the on-site energies uniformly distributed within
[−W,W ], where W measures the disorder strength. The lat-
tice constant a = 1 nm, t = 50 meV nm, v = 100 meV nm,
α = 100 meV nm2, and m = 40 meV are of the same orders
of those in typical massive Dirac systems [4,43,44]. The tem-
perature is kBT = 0.12m. Moreover, we adopt the supercell
method to save computational power [see Fig. 1(a) and Sec. SI
of Supplemental Material [19] for more details]. The area of
the supercell is V = L2, with the side lengths L = na, and the
number of lattice sites n2.

Nonlinear Hall conductivity–Berry curvature dipole. One
of the major contributions to the nonlinear Hall conductivity
(defined as a current density ja = σabcEbEc induced by two
electric fields Eb and Ec, with a, b, c ∈ {x, y, z}) is from the
Berry curvature dipole σ BCD

abc = (e3/h̄2)τDabc [1,45]. τ is the
relaxation time and the Berry curvature dipole Dabc can be
found as

Dabc = −
∫

d2k
Em �=Ep∑

m,p

vc
mm�ab

mp f ′
Em

, (2)

FIG. 2. (a) The Berry curvature after averaging over 5000 dis-
order configurations 〈�̄〉 [calculated using Eq. (3)] as a function
of energy E for W = 0 and W = 20 meV. The insets show the
fluctuation of the Berry curvature dipole δDyxx as functions of the
Fermi energy EF and disorder strength W . (b) The energy spectra
E (kx, ky ) and Berry curvature �xy(kx, ky ) of the supercell system for
a single disorder configuration (W = 20 meV). The color scheme
shows that the fluctuation of �xy is more intense at higher energies
(e.g., near ±200 meV) than at low energies (e.g., near ±50 meV),
explaining the increasing fluctuation at higher energies in (a) and
Fig. 1(b). (c) Schematic of the energy dispersion of the 2D Dirac
model, with a density of states (DOS) linearly proportional to E in
(d), which explains the stronger fluctuation of the Berry curvature at
higher energies in (b). (e)–(g) In the supercell picture, the degenerate
states at given energies [red and blue circles in (c) and dots in (d)]
turn to the band crossings in (g), which carry no Berry curvature
because of violating the adiabatic conditions. Disorder can open the
random gaps [e.g., positive in (e) or negative in (f)] at the crossings
and generate fluctuating Berry curvature. The supercell size L =
60 nm in (a) and L = 8 nm in (b).

where the Berry curvature �ab
mp = −2 Im[Ra

pmRb
mp],

Ra
mp = iva

mp/Emp, Emp = Em − Ep, va
mp = 〈m|∂H/∂ka|p〉,

f ′
Em

= ∂ fEm/∂Em, and f is the Fermi function. Em is the
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eigenvalue of the mth state and |m〉 is the corresponding
eigenstate. This integration is over the folded Brillouin zone
with kx/y ∈ [−π/L, π/L]. The nonlinear Hall conductivity
depends also on the relaxation time τ , which is irrelevant to
the Berry physics and is subtracted in the experiments using
the Drude conductivity [3,4], so we focus only on Dabc. Note
that the nonlinear Hall effect is measured at low electric-field
frequencies (from 10 to 1000 Hz), so the energy scale
and physics differ from those in the photogalvanic effects
where the microwave or light frequencies are approximately
109–1014 Hz [46–49].

Figure 1(b) shows the Berry curvature dipole Dyxx of the
tilted Dirac model as a function of the Fermi energy EF . In the
absence of disorder (W = 0), the Berry curvature and Berry
curvature dipole are calculated in a unit cell or alternatively
in a supercell in the weak-disorder limit (i.e., W → 0). The
numerical results by both approaches agree well (see Fig. S2
of Supplemental Material [19]). In the presence of disorder
(W �= 0), we find two features in Dyxx, i.e., the localization
and fluctuation effects, as manifested by the disordered-
averaged Berry curvature dipole 〈Dyxx〉 and the corresponding
fluctuation δDyxx. In the numerical calculations, 〈Dyxx〉 is ob-
tained after an ensemble averaging over 5000 configurations
of the same disorder strength W . The fluctuation is defined
as the standard deviation of these configurations, i.e., δDyxx =√

〈D2
yxx〉 − 〈Dyxx〉2.

Fluctuation. As shown by the standard deviation bars in
Fig. 1(b), the fluctuation of δDyxx increases as EF moves away
from the band edges (at EF = ±40 meV) to higher energies
(e.g., EF = ±200 meV). This can be observed more clearly
in the insets of Fig. 2(a), where we show δDyxx as a function
of the Fermi energy EF and disorder strength W . The Berry
curvature dipole reaches the maximum near the band edges
and decays at higher energies, but its fluctuation shows an
opposite behavior [the left inset of Fig. 2(a)]. The fluctuation
δDyxx can be even several times larger than the average value
of 〈Dyxx〉 at EF = 200 meV.

The fluctuation of the Berry curvature dipole is attributed
to the disorder-induced Berry curvature. Figure 2(a) shows the
disorder-averaged Berry curvature 〈�̄〉 as a function of energy
E , where 〈· · · 〉 means disorder average,

�̄(E ) = −
∫

d2k
Em �=Ep∑

m,p

�xy
mp f ′

Em
, (3)

and the integral is for all k of the same energy E . Figure 2(a)
shows that the averaged Berry curvature is stable in the ab-
sence (red data) and presence (blue data) of disorder. By
contrast, its fluctuation is significantly enhanced by disorder
and becomes more pronounced at higher energies. As illus-
trated in Figs. 2(b)–2(g), the fluctuation of the Berry curvature
is attributed to the mixing of the degenerate states of differ-
ent k. The fluctuation is more significant at higher energies
[Fig. 2(b)] because there are more states [Figs. 2(c) and 2(d)].
Our supercell treatment also helps reveal this picture of mixed
degenerate states. Within the supercell picture, the degenerate
states turn to band crossings due to the Brillouin zone folding
[Fig. 2(g)]. The crossings violate the adiabatic condition [50],
so at the crossings the Berry curvature from two bands is

supposed to be compensated. Disorder opens random mini-
gaps in these band crossings, inducing significant random
fluctuations of the Berry curvature [Figs. 2(e) and 2(f)]. After
averaging over numerous disorder configurations, these ran-
dom fluctuations in the disorder-induced Berry curvature lead
to the fluctuation in the Berry curvature dipole (see Secs. SII
and SIII of Supplemental Material [19] for more details).

Figures 1(c) and 1(d) illustrate the experimentally mea-
sured Berry curvature dipole in two distinct systems. One is
the bilayer graphene [3] and the other is the bilayer WTe2

[4]. In both experiments, a fluctuation of the Berry curva-
ture dipole is observed. Remarkably, the fluctuation increases
as the Fermi energy moves away from the Dirac points to
higher energies [i.e., EF = 0 in Fig. 1(d) and Vg − VNP = 0
in Fig. 1(e)]. Our theory provides a potential mechanism to
understand the experimental results.

Moreover, the right inset of Fig. 2(a) shows that the fluctu-
ation increases with the disorder strength when W < 40 meV
(which is comparable to the gap of the massive Dirac model
2m) roughly, then decreases and vanishes with further in-
creasing disorder strength. This nonmonotonic behavior can
be understood by the property of the Berry curvature dipole,
which first increases with the gap then drops and vanishes
[18]. The disorder-induced random minigaps increase with
increasing disorder strength, giving rise to the nonmono-
tonic behavior of the fluctuation with the disorder strength
(Sec. SIII B of Supplemental Material [19] for more details).
Therefore, the right inset of Fig. 2(a) also verifies our explana-
tion to the fluctuation of the Berry curvature dipole as a result
of the disorder-induced fluctuation of the Berry curvature.

When W > 50 meV, we also find that L3δDyxx remains
invariant as the system size L changes (see Sec. SIV of
Supplemental Material [19] for more details). This behavior
differs significantly from the linear conductance fluctuations
and suggests a unique scaling law in the nonlinear Hall
response.

Localization. As shown in Fig. 1(b), the disorder-averaged
Berry curvature dipole 〈Dyxx〉 drops as the Anderson disorder
is turned on (W �= 0), which can be observed more clearly
in Fig. 3(a). Figure 3(b) also shows that 〈Dyxx〉 exhibits a
nearly exponential decay with increasing supercell size L.
This drop of the nonlinear Hall conductivity is reminiscent of
the Anderson localization [51,52], but the difference is that the
previous Anderson localization is about the linear longitudinal
conductivity. This finding of the localization of the nonlinear
Hall effect has not been addressed theoretically and may be
observed in future experiments.

We further show that the drop of 〈Dyxx〉 has an origin
similar to the Anderson localization. According to Eq. (2), the
Berry curvature dipole is determined by the electron velocity v

and Berry curvature � near the Fermi surface. With increasing
disorder strength, the Berry curvature protected by the bulk
topology is robust against disorder [Fig. 2(a)]. In contrast, the
disorder-averaged velocity,

v̄x =
∫

d2k
∑

m

∣∣vx
mm

∣∣ f ′
Em

, (4)

decreases with increasing disorder strength [Figs. 3(c) and
3(d)], indicating that the drop of the Berry curvature dipole
has an origin similar to that of the Anderson localization.
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FIG. 3. (a) The disorder-averaged Berry curvature dipole 〈Dyxx〉
[calculated using Eq. (2)] as a function of EF for different disorder
strengths W . (b) ln〈Dyxx〉 as a function of L for different W at E =
−50 meV. (c) and (d) The disorder-averaged velocity v̄x [calculated
using Eq. (4)] as functions of W and E . Here, each point is obtained
averaging over 5000 disorder configurations. To better demonstrate
the fluctuation of the velocity, the standard deviation bars in (c) and
(d) are magnified by 10 times.

Moreover, the fluctuation of the velocity is much smaller
than that of the Berry curvature. We need to magnify the stan-
dard deviation bars by 10 times in Figs. 3(c) and 3(d) to show
the fluctuation of the velocity. Additionally, the fluctuation of
the velocity does not increase with the energy E , which further
indicates that the fluctuation of the Berry curvature dipole
in Fig. 1(b) is mainly contributed by the fluctuation of the
Berry curvature in Fig. 2(a). Our calculations are performed
at a higher temperature kBT = 0.12m (about 55 K). At low
temperatures (around 1 K [53,54]), the Coulomb gap may
form in the localization regime as a result of electron-electron
interactions and dramatically affect the transport [55].

Nonlinear Hall conductivity–Berry connection polarizabil-
ity. In a PT -symmetric metal (P for spatial inversion and T
for time reversal), the nonlinear Hall effect can also emerge as
a result of the Berry connection polarizability [9,10], which
measures the distance between quantum states and deflects
electronic carriers to the perpendicular direction. We show
that the fluctuation and localization are also present in the
Berry connection polarizability under strong disorder.

The Berry connection polarizability can be found as

σ BCP
abc =

∫
d2k


Em �=Ep∑
m,p

(
Gbc

mpv
a
mm − Gac

mpv
b
mm

Emp

)
f ′
Em

, (5)

where 
 = e3/2h̄π2 and Gbc
mp = ReRb

pmRc
mp. To have the

PT symmetry, we consider a four-band tilted Dirac model
[9,10,56]

H ′ = tkx + (m − αk2)τz + vkxτx + vkyτyσx, (6)

which obeys PT H ′(k)(PT )−1 = H ′(k), where the PT -
symmetry operator PT = −iσyK and K means the complex

FIG. 4. (a) The Berry connection polarizability 〈σ BCP
xyy /
〉 [cal-

culated using Eq. (5)] as a function of the Fermi energy EF , in
the absence (W = 0) and presence (W = 10 meV) of disorder.
(b) The fluctuation δσ BCP

xyy /
 as a function of EF for different dis-
order strength W , where 
 ≡ e3/2h̄π 2. (c) The disorder-averaged
〈σ BCP

xyy /
〉 and (d) the fluctuation δσ BCP
xyy /
 as functions of W for

different EF . Here, the disordered data are obtained after averaging
over 5000 disorder configurations. The parameters are the same as
those in Figs. 1–3.

conjugate. The parameters are the same as those
in Eq. (1).

Figure 4 shows the results for the Berry connection polariz-
ability σ BCP

xyy . In the presence of disorder, the Berry connection
polarizability also shows the similar fluctuation and local-
ization, i.e., the exponential decay with increasing system
size and significant Fermi-energy-dependent fluctuations. In
Sec. SV of the Supplemental Material [19], we provide more
numerical results for the Berry connection polarizability.

This similarity also verifies our explanation to the fluctu-
ation and localization of the Berry curvature dipole, because
the Berry connection polarizability and Berry curvature are re-
lated as the real and imaginary parts of the quantum geometry
tensor [57],

T ab = Gab − i�ab/2, (7)

where �ab
mp = −2 Im[Ra

pmRb
mp] is the Berry curvature in

Eq. (3), Gab
mp = ReRa

pmRb
mp is the quantum metric in Eq. (5),

and Ra
mp = i〈m|∂H/∂ka|p〉/(Em − Ep). Therefore, both the

Berry curvature dipole and Berry connection polarizability are
supposed to show the similar fluctuation and localization.
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