
PHYSICAL REVIEW B 110, L081114 (2024)
Letter

Fractional quantum Hall effect of partons and the nature of the 8/17 state
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We consider the fractional quantum Hall effect (FQHE) at the filling factor 8/17, where signatures of
incompressibility have been observed in the zeroth Landau level of bilayer graphene. We propose an Abelian
state described by the “(8/3)2̄13” parton wave function, where a parton itself forms an FQHE state. This state
is topologically distinct from the 8/17 Levin-Halperin state, a daughter state of the Moore-Read state. We
carry out extensive numerical exact diagonalization of the Coulomb interaction at 8/17 in the zeroth Landau
level of bilayer graphene but find that our results cannot conclusively determine the topological order of the
underlying ground state. We work out the low-energy effective theory of the (8/3)2̄13 edge and make predictions
for experimentally measurable properties of the state which can tell it apart from the 8/17 Levin-Halperin state.
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Introduction. The fractional quantum Hall effect (FQHE)
[1,2] has underpinned major developments in the field of
strongly interacting topological phases of matter. The FQHE
is observed in cryogenic two-dimensional systems placed in
a perpendicular magnetic field and manifests itself as pre-
cisely quantized plateau in the Hall resistance at certain
special fractions. The FQHE phenomena arise from complex
many-particle correlations that are characterized by topologi-
cal order and long-range quantum entanglement [3]. Starting
with the work of Laughlin [2], numerous schemes have been
proposed to build these many-body correlations to capture
the myriad of fractions observed. These include the Haldane-
Halperin hierarchical construction [4,5], Jain’s composite
fermion (CF) [6] and parton [7] theories, deploying techniques
of conformal field theory (CFT) [8], and many more.

The Haldane-Halperin hierarchy postulates that the quasi-
holes or quasiparticle excitations of a parent FQHE state
condense into a daughter FQHE state and this scheme can
produce candidate states for any odd-denominator fraction
[4,5]. Jain’s CF theory builds many-particle correlations by
the process of vortex attachment wherein electrons bind zeros
of the many-body wave function to turn into CFs, which,
to the zeroth-order approximation, are taken to be noninter-
acting [6]. A vast majority of the FQHE phenomenology,
especially that observed in the lowest Landau level (LLL), is
well-described by the CF theory. In particular, the CF theory
explains why the strongest fractions observed in the LLL take
the form ν = n/(2pn ± 1), with n, p positive integers, as these
correspond to the ν∗ = n integer quantum Hall effect (IQHE)
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states of CFs. The theory of free CFs also produces states only
at odd-denominator fractions.

The experimental observation of a plateau at filling fac-
tor ν = 5/2 in the second Landau level (SLL) [9] showed
that FQHE could also arise at even-denominator fractions.
Moore and Read [10], using the methods of CFT, postulated a
non-Abelian Pfaffian (Pf) wave function to describe this even-
denominator state which was subsequently shown to give a
good representation of the exact SLL Coulomb ground state at
half-filling [11,12]. Read and Rezayi [13] then generalized the
Moore-Read construction to produce a family of states, some
of which can capture other experimentally observed plateau
in the SLL [14,15]. Some experimentally observed fractions
in the SLL still lie beyond the purview of the aforementioned
theories [16,17]. In particular, signatures of FQHE have been
observed in the zeroth LL (ZLL) of bilayer graphene (BLG),
which is believed to stabilize states analogous to those in the
SLL, at fractions 6/13 and 8/17 and their hole-conjugates
7/13 and 9/17 [18–22]. (Throughout this work, states related
by particle-hole symmetry would be considered on an equal
footing and thus it suffices to just consider ν � 1/2).

Levin and Halperin (LH) [23] carried out a hierarchical
construction in which the quasiholes (qhs) or quasiparticles
(qps) of the Pf state or its hole-conjugate called the anti-
Pfaffian (aPf) [24,25] condense into a daughter Laughlin state.
At the first level of the hierarchy, condensing the qps and qhs
of the Pf and aPf states produces four states that precisely
occur at the abovementioned fillings of 7/13 (qps of Pf),
8/17 (qhs of Pf), 6/13 (qps of aPf), and 9/17 (qhs of aPf).
In this work, we focus on the 8/17 state and test if the LH
construction gives a viable candidate to describe the Coulomb
ground state in the ZLL of BLG. We note that FQHE at 3/8 in
the SLL has been observed [16,17] and this fraction still lies
beyond the realm of all the theories mentioned above.
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Very recently, it has been observed that in wide quantum
wells (WQWs) with increasing density, the LLL states at
ν = 7/13 and ν = 8/17 become stronger in conjunction with
the strengthening of the 1/2 state [26]. Theoretical calcula-
tions [27,28] and the experimental observations suggest that
the 1/2 state lies in the topological phase of the Pf state.
Therefore, the 7/13 and 8/17 states seen in the LLL in WQWs
are expected to be described by the LH daughter states of
the Pf.

In recent work, a parton [7] based sequence has been pro-
posed to capture all of the experimentally observed fractions
in the SLL in the vicinity of half-filling [29–32]. (The only
other states observed in the SLL lie in the n/(4n ± 1) Jain
sequence and these are expected to be analogous to their
LLL counterparts [31]). Interestingly, 8/17 is the only fraction
where signatures of incompressibility have been seen that
does not fit the proposed parton sequence. Other than the 8/17
Jain state, which is not expected to be relevant for SLL, no
parton sequence is known that has 8/17 as its member. In the
parton theory [7], FQHE states are obtained from products of
IQHE states that the noninteracting partons fill. We generalize
this construction to postulate that, in certain scenarios, the par-
tons themselves can be strongly interacting and can undergo
FQHE. Using this idea, we produce a new candidate state
at 8/17 that is closely related to the SLL parton sequence.
We shall only consider single-component physics since the
experiments are done in the ZLL of BLG with a fixed spin
and valley index.

Parton theory. Jain generalized his CF construction to the
parton theory in which FQHE states of electrons are con-
structed from IQHE states of subparticles called partons [7].
The electron is partitioned into odd-l species of partons, la-
beled by α = 1, 2, . . . , l , and the α parton species is placed
in an IQHE state at filling nα . This parton state, denoted by
“n1n2· · ·nl ,” is described by the wave function [7]

�n1n2···nl
ν = PLLL

l∏
α=1

�nα
, (1)

where �n is the Slater determinant state of n filled LLs of
electrons with �−n ≡ �n̄ = [�n]∗, and PLLL implements pro-
jection to the LLL as is required in the infinite field limit.
Using the fact that the partons are exposed to the same
external magnetic field as the electrons and have the same
density as the electrons, one can show that the charge of
the α parton species qα = − eν/nα , where ν = [

∑l
α=1 n−1

α ]−1

[7]. The Wen-Zee shift [33] of the parton state of Eq. (1)
is S = ∑l

α=1 nα and is thus always an integer. However, an
FQHE state can also have a fractional shift [23,34–36], and
such states (in particular, a family of LH states that include
8/17 have fractional shifts) are not captured by the wave
function of Eq. (1).

Many well-known FQHE states can be obtained as parton
states. The 1/3 Laughlin state [2] is a 111 parton state de-
scribed by the wave function �

Laughlin
1/3 = �3

1. The n/(2pn ± 1)
Jain states [6] are ±n11· · · parton states and these are
described by the wave function �Jain

n/(2pn±1) =PLLL�±n�
2p
1 .

Recently, many parton states that lie beyond those captured by
free CFs, have been constructed to describe the ground state
and also the excitations of many FQHE states [32,37–46].

Many states observed in the SLL can be described by the
n̄2̄13 states that are described by the wave function

� n̄2̄13

ν=2n/(5n−2) = PLLL[�n]∗[�2]∗�3
1 ∼ �Jain

n/(2n−1)�
Jain
2/3

�1
, (2)

where �Jain
n/(2n − 1) is the n/(2n − 1) Jain state [6]. The ∼ sign

in Eq. (3) indicates that the states on the two sides of the
sign differ in the details of how the LLL projection is carried
out. Although such details do affect the microscopic form of
the wave function, we anticipate that the universality class of
the underlying topological phase remains unchanged [47,48].
Only the wave function given in the right-most side of Eq. (2)
is readily amenable to numerics and, thus, it is this form that
we shall use in all our numerical calculations.

The 1̄2̄13 is topologically equivalent (and nearly identical)
to the 2/3 Jain state [47], and the latter is known to give a
reasonable description of the Coulomb ground state in the
entire ZLL of BLG [43]. The 2̄213 state occurs at half-filling
and lies in the same universality class as the aPf [29]. En-
couragingly, the 2̄213 provides a better representation of the
Coulomb ground state in the ZLL of BLG near the SLL
Coulomb point than the Pf state [43]. The n = 3 member of
the sequence given in Eq. (2) is a candidate state that occurs at
6/13 where FQHE has been observed both in the SLL [17] and
the ZLL of BLG [18–22]. The 3̄2̄13 wave function has been
shown to give a good description of the exact SLL Coulomb
ground state [49] and in the Supplemental Material (SM) [50],
we show that it gives a good description of the ground state in
the ZLL of BLG too. It turns out that the 3̄2̄13 state lies in the
same universality class as the corresponding LH state [49].

Surprisingly, although the fraction 8/17 does not appear
for any integer n in the sequence described in Eq. (2), it does
occur if we set n = 8/3. For the 8/17 FQHE state of our inter-
est, we thus consider the parton state denoted as “(8/3)2̄13”
and described by the wave function

�
(8/3)2̄13

8/17 = PLLL[�8/3]∗[�2]∗�3
1 ∼ �8/13�

Jain
2/3

�1
, (3)

where �8/13 ≡PLLL�2
1[�8/3]∗ and the wave function �8/3 is

constructed by filling the lowest two LLs of electrons and
forming the 2/3 Jain state (or equivalently, the particle-hole
conjugate of the 1/3 Laughlin state) in the third LL. The 8/3
wave function cannot be broken down into a product of IQHE
states as it has a fractional shift of 5/2. The 8/17 state of
Eq. (3) occurs at shift − 3/2 which is different from the LH
state (shift 5/2), and therefore the two states are topologically
distinct.

To draw parallels with CFs, we mention here that many
FQHE states of electrons can be understood as arising from
FQHE of CFs that stems from the residual interaction be-
tween them [34,36,51]. These include fractions such as 4/11,
5/13, and 4/13, where FQHE has been observed in the LLL
[52–55]. Recently, it has been proposed that these fractions
can be understood as arising from IQHE of partons [42,44,56]
but the 8/17 state of our interest is outside the purview of
IQHE of partons.

Numerical results. All our calculations are carried out on
the Haldane sphere [4] in which N electrons reside on a
spherical surface that is threaded by a flux of strength 2Qhc/e
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FIG. 1. Overlaps and gaps of the (8/3)2̄13 parton state with the
exact Coulomb ground state in the zeroth Landau level of bilayer
graphene at ν = 8/17 evaluated in the spherical geometry using the
spherical (filled symbols) and disk (open symbols) pseudopotentials
for N = 12 electrons and 2l = 27 flux quanta as a function of the
parameter θ , which is related to the perpendicular magnetic field
B = 93.06[cot(θ )]2 (see text).

emanating from a magnetic monopole placed at the center
of the sphere. The radius of the sphere R is related to the
flux as R = √

Q�, where �= √
h̄c/(eB) is the magnetic length

at the field B. A quantum Hall state on the sphere occurs
when 2Q = N/ν −S , where S is the Wen-Zee shift [33], a
topological quantum number that is a characteristic feature
of the state. Owing to the rotational symmetry, the total or-
bital angular momentum L and its z component Lz are good
quantum numbers. In particular, incompressible quantum Hall
liquid states are uniform, i.e., have L = 0.

In the disk geometry, the electron-electron interaction in
the ZLL of BLG is simulated by the form factor (the magnetic
length is set to unity)

FN=1(k) =
[

sin2(θ )L1

(
k2

2

)
+ cos2(θ )L0

(
k2

2

)]2

, (4)

where k is the momentum, Lm(x) is the mth ordered Laguerre
polynomial, and θ is a parameter that depends on the external
magnetic field. For typical BLG samples, B = 93.06[cot(θ )]2

[in Tesla] [57,58]. Using the form factor given in Eq. (4),
one can compute the disk pseudopotentials in the ZLL of
BLG [58] and an analogous computation can be carried
out to obtain the spherical pseudopotentials [43]. The con-
tribution of the positively charged background, which is
required to estimate the charge gap shown below, is ac-
counted for by computing the charging energy using these
pseudopotentials [12].

In Fig. 1 we show overlaps of the (8/3)2̄13 with the exact
Coulomb ground state in the ZLL of BLG for N = 12. The
8/3 state is constructed by brute-force projection to the LLL
and we then use this 8/3 state to construct the 8/17 state given
in Eq. (3) following the method outlined in Refs. [31,59] that
involves expanding the state in the space of all L = 0 states.
The overlaps of the parton state with the exact state are small
for all values of θ in the ZLL of BLG indicating that the parton
state does not give a good microscopic description of the
experimentally observed 8/17 state [19–22,60]. Nevertheless,
the parton state may lie in the same topological phase as the
experimentally realized 8/17 state. For the parton state, the
only system accessible to ED is N = 12 since the next system

FIG. 2. (a) Same as Fig. 1 but at the LH flux 2l = 23 at ν = 8/17.
(b) Total orbital angular momentum of the exact Coulomb ground
state in the zeroth Landau level of bilayer graphene at ν = 8/17 at
the LH flux for N = 20 electrons.

size of N = 20 is currently beyond our reach (Hilbert space
dimension �1.43 × 1010).

The LH state is not readily amenable to a numerical
construction and we have not been able to obtain its wave
function. However, we can carry out ED to obtain the ground
state for N = 20 (Hilbert space dimension �1.38 × 109) at the
shift corresponding to the LH state. In Fig. 2(b) we show the
ground state L as a function of θ for this system. There is
a narrow region of parameter space of small to intermediate
fields where the ground state at the LH shift in the ZLL of
BLG for this system is uniform (Moore-Read quasiholes give
a good description of the exact Coulomb ground state here
[50]), while the exact SLL Coulomb ground state (that occurs
at zero field) at this shift is not uniform. Note that for N = 12
at the LH shift, the ground state has L = 0 for all θ .

In Figs. 1 and 2(a), we show the charge and neutral gaps
at the flux corresponding to the (8/3)2̄13 and the LH state
in the ZLL of BLG for N = 12 electrons. The charge gap is
the energy to create a pair of fundamental qp-qh (the smallest
charged qh in the (8/3)2̄13 and the LH state has charge e/17).
The neutral gap is the energy difference between the ground
state and the lowest-lying excitation. For both fluxes, the
charge gap is not consistently positive and the neutral gap
is low in the vicinity of the SLL point. Furthermore, the
charge gap is much smaller than the neutral gap while in the
thermodynamic limit, we expect the charge gap to be greater
than the neutral gap. These results suggest the presence of
strong finite-size effects (as has been routinely seen in numer-
ics carried out in the SLL) and indicate that there could be
aliasing effects in the spherical geometry [61] where the same
system can correspond to two different states. Thus, our nu-
merical results are inconclusive in unambiguously identifying
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the topological order at 8/17. Next, we turn to effective field
theory to make predictions that are experimentally measurable
and can aid in identifying the underlying order at 8/17.

Effective field theory. The topological properties of the
(8/3)2̄13 state can be read-off from its K matrix [3,62–64],
charge vector �t , and the spin-vector �s [33]. A straightforward
extension of the derivation outlined in Ref. [49] for the n̄2̄13

states shows that the K , �t , and �s for the (8/3)2̄13 are given by

K =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 −2 −1 −1 0
1 −1 −2 −3 0
1 −1 −3 −2 0
1 0 0 0 −2

⎞
⎟⎟⎟⎟⎠,

�t =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ and �s =

⎛
⎜⎜⎜⎜⎝

−3/2
1

−1
−1
1

⎞
⎟⎟⎟⎟⎠. (5)

The filling factor and shift are obtained from the K matrix
as [3] ν = �tT·K−1·�t = 8/17 and S = (2/ν)(�tT·K−1·�s) = −3/2.
These values are consistent with that determined from the
microscopic wave function of the state given in Eq. (3). The
ground-state degeneracy of the (8/3)2̄13 state on a man-
ifold with genus g is [3] D= |Det(K )|g = 34g. Therefore,
this state presents an example of a single-component Abelian
state at ν = p/q (with p, q coprime) which has a ground-
state degeneracy on the torus that is greater than q (see
Refs. [12,31,41,56] for other examples of such states). The
K matrix of Eq. (5) has three negative and two positive eigen-
values resulting in a chiral central charge of −1. The presence
of five edge states can be understood as follows: at the mean-
field level, the parton theory results in a total of nine-edge
modes four from the factor �2+2/3 [two each from ν = 2 and
ν = 2/3], two from �2, and one each from each factor of �1.
However, these edge modes are not all independent since the
density fluctuations of the five partons have to be identified,
which results in exactly four constraints and thereby leads to
precisely five independent edge modes. For completeness, we
point out that the edge structure of the LH states is worked out
in Ref. [23].

Discussion. In this section, we discuss various experimen-
tally measurable properties of the (8/3)2̄13 ansatz that can
reveal its underlying topological order. The smallest quasipar-
ticle, generated by creating a hole in the third LL in the factor
of �8/3, carries a charge of −e/17. A single quasiparticle of
charge −3e/17, −4e/17, and −8e/17 can be produced by
creating a hole in the LLL or the SLL in the factor of �8/3,
a hole in the factor of �2, and a particle in the factor of �1,
respectively. All the excitations of the (8/3)2̄13 state carry
Abelian braiding statistics just like those of the LH state.

Due to the presence of the factors of (8/3) and 2̄, the
(8/3)2̄13 state hosts upstream edge modes that can be detected
experimentally [65,66]. Assuming a full equilibration of the
edge modes, the thermal Hall conductance κxy of the (8/3)2̄13

state is κxy = (−1)[π2k2
B/(3h)T ]. In contrast, the 8/17 LH

state and the 8/17 Jain states respectively have κ8/17−LH
xy = 0

[23] and κ8/17−Jain
xy = 8[π2k2

B/(3h)T ]. Recently, the thermal
Hall conductance of many quantum Hall states has been mea-

sured in GaAs [67,68] and monolayer graphene [69]. The Hall
viscosity ηH of the (8/3)2̄13 state is also anticipated to be
quantized [70]: ηH = h̄n2DS/4, where n2D = (8/17)/(2π�2) is
the density of the electrons and S = −3/2 is the shift of the
(8/3)2̄13 ansatz. For comparison, the 8/17 LH state and the
8/17 Jain states respectively have S8/17−LH = 5/2 [23] and
S8/17−Jain = 10. These results show that the 8/17 LH, 8/17
Jain, and our proposed (8/3)2̄13 states are all topologically
different from each other.

The (8/3)2̄13 state is the m = 1 member of the
[2 + 2/(4m − 1)]2̄13 sequence which produces states at
ν = 8m/(16m + 1) with shift S = −3/2 and chiral central
charge −1. A LH sequence [23] that is obtained by condens-
ing qhs of the Pf also leads to states at the same set of fillings
ν = 8m/(16m + 1) but with shift S = 5/2 and chiral central
charge 0. Thus, the parton and LH states are topologically
distinct. The (8/3)2̄13 state is also the m = 1 member of the
[2 + (m + 1)]/(2m + 1)2̄13 sequence which produces states at
26/55 and 9/19 for m = 2, 3. No signs of FQHE have been
reported at these fractions.

Potentially, simpler-looking states such as (4/3)2̄13 at 4/7
or (5/3)2̄13 at 10/19, or (7/3)2̄13 at 14/29 could also be
stabilized. Signatures of FQHE at ν = 4/7 in the ZLL of
BLG have been seen in experiments [19]. However, numerical
calculations show that the ground state of the largest acces-
sible system of N = 20 electrons at the flux corresponding to
(4/3)2̄13 is not uniform at the SLL Coulomb point. It turns out
that the particle-hole conjugate of the 3̄213 state at 3/7 [40] is
a better candidate in that the exact ground state is consistently
incompressible at the corresponding shift for all accessible
systems. Moreover, the overlap of the exact Coulomb ground
state in the ZLL of BLG with the trial wave function is
reasonably high [31,43]. No signs of FQHE have been seen
in either the SLL of GaAs or in the ZLL of BLG at either
10/19 or 14/29. We mention here that the (7/3)2̄13 state at
14/29 is likely to be topologically identical to a LH state. It is
the m = 2 member of the [2 + 1/(2m − 1)]2̄13 sequence that
produces states at ν = (8m − 2)/(16m − 3) with shift S = −2
and chiral central charge −2. A LH sequence [23] emanating
from the aPf also leads to states at the same set of filling
factors that also carry the same chiral central charge and shift.
Therefore, as a byproduct of our construction, we found a
parton sequence that produces states that likely lie in the same
universality class as the LH states arising from the aPf. We
have not been able to find parton states that lie in the same
topological phase as the LH states built from the Pf. We leave
a more detailed exploration of the relationship between parton
and LH states to future work.

If it turns out that the experimentally observed 8/17 state
lies in the universality class of the (8/3)2̄13 state, then it
would call into question the idea that by looking at the
nearby fractions one can tell if the even-denominator state
seen at half-filling is in the Pf or the aPf universality class
[18–22,26,71,72]. Finally, we mention the possibility of mul-
ticomponent states at 8/17 where the different components
could represent valley, spin, or orbital degrees of freedom. The
(8/3)2̄13 state readily admits the possibility of unpolarized
states building on the partially polarized and singlet states at
ν = 8/3 and the singlet state at ν = 2. It is possible that these
states could potentially be relevant for certain interactions.
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Potentially, all possible FQHE states lend themselves to a
parton description where the partons themselves form simple
IQHE or FQHE states.

Numerical calculations were performed using the Di-
agHam package [73].
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