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Integer quantum Hall transition: An S-matrix approach to random networks
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In this paper we propose an S-matrix approach to numerical simulations of network models and apply it
to random networks that we proposed in a previous work [I. A. Gruzberg, A. Klümper, W. Nuding, and A.
Sedrakyan, Phys. Rev. B 95, 125414 (2017)]. Random networks are modifications of the Chalker-Coddington
(CC) model for the integer quantum Hall transition that more faithfully captures the physics of electrons moving
in a strong magnetic field and a smooth disorder potential. This method has considerable advantages compared
to the transfer matrix approach and gives the value ν ≈ 2.4 for the critical exponent of the localization length
in a random network. This finding confirms our previous result and is surprisingly close to the experimental
value νexpt ≈ 2.38 observed at the integer quantum Hall transition but substantially different from the CC value
νCC ≈ 2.6.
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Introduction. The integer quantum Hall (IQH) transition
[1] is the best studied example of an Anderson localization-
delocalization transition [2]. In spite of all the efforts over the
years, understanding the IQH plateau transitions remains an
important problem of modern condensed matter physics. Nu-
merous experiments [3–11] have provided evidence of scaling
behavior near the IQH transition, characterized, in particular,
by the critical exponent ν that describes the divergence of
the localization length at the transition. Over the years, the
experimental value of νexpt ≈ 2.4 has been consistently ob-
served in many systems. A very thorough study of the IQH
transition in GaAs/AlGaAs heterostructures [9,10] gave the
value of νexpt ≈ 2.38 ± 0.06, albeit with an important caveat
(discussed in [12]).

On the other hand, most numerical studies of the IQH
transition in the past 15 years reported results in the range
ν ∼ 2.5–2.6; see Refs. [13–32]. Many of these references
numerically simulated the Chalker-Coddington (CC) network
model [33,34], which is based on the semiclassical picture of
electrons drifting along the equipotential lines of a smooth dis-
order potential. Tunneling across saddle points of the potential
leads to hybridization of the localized states and a possible
delocalization. In the CC model this picture is drastically
simplified and all scattering nodes are placed at the vertices of
a square lattice. It is the regular geometry of the CC model that
facilitates the application of numerical transfer matrix (TM)
techniques [34–36].

A likely source of the discrepancy between the experimen-
tal and numerical values of ν is electron-electron interaction
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whose effect on the scaling near the IQH transition has been
studied in Refs. [37–40]. It was shown there that short-range
interactions are irrelevant at the IQH critical point and should
not modify the value of ν while the Coulomb interaction
present in experimental systems is relevant. This issue is not
fully understood and the fate of the critical fixed point domi-
nated by the Coulomb interaction remains unresolved.

In Refs. [41,42] we proposed a mechanism that leads
to a modification of ν from its CC value even within the
single-particle framework. At the heart of this proposal is a
modification of the CC model that is expected to better capture
the geometric disorder inherent in the semiclassical network
of drifting electron orbits. Indeed, saddle points that connect
the “puddles” of filled electron states do not form a regular
lattice and around each “puddle” there may be any number of
them. Taking this into account led us to consider structurally
disordered or random networks (RNs); see top left in Fig. 1.
Each node of the network represents a 2 × 2 scattering matrix

s =
(

r t

−t r

)
(1)

and each link carries a random U(1) phase. The transmis-
sion and reflection amplitudes satisfy t2 + r2 = 1 and can
be parametrized as r = (1 + e−2x )−1/2, t = (1 + e2x )−1/2 with
x ∈ [−∞,∞]. At the critical point describing the IQH transi-
tion we have xc = 0 and rc = tc = 1/

√
2.

To simulate RNs numerically, we adopted the following
construction. Starting with the regular CC network, at each
node we set t = 1 with probability p ∈ [0, 1/2], t = 0 with
the same probability p, and left the node unchanged (with
the same value of x close to xc = 0) with probability 1 − 2p.
The modified nodes with t = 1 (t = 0) are “open” in the
horizontal (vertical) direction and opening a node changes the
four adjacent square faces into two triangles and one hexagon;
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FIG. 1. Top left: random network. Top right: modified CC net-
work with two open nodes, one in the vertical and one in the
horizontal direction. Bottom: the two ways to open a node.

see top right and bottom in Fig. 1. Repeated opening of nodes
can produce tilings of the plane by polygons with arbitrary
numbers of edges, corresponding to a distribution of saddle
points in a realistic random potential [43].

This construction allowed us to use the TM method but
it suffered a difficulty: t and r appear in the denominators
of the matrix elements of TMs. Setting them to zero is a
singular procedure related to the disappearance of two hori-
zontal channels upon opening a node in the vertical direction.
To avoid such singularities, we had to use t or r = ε with
ε = 10−6–10−7 instead of zero in the TMs. This resulted in
the values of ν that varied with p but were insensitive to the
ad hoc small parameter ε. In particular, for p = 0 (the regular
CC model) we obtained ν ≈ 2.57, consistent with other re-
sults for the CC model. However, for p = 1/3 we obtained
ν ≈ 2.37, which is surprisingly close to the experimental
value νexpt ≈ 2.38.

In this paper, we introduce an S-matrix approach to the nu-
merical simulation of RNs. This approach completely avoids
the introduction of the small regularizing parameter ε. It has
another advantage: it avoids the appearance of large numbers
in the TMs, leading to a significant increase in the speed of
numerical calculations. Consequently, we are able to analyze
significantly larger network sizes.

In our analysis, we conducted simulations for p = 0 corre-
sponding to the CC model and p = 1/3 corresponding to our
model [41]. The results are

ν = 2.551 ± 0.008, for p = 0, (2)

ν = 2.398 ± 0.006, for p = 1/3. (3)

For both values of p, our current results confirm the previous
results obtained with the regularized TM approach.

The results (2) and (3) violate the Harris criterion which
states that bond disorder cannot change the critical be-
havior of a clean system (on a regular lattice) if dν > 2
[44]. Reference [45] argued that it should be modified in
the case of random lattices. Our results indicate that the
structural disorder introduced by opening network nodes is
indeed relevant.

FIG. 2. Single S-matrix structure.

S-matrix approach. Let us recall general aspects of the
scattering approach to transport in quasi-one-dimensional
(quasi-1D) noninteracting systems; see Ref. [46] for a review.
We pass from the single-particle Hamiltonian to a scattering
description by considering waves of a given energy that enter
the system at either end, are scattered, and then emerge at the
same or the opposite end. We will assume that only a finite
number M of scattering states (or channels) in each direction
are relevant at the energy considered and denote the incoming
and outgoing waves from the left and right by �

L/R
I/O . The

scattering can then be represented by a unitary S matrix that
maps incoming to outgoing waves:

(
�L

O

�R
O

)
= S

(
�L

I

�R
I

)
=

(
R T ′

T R′

)(
�L

I

�R
I

)
. (4)

The four M × M blocks of the S matrix represent reflection
and transmission matrices, as depicted in Fig. 2.

Alternatively, the scattering can be represented by a TM T
that maps the in- and outgoing waves at one end (say, the left)
to those at the other (the right):

(
�R

O

�R
I

)
= T

(
�L

I

�L
O

)
=

(
A B

C D

)(
�L

I

�L
O

)
. (5)

The advantage of the TM is that 1D systems can be composed
end-to-end by multiplying elementary TMs.

Once the TM T of a quasi-1D system composed of L � 1
segments is found, all transport properties of the system can
be obtained in terms of the 2M eigenvalues of T †T which
come in inverse pairs and are commonly denoted by e±2Lγn

with γn � 0 (n = 1, 2, . . . , M). It is known that in the limit
L → ∞ the quantities γn (called the Lyapunov exponents)
are self-averaging and tend to nonrandom values [47]. The
smallest Lyapunov exponent γ1 determines the localization
length of the quasi-1D system ξ = 1/γ1.

A disadvantage of the TM method is that for L � 1 the
eigenvalues e±2Lγn are exponentially large and small in L.
Dealing with such exponentially large or small numbers in
simulations requires special numerically “expensive” methods
such as the QR or LU decompositions.

Our S-matrix approach provides a convincing workaround
for both aforementioned issues: it avoids the use of a small ad
hoc parameter ε as well as the appearance of large numbers
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FIG. 3. Combination of S matrices.

in TMs. Instead, it directly utilizes S matrices. The M × M
blocks of the S and T matrices are related as follows:

T =
(

T − R′T ′−1R R′T ′−1

−T ′−1R T ′−1

)
, (6)

S =
(

−D−1C D−1

A − BD−1C BD−1

)
. (7)

When two scatterers are composed as in Fig. 3 we can
multiply their TMs T = T2T1 and then convert the resulting
TM to the combined S matrix that is denoted as S ≡ S1 � S2

[48,49]. The result (that defines the star product) is

R = R1 + T ′
1 (1 − R2R′

1)−1R2T1,

T = T2(1 − R2R′
1)−1T1,

R′ = R′
2 + T2(1 − R2R′

1)−1R′
1T ′

2 ,

T ′ = T ′
1 (1 − R2R′

1)−1T ′
2 , (8)

where the indices i = 1, 2 denote blocks of the S matrices of
the two scatterers.

The star product defined by Eq. (8) is not singular when the
two scatterers contain perfectly reflecting channels. Even in
the extreme case when R2R′

1 = 1 the corresponding transmis-
sion matrices vanish—T1 = T ′

1 = T2 = T ′
2 = 0—and the star

product reduces to R = R1, T ′ = T = 0, R′ = R′
2, as can be

seen directly from Fig. 3. The presence of random phases on
the links makes the matrices 1 − R2R′

1 invertible even when
there are perfectly reflecting channels.

The star product preserves the unitarity of the scattering
matrix. As a consequence, the four Hermitian matrices T †T ,
T ′†T ′, 1 − R†R, and 1 − R′†R′ have the same set of eigenval-
ues t1, t2, . . . , tM . Each of these M transmission eigenvalues
is a real number between 0 and 1 related to the Lyapunov
exponents as tn = cosh−2(Lγn). Thus we can employ the star
product many times without encountering exponentially large
matrix elements.

We conclude that using the composition of scattering ma-
trices indeed solves the two problems of the TM approach that
we mentioned above.

Numerical procedure. The advantage of the S-matrix
method that avoids exponentially large numbers leads to
a significant speed-up in its numerical implementation. In-
deed, as we mentioned, the TM method requires the use
of QR or LU matrix decompositions which have a theoreti-
cal computational complexity that grows as O(M3) with the
matrix size M. On the other hand, the costliest operations
in the S-matrix method are matrix multiplications and in-
versions. For these operations, there are efficient algorithms

FIG. 4. Overall scattering structure with pure scatterings (green
blocks) and random phases (purple blocks).

whose theoretical computational complexity is O(M2.38),
substantially smaller than the naive O(M3) of brute-force
basic algorithms. Thus we expect that the complexity of the
S-matrix approach calculation is O(M2.38), while the TM ap-
proach which also requires decompositions should have the
complexity O(M3).

This substantial difference can be verified numerically
through time measurements of simulations with various
matrix sizes M. The results of our simulations indicate
the complexity of O(M2.18) for the S-matrix approach and
O(M2.79) for the TM approach. A probable source of de-
viations from theoretical values is the sparse nature of the
matrices used in our simulations.

In practice, the S matrices of the individual slices of the
RN are composed of real 2 × 2 blocks of the form (1). Then
the real-valued S matrices are multiplied on the right by di-
agonal matrices diag (eiαi ) that represent random phases on
all incoming channels. This defines the basic building block
of the chain of scatterers, as illustrated in Fig. 4. Then we
compute the L-fold star product for a chain of S matrices and
the largest eigenvalue t1 of T †T determines the localization
length ξ .

It is known [46] that in very long systems (L � ξ ) the
transmission eigenvalues tn are widely separated: 1 � t1 �
t2 � · · · � tM . In our simulations reported below, the ratio
t2/t1 � 10−12. Then, instead of diagonalizing T †T , we can
compute its trace,

tr(T †T ) =
M∑

n=1

tn ≈ t1 ≈ 4e−2Lγ1 , (9)

and find an approximation γ to the smallest Lyapunov expo-
nent as

γ = − ln[tr(T †T )/4]/2L ≈ γ1. (10)

This procedure is done for multiple values of the parameter
x close to the critical point xc = 0 and then the rescaled Lya-
punov exponent 	(x) = Mγ (x) is fit to a finite-size scaling
form

Mγ (x) = 	[M1/νu0(x), Myu1(x)], (11)

which contains one relevant and one irrelevant scaling vari-
ables u0 and u1. The fitting, details of which are given in
the Supplemental Material [50], produces the values of ν
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FIG. 5. Left: values of the rescaled Lyapunov exponent 	 = Mγ

(for M = 120) versus x in small intervals centered at the points
x = 0.01, 0.02, 0.03, and 0.04. Right: distributions of Lyapunov
exponents in the clouds around these points; the solid lines show the
averages with their thickness being the uncertainty.

in Eqs. (2) and (3). In addition, we obtain the irrelevant
exponents y and the fixed-point values 	c = π (α0 − 2) re-
lated to the multifractal exponent α0 [14]:

y = −0.61 ± 0.07, 	c = 0.816 ± 0.0015 (p = 0),

(12)

y = −0.33 ± 0.01, 	c = 0.825 ± 0.0015
(
p = 1

3

)
.

(13)

Numerical details. We performed numerical simulations
of RNs using the S-matrix method for p = 0 (CC model)
and p = 1/3 studied in Ref. [41], but with larger system
sizes, more values of the parameter x, and larger statistical
ensembles. The calculations were conducted for M rang-
ing from 40 to 300 with periodic boundary conditions and
the product length L = 5 × 106, thus considering a cylindric
geometry. Following the method of Ref. [15], we used en-
sembles containing approximately Nr = 400 and Nr = 1500
disorder samples for p = 0 and p = 1/3, respectively. The use
of ensembles is equivalent to simulating systems with effec-
tive lengths of Leff = 2 × 109 for p = 0 and Leff = 7.5 × 1010

for p = 1/3. We computed the values of γ in Eq. (10) for 25
different values of the parameter x ∈ [0, 0.08].

For a fixed x we expect the values of 	(x) to follow
an approximately Gaussian distribution [51], which allows
us to obtain the average over the ensemble 	(x) and its
uncertainty �	(x) = σ {	}/√Nr , where σ is the standard
deviation. However, if we compare 	(x) for two very close
values of x, we observe significant fluctuations. We believe
that this issue arises from a finite numerical precision in
the components of the constituent s matrix [Eq. (1)]. This
matrix recurs in calculations, leading to error accumulation.
The possibility of this issue being an artifact of the use of
a pseudorandom number generator is ruled out, as it occurs
even in a fixed disorder realization.

To address this issue, we introduce a small window of
width 2�x = 10−4 around each of the 25 “nominal” values
of xs and sample 	(x) with x randomly chosen from the
range [xs − �x, xs + �x]. The resulting ensembles are also

FIG. 6. Lyapunov exponents 	 for various sys-
tem sizes M and x values for the CC model with
p = 0 (left) and RN model with p = 1/3 (right), with the
corresponding fitting curves.

approximately Gaussian (see Fig. 5), allowing us to use the
x-averaged values 	a(xs). This procedure introduces an ad-
ditional standard deviation σa{	} = 	

′
a(xs) · �x/

√
3 and a

regular error �a	a = 	
′′
a · �x2/6. These quantities are negli-

gibly small compared to the existing analogs: σa{	}/σ {	} �
10−2 and �a	a/�	a � 10−4. The resulting data are pre-
sented in Fig. 6 together with the fitting curves. More details
on the data analysis and the fitting are given in the Supple-
mental Material [50].

Conclusions. In this paper, we revisited random networks
introduced and studied in Refs. [41,42]. These random net-
works have a parameter p ∈ [0, 1/2] and reduce to the CC
model for the integer quantum Hall transition at p = 0. Our
results demonstrate that the randomness of the network is a
relevant disorder which changes the localization length expo-
nent ν from its CC value.

In Refs. [41,42] we employed the transfer matrix approach
that required an ad hoc regularizing parameter ε for open
nodes. Here we introduce an approach that uses nonsingular
scattering matrices and avoids the need for ε. In addition,
this approach avoids the appearance of exponentially large
matrix elements in transfer matrices and leads to a significant
speed-up of numerical simulations. As a result, we are able to
probe record network sizes, a larger number of the values of
the parameter x, and larger ensembles of disorder realizations
than in previous works.

Our results for p = 0 agree with previous findings
[13–31,42]. For p = 1/3 we confirm our previous results
[41,42] including the value ν ≈ 2.4 for the critical expo-
nent of the localization length, which is close to νexpt ≈
2.38 observed in experiments on the integer quantum
Hall transition.
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