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Local density of states induced near impurities in Mott insulators
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The local density of states near dopants or impurities has recently been probed by scanning tunneling
microscopy in both the parent and very lightly doped compounds of the high-Tc cuprate superconductors. We use
a slave-rotor representation of the Hubbard model to compute the local density of states on impurities in a Mott
insulator. Our calculation accounts for the following key features of the experimental observation: (i) positions
and amplitudes of the in-gap spectral weights of a single impurity; (ii) the spectral weight transfer from the
upper Hubbard band to the lower Hubbard band; (iii) the difference between the cases of single and multiple
impurities. For multiple impurities, our study explains the complete suppression of spectral weight observed at
precisely the Fermi energy and links this property to zeros of the underlying bulk Green’s function of the Mott
insulating phase.
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Introduction. The high-Tc cuprate superconductors are gen-
erally interpreted as doped Mott insulators [1]. The undoped
parent compounds are ordered antiferromagnetically through
the superexchange mechanism [2]. Although the parent com-
pounds are three-band, charge transfer insulators [3], it is
believed that the single-band Hubbard model (HM) pro-
vides an adequate effective description. The strong, on-site
Coulomb repulsion, Hubbard-U , forbids two electrons to oc-
cupy the same Cu site, thereby creating a Mott gap ∝ U . As
a result, the electronic spectrum splits into an upper Hubbard
band (UHB) and a lower Hubbard band (LHB). Superconduc-
tivity arises from carrier-doping the parent compounds beyond
a threshold concentration.

The rich properties of the doped cuprates suggest the im-
portance of studying Mott insulators with dilute dopants or
impurities. The local density of states (LDOS) near dopants
or impurities in the parent Mott insulator has been studied
through scanning tunneling microscope (STM) measurements
[4,5]. These experiments have uncovered a number of features
on the electronic excitation spectrum of a Mott insulator. For a
single impurity, the in-gap states emerge from the UHB above
the Fermi energy. When impurity concentration increases, the
in-gap states gradually fill up the Mott gap, but a “V”-shaped
dip forms near the Fermi energy. The observed dip means that
the impurities or dopants cannot produce in-gap states exactly
at the Fermi energy.

The experimental development is exciting as it bridges
between the clean parent compounds and the heavily debated,
lightly doped but metallic pseudogap regimes [6]. A system-
atic study of the Mott insulator in the presence of a single
defect dopant or impurity is highly desirable. Previous efforts
on this type of problem [7–9] have been mostly numerical,
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which are restricted by finite-size effect, and have yet to
achieve the understanding of the key experimental observa-
tions mentioned earlier.

In this Letter, we study the LDOS of single and multiple
impurities in a Mott insulator based on a slave rotor repre-
sentation of the HM in the thermodynamic limit. We find
clear, impurity-induced in-gap bound states, descending from
the UHB as observed in Ref. [4] in Ca2CuO2Cl2(CCOC).
In addition, we obtain the correct spectral weight transfer
from the UHB to the LHB. Systematic calculations of the
bound state energies and their corresponding spectral weights
provide qualitative understanding about the experiments of
Ref. [5] which is done for Bi2Sr2−xLaxCuO6+δ(La-Bi2201)
at two hole densities p = 0.03 and 0.07: (i) the bound states
cannot reach the Fermi energy; (ii) the bound states with
energies closer to the Fermi energy have smaller spectral
weights. We further show that the vanishing of the LDOS at
the Fermi energy reflects the zeros of the Green’s function,
i.e., the Luttinger surface [10], of the underlying Mott insu-
lator. That is a feature of considerable interest to the Mott
insulator per se and to the physics of the pseudogap regime
of the underdoped cuprates [11–13]. Recently, similar LDOS
on apical oxygen impurities are also observed in a different
Mott insulator Sr2IrO4 [14].

The slave-rotor approach. We consider the single band
Hubbard model on a square lattice

HHM =
∑

i

Hat (i) −
∑
i j,σ

(ti jd
†
iσ d jσ + H.c.), (1)

in which Hat (i) = U
2 (n↑ − 1/2)(n↓ − 1/2). For simplicity, we

consider only hopping between nearest-neighbor (nn) sites,
〈i j〉. The full energy spectrum of Hat (i) can be economi-
cally represented by a rotor kinetic energy Hat (i) → UL̂2

i /2
[15,16] with L̂i = −i∂θi , which provides a tractable reference
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point for perturbative expansion in t/U . In this slave-rotor
representation, the bare electron operator is written as a
product of the rotor field and a fermionic spinon operator
diα ≡ fiαe−iθi , with the constraint

L̂i =
∑

σ

( f †
iσ fiσ − 1/2). (2)

In place of the phase field one could work with the complex
field eiθi = Xi, with the additional constraint |Xi|2 = 1. The
two constraints are enforced by introducing two Lagrangian
multipliers, hi and λi. In terms of the fermionic fi and complex
rotor Xi operators, the physical di-electron operator at site i is
expressed as follows:

diσ ≡ fiσ X ∗
i . (3)

Correspondingly, the rotor operator becomes L̂i = (h − X ∗
i

∂t Xi )/U .

Intuitively, in the Mott phase, the rotor fields describe the
bosonic Hubbard-U charge dynamics while the f spinons
describe the magnetic fluctuations. It is shown in Ref. [17]
that by integrating out the X fields, the Heisenberg interaction
term is correctly recovered with the physical spins given by
the f spinons as Si = ∑

α,β f †
α σαβ fβ .

A saddle point solution [16,18] (see Supplemental Material
[19], Eq. (S-1) for details) is found for a paramagnetic Mott
insulating phase. This saddle point state is described by a free
f -spinon theory and a free X -field theory. Their corresponding
Green’s functions are

G f ,0(ω; k) = (ω + h − Q f εk)−1, (4)

GX,0(ν; k) = (−ν2/U + 2ihν/U + λ + QX εk)−1, (5)

where εk = −2t (cos kx + cos ky) is the bare lattice dispersion
function, Q f = Q f 〈i j〉 = 〈X ∗

j Xi〉, QX〈i j〉 = 〈∑σ f †
jσ fiσ 〉.

The spin and charge sectors are coupled through the
self-consistency between Q f and QX . Although we only
consider the nn hopping in this work, the inclusion of other
hopping terms such as the next-nearest-neighbor term would
only renormalize Q f and Qx. According to Eq. (3), the
electronic Green’s function is calculated via the rotor and
spinon Green’s functions according to

iGd (t ; x, x′) = −G f (t ; x, x′)GX (−t ; x, x′). (6)

We focus on the electronic LDOS ρd (ω; x) = −(π )−1

Im[GR
d (ω; x, x)], expressed as

ρd (ω; x) =
∫

dω′ρ f (ω′; x)ρX (ω − ω′; x)

× (n f (ω′) + nB(ω − ω′)), (7)

where ρ f [ω; x] = −(π )−1Im[GR
f (ω)], and ρX [ω] = −(π )−1

Im[GR
X(ω)].

In this work, we are interested in the large-U limit in which
λ � U/4 [17]. At the saddle point, Im[Gf (ω′)] centers at ω′ =
0 with a bandwidth Wf = 4D t Q f , which is small because
t Q f � U ; any impurity effects on Im[Gf (ω′)] per se would
be on the same scale. In the convolution, Im[Gf (ω′)] can be
regarded as a broadened δ function since Q f � U . The Mott
gap is primarily determined by Im[GX(ν)]. Therefore, the

FIG. 1. (a) The solution of δh(x0 ) plotted as a function of
δ〈nf (x0 )〉; (b) the bulk rotor spectral function Im[G+

X,0(ω; x, x)]
(blue) compared with that on a single impurity, Im[G+

X (ω; x0, x0)]
(red).

impurity-induced features of the electronic LDOS are mainly
determined by the rotor fields, which shall be our focus in the
following.

The induced rotor impurity potential. We consider the case
of a single impurity in CCOC as experimentally studied in
Ref. [4], which is either a missing chlorine(Cl−) ion or a
calcium(Ca2+) defect. The vacancy is charged and creates
an impurity potential. We model it by a localized, on-site
potential V (xi ), where xi denotes the vacancy position.

Consider a single on-site impurity at x0:

H1 = V
∑

σ

d†
x0,σ

dx0,σ = V
∑

σ

f †
x0,σ

fx0,σ . (8)

This bare impurity potential only couples to the spinons
and induces a variation of the local spinon density δn f (x0) =
δ〈∑σ f †

x0σ
fx0σ 〉. However, the rotors and the spinons are sub-

ject to the constraint Eq. (2). Through the constraint, the rotors
will be perturbed by the impurity potential as well.

In the large-U case, it suffices to solve the constraint in the
atomic limit. For the bulk state, we have 〈L̂〉 = 0 → h = 0.
For arbitrary h, we have

〈L̂〉 = h/U − 1

2

h√−h2 + λU
. (9)

Therefore, δn f (x0) further induces a variation of the La-
grangian multiplier h through the constraint which we shall
label as δh(x0). Using the atomic limit result, δh(x0) is ob-
tained by solving the following equation:

δh(x0)

U
− δh(x0)

2
√

−δh(x0)2 + λU
= δ〈n f (x0)〉. (10)

Taking λ = U/4, we plot the solution of δh(x0) as a func-
tion of δ〈n f (x0)〉 in Fig. 1(a). To solve for the impurity states,
we take δ〈n f (x0)〉 = −1, since V of relevance to the experi-
ments is on the order of eV, i.e., much larger than the spinons’
bandwidth. This solution gives us the upper bound of h(x0).
For the rest of this work, we shall use δh(x0) � 0.473U unless
specified otherwise. Even though negative solutions of δh(x0)
are allowed here, they do not induce in-gap bound states, and
thus shall be ignored. Then the rotor impurity potential due to
δh(x0) is

ĤX,x0 = ih0
(
X ∗

x0
∂t Xx0 − Xx0∂t X

∗
x0

)
, (11)

where we label h0 = 2δh(x0)/U .
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Impurity state Green’s function. We now turn to calculate
the LDOS of a single impurity in a Mott insulator using the
T -matrix formalism. The full rotor Green’s function, to the
first order in h0 can be expressed as

GX (ν; x1, x2) = GX,0(ν; x1, x2) + GX,0(ν; x1, x0)

× 〈x0|T̂ |x0〉GX,0(ν; x0, x2). (12)

Here, the rotor T matrix is defined as

T̂ = ĤX,x0

1 − h0νGX,0(ν; x0, x0)
, (13)

where |x〉 is the bulk rotor eigenfunction in the spatial
representation. From here on, we abbreviate notations by
writing GX,0(ν; xi, x j ) = gi j . Similarly, the retarded bulk ro-
tor Green’s function is written as G+

X,0(ν; xi, x j ) = g+
i j . The

impurity-induced variation of the local rotor spectral function
δρX (ν; x) = ρX (ν; x) − ρX,0(ν; x) is derived from the retarded
T̂ matrix:

δρX (ν; xl ) = − 1

π
Im

[
h0νg+

0lg
+
l0

1 − h0νg+
00

]
. (14)

It is convenient to separately discuss the two pieces of
δρX (ν; x): (i) the first piece δρX,1(ν; x0) comes from the orig-
inal poles of g+

00, i.e., the correction to the bulk Hubbard band,
which reads

δρX,1(ν; x0) = 2h0νρ0(ν)�0(ν)(1 − h0ν�0(ν))

(1 − h0ν�0(ν))2 + π2ρ0(ν)2
, (15)

where �0(ν) = Re[g+
00] and ρ0(ν) = −Im[g+

00]/π ; (ii) the
second contribution δρX,2(ν; x0) comes from new poles that
correspond to the vanishing denominator 1 − h0νg00. The new
poles are only possible where ρ0(ν; x) → 0, i.e., for our con-
cern, inside the Mott gap. δρX,2(ν; x0) is expressed as

δρX,2(ν; x0) = h0ν(�0(ν)2 − π2ρ0(ν)2)

|h0(ν ∂ν�0(ν) + �0(ν))|δ(ν − νb). (16)

The energy of the bound state νb is found by numerically
solving the equation [see Fig. (S1) for numerical results of
g00]

1 − h0νg00 = 0. (17)

Through Eq. (7), we see that νb determines the center of the
electronic in-gap spectral weights.

We show in Fig. 1(b) the bulk rotor spectral function (red)
and that on the impurity (blue). The Dirac-δ function is broad-
ened as a Lorentzian.

The electronic spectral function obtained through Eq. (14)
is shown in Fig. 2(a) and variation of the spectral function
δρd (ω; x0) = ρd (ω; x0) − ρd,0(ω; x0) is given in Fig. 2(b).
Both are in good agreement with the experimental results of
Ref. [4], which we quote in Supplemental Material [19]. Even
though the experimental data are in arbitrary units, the relative
area under the peak and above the dip in Fig. 2(b) is still
quantitatively comparable to the experimental results.

Solution for multiple impurities. The single impurity so-
lution considered above is already the upper bound in terms
of bound state energies, which are very close to the UHB.
However, in the experiments for the Ca2+ vacancy of Ref. [4],
the bound state is closer to the Fermi energy. In the finite

FIG. 2. Electronic LDOS on the impurity site (blue) com-
pared with the bulk (red) (a), and the variation of LDOS on the
impurity (b).

doping but still insulating cases [5], the binding energies of
the in-gap states are way beyond this limit. They can actually
approach the Fermi energy but never reach it. The spectral
weight of the in-gap states forms a sharply V -shaped feature
centered at the Fermi energy. We now show that, by consid-
ering multiple impurities, these properties are also captured
within our framework: (i) bound states of similar energies
superimpose to create new bound states with smaller energies;
(ii) such bound states carry smaller spectral weights compared
to that of the single impurity case.

For simplicity, we start with the two-impurity case. We
label their positions as x1 and x2, and their corresponding
single-impurity T matrices as T̂1 and T̂2 which are similarly
defined in Eq. (13). To the lowest order, the full T matrix is
given by [20]

T̂ = f12(T̂1 + T̂2 + T̂1g12T̂2 + T̂2g21T̂1), (18)

with f12 = (1 − t1t2g12g21)−1, and ti = νh0(xi )(1 −
νh0(xi )gii )−1. Both T̂1 and T̂2 contribute in-gap bound
states at their own νb,1(2). Moreover, the factor f12 contributes
new bound states, the energies of which are deduced from

1 − t1t2g12g21 = 0 ⇒ νb = A ± √
A2 − 4B

B
, (19)

where A = h1g11 + h2g22, B = h1h2(g11g22 − g12g21), and
hi = h0(xi ). The new bound state solutions have the follow-
ing properties: (i) νb cannot reach zero just as for the single
impurity case; (ii) the new νb’s are different from νb,1 or νb,2;
(iii) the new νb’s are also positive-definite, meaning that they
also descend down from the UHB; (iv) most importantly, they
become smaller, i.e., closer to the Fermi energy. In the single
impurity case, the value of h0 is bounded as |δ〈n f 〉| � 1 which
further puts bounds on νb from below. However, in Eq. (19),
when the two impurity potentials are close enough, we have
B � A. By expanding Eq. (19) in terms of small B, we find

νb ∼ 1/A = 1/(h1g11 + h2g22). (20)

Let h1 = h2 = h0, and g11 = g22 = g00, and compare Eq. (20)
with the single impurity case, νb,single � g00h0. Therefore, the
new bound state can be considered as generated by an ef-
fective and larger h′

0 � 2h0. In other words, the strength of
impurities close together effectively adds up to produce bound
states with lower and lower energies. A similar approximation
can be made by considering the T matrix of M impurities
(see Supplemental Material), i.e., when these impurities are
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FIG. 3. The bound state energies νb plotted as a function of the
effective rotor impurity potential h0 (a) and the spectral weights ρi at
given energy νb (b).

sufficiently close, the bound state of the lowest energy can be
viewed as generated by a single impurity with all the impu-
rity strength superimposed h′

0 � ∑
m=1,...,M hmgmm, where the

bound state energies νb ∼ 1/h′
0 are pushed closer to the Fermi

energy as the number of impurities in a cluster increases.
Therefore, it is reasonable to use h0, which now can go

beyond the upper bound in the single impurity case, as a
tuning parameter for impurity concentration. We shall com-
pute the bound state energies and their corresponding spectral
weights as a function of arbitrary h0, and use the results
to qualitatively explain experimental observation for doped
samples. We plot the energies of the in-gap states νb as a
function of the impurity potential strength h0 in Fig. 3(a) and
the corresponding spectral weights in Fig. 3(b). Note that the
asymptotic behavior is νb ∼ 1/h0, which forbids the impurity
state from reaching zero, i.e., the Fermi energy of the bulk.
The corresponding spectral weight ρi = (�0(νb)2−π2ρ0(νb)2 )

|h0(νb ∂ν�0(νb)+�0(νb))|
decreases when νb approaches zero.

Experimental implications. From those results, we can ex-
plain the difference between the LDOS on the Cl− site and
the Ca2+ site. The LDOS of Cl− vacancy is well explained
by the single impurity solution, while that of a single Ca2+

vacancy is much closer to the Fermi energy. To explain the
discrepancy, we note that the impurity potential of a Ca2+

vacancy acts simultaneously on its four neighboring Cu sites
(see Supplemental Material), forming a four-impurity cluster.
Thus, according to our approximation for the multi-impurity
case, the peak position (relative to the Fermi energy) of
Ca2+ vacancy should be about 1/4 of that for the Cl− site.
The experimental results in Ref. [4] give ωb(Cl−) � 1.8 eV
and ωb(Ca2+) � 0.5 eV, showing a quantitative agreement
with our theory. A recent STM measurement [21] further
confirmed our quantitative prediction with an explicit com-
parison of measurements on single-impurity and two-impurity
clusters.

Discussion. Our work suggests that the observed V-shaped
LDOS suppression is a generic feature of Mott insulators
with or without magnetism. This is manifested by the spe-
cial form of the effective rotor impurity potential, ĤX,x0 =

ih0(X ∗
x0

∂t Xx0 − h.c.) which vanishes for ν = 0 as long as the
system is still in the Mott insulator phase. More generally,
the vanishing of LDOS reflects an exact zero of the local
Green’s function of the parent Mott phase rather than just the
zeros of the spectral function, as we show in the Supplemental
Material. This exact zero of the local Green’s function is a
consequence of the Luttinger surface of the electrons’ Green’s
function in k space at the Fermi energy. We propose that this
Luttinger surface has topological stability related to the Mott
gap, in a sense similar to the stability of a Fermi surface
[22,23]. Exactly how such protection works is an intriguing
open question for future studies.

The alignment of our theory with the experimental obser-
vations is also a demonstration of the emergence principle in
strongly correlated systems. Conventionally, the approach to
such impurity problem would be implementing the T -matrix
method directly with the physical Green’s functions, such as
in the simulation of Ref. [14]. But such efforts have failed to
explain the key aspects of the experimental observations. In
our approach, the Luttinger point physics is captured through
the proper treatment of the constraint to obtain the effective
rotor impurity potential, Eq. (11).

While being able to account for many aspects of the im-
purity effects, our ultimate goal is to understand how finite
concentration of impurities or holes eventually causes the
Mott phase, and the concomitant Luttinger surface, to col-
lapse, which further leads to all these fascinating phenomena
in the underdoped regime. The slave rotor theory has the
advantage of accounting for the Luttinger points or surfaces.
Other related methods, even though may be capable of de-
scribing the finite doping phases, are not found to describe
such impurity states. The current work suggests that future
development of the formalism places a minimal requirement,
viz. to capture the Luttinger surfaces of the half-filling limit.

Summary. We have studied the local density of states of
a single impurity in the Mott insulator. Using a slave rotor
method, we solve the rotor impurity problem using the T -
matrix method, and find that the solution accounts for both
of the key features of the observed local density of states on
a single impurity regarding (i) positions and amplitudes of
the in-gap spectral weights; (ii) the spectral weight transfer
from the UHB to the LHB. Further analysis of the solutions
for multiple impurities shows that high impurity concentration
can be accounted for by a larger effective impurity potential
for the rotor fields. We have emphasized that the Luttinger
surfaces play an important role in our results.
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