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Hysteresis of axionic charge density waves
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Magnetic catalysis is a known proposal for inducing dynamical axionic gapped phases by means of external
magnetic fields from a Weyl or Dirac semimetal phase. At finite Fermi level, the phase transition is of first-order
type and the magnetic field needs to reach a critical value for the transition to take place. Using the theory of
bubble nucleation, we predict the order parameter features a hysteretic behavior as a function of the external
magnetic field. We also analyze the experimental consequences of this hysteretic behavior in several observables
like magnetoconductivity, magnetic susceptibility, and nonlinear optical coefficients. This hysteretic behavior
might serve as a fingerprint of magnetic catalysis in condensed matter systems.
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Introduction. Axion insulators are topologically nontrivial
quantum states of matter characterized by a magnetoelectric
term in their electromagnetic response. For time-reversal in-
variant topological insulators, this magnetoelectric term is a
(topologically quantized) constant coefficient θ . It turns out
that, being constant, this term does not modify Maxwell’s
equations, rendering this term unobservable. To be so, the
magnetoelectric coefficient must be space and/or time de-
pendent (axion), θ = θ (t, r), as shown in Ref. [1]. There are
several ways to observe a nontrivial axionic response from
three-dimensional topological insulators (3DTIs): The effect
of external magnetic fields, 3DTIs with magnetic surface
coatings that gap the surface Dirac state. Another route is
to use (time reversal) T -symmetry broken Weyl semimetals,
where the axion term is proportional to the separation b of
the Weyl nodes, θ (r) ∝ b · r. So far, there are scarce examples
of Weyl semimetals with broken T symmetry. In these cases,
T symmetry is broken due to some sort of antiferromagnetic
ordering for Co3Sn2S2 [2] or Mn2Bi2Te5 [3], or the exotic role
of large magnetic fluctuations in the case of EuCd2As2 [4]. An
appealing consequence of the breakdown of the T symmetry
is that, in these cases, fluctuations around the order parameter
might act as dynamical axions, particles hypotethized in the
context of high-energy physics, that couple to electromagnetic
fields through the chiral anomaly induced term in the effective
electromagnetic response of these insulators, if θ = b · r +
δθ (t, r), then, the axion mode couples to the electromagnetic
fields as Laxion ∼ δθ (t, r) · E · B. In addition to the previously
mentioned materials, dynamical axions have been postulated
to appear in exotic charge density waves (CDW) from Weyl
semimetal (WSMs) systems [5–10]. Here the CDW sliding
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mode or phason plays the role of the axion and the Weyl
node separation is the CDW wave vector. Two scenarios have
been put forward for the axionic phase to appear. The first
requires internode interactions to be strong enough so as to
lead to the spontaneous symmetry breaking of the global U(1)
chiral symmetry [6,8]. The second introduces a strong mag-
netic field B that aids in breaking the symmetry for weaker
interactions than in the first scenario [7]. The latter case is
also known as magnetic catalysis (MC) of chiral symmetry
breaking [11–15] and has been extensively explored in the
context of QCD in a strong magnetic field [16–25]. In the
context of condensed matter physics, the magnetic field is a
tuneable parameter, easier to control than fermion coupling
strengths, hence MC proves a promising avenue towards ob-
serving axionic CDWs. The substantial difference between
these two scenarios for the formation of axionic CDWs is the
effective dimensionality in the gap equation. In the later case,
the magnetic field induces the formation of (highly degen-
erate) (1 + 1)-dimensional Landau level states. The resulting
gap equation differs from the one in absence of magnetic field
in that the solution implies a nonzero value of the chiral sym-
metry breaking condensate � ∼ G〈�̄�〉 ∼ √

eB exp(− 1
GeB ),

for any value of the interaction constant G, while at zero
magnetic field, this condensate is nonzero for values of G
exceeding a critical value Gc [6]. For some specific condi-
tions, at zero magnetic field there is the possibility of Fermi
surface nesting when a chiral imbalance takes place in the
WSM phase [26]. The presence of a finite chemical potential
destroys this nesting condition between Fermi surfaces with
opposite chirality, preventing the instability to happen for a
homogeneous chiral condensate. Interestingly, it is suggested
that a finite-momentum chiral condensate might be allowed
in such conditions [26]. A similar situation occurs at nonzero
magnetic fields. It is already known that temperature or chem-
ical potential restores the chiral symmetry leading to a zero
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value for the condensate � [27,28]. The salient feature, as
we will discuss in the rest of this work, is that, in stark con-
trast to what happens at finite temperature, at finite chemical
potential the effective potential for � develops two minima,
one at �= 0, and the other at finite values of � (in contrast
to the μ = 0 case where only � �= 0 is a true minimum).
The presence of two minima implies that the chiral symme-
try breaking phase transition is of first-order type [27]. This
phase transition was analyzed in terms of varying the chemical
potential at fixed magnetic field. However, in the case of three-
dimensional WSMs, it is easier to knob the magnetic field
instead of μ. This means that there is now a critical value for
the magnetic field B0 below which the chiral symmetry is not
broken. This rather trivial conclusion might be behind the MC
scenario is difficult to observe experimentally in systems with
large μ. Interestingly, that this axionic CDW phase transition
is of first order implies a rich structure in the dynamics of
the phase transition and allows us to predict phenomeno-
logical properties that unambiguously characterize this phase
transition.

Analysis of the phase transition. From a microscopic point
of view, it has been suggested that electron-phonon inter-
actions might be the primary (albeit not unique) sources of
electronic correlations in WSMs [29], either in terms of of a
Yukawa-like (screened) coupling between acoustic phonons
[30] and electrons, or interactions between electrons and op-
tical phonons [31]. In any case, for scales smaller than the
typical scale of these interactions (screening of the Yukawa
interaction or energies below the optical phonon frequencies),
it is sufficient with considering a contact interaction. For this
reason, we will consider the standard situation of analyzing
the Nambu-Jona-Lasinio (NJL) model (a local four-fermion
interaction) for Dirac fermions applied to the MC scenario
focusing on the infrared properties of the magnetic catalysis of
the chiral symmetry. The fermionic Lagrangian of the model
at finite chemical potential μ and magnetic field B = Bẑ is
[27,32] reads

LNJL = �̄
(
iγ μην

μDν − μγ 0)� − G

2
[(�̄�)2 + (�̄iγ 5�)2].

(1)
In Eq. (1) we adopt the standard quasirelativistic notation for
gapless fermions in WSMs where ην

μ = diag(−1, v f , v f , v f ),
and v f is the Fermi velocity, so the matrices γ follow the
conventional Clifford algebra. We will implicitly take v f = 1,
reintroducing it explicitly when convenient. In addition, we
define the covariant derivative as Dμ ≡ ∂μ − ieAμ. We choose
to represent the four-vector potential of a constant magnetic
field in the x3 direction in the symmetric gauge, i.e., Aμ =
B
2 (0,−x2, x1, 0). We will assume from this point on that eB >

0, without loss of generality.
After a Hubbard-Stratonovich transformation that trans-

forms the quartic interaction in Eq. (1) into a bilinear
interaction [14,27] with auxiliary bosonic fields � and θ such
that 〈�̄�〉 ∼ � cos θ , and 〈�̄iγ5�〉 ∼ � sin θ , one finds that,
at finite temperature T and μ, the effective potential density
(hereafter, effective potential) for the chiral condensate is the
sum of two terms, V (�) = V0(�) + Vμ,T (�), where

V0(�) = �2

2G
+ eB

8π2

∫ ∞

�−2

ds

s2
e−s�2

coth(eBs), (2)

and

Vμ,T (�) = − 1

β

eB

4π2

∞∑
n=0

αn

∫ ∞

−∞
d p

· log{[1 + e−β(εn (p)+μ)][1 + e−β(εn (p)−μ)]}. (3)

These expressions come from a standard derivation of the
effective action after integrating out the electronic degrees of
freedom, and under the assumption that the field � is constant.
As usual, the field θ does not enter in this static approximation
as it describes the Nambu-Goldstone mode of the transition.

The term in Eq. (2) is the vacuum contribution that is
independent of T and μ, but dependent on the UV cutoff of the
theory �. εn(p) ≡

√
p2 + 2neB + �2, αn ≡ 2 − δn0 are the

energies and degeneracies of the n Landau level, respectively,
and β ≡ 1/T . Within the conventional scenario of magnetic
catalysis of chiral symmetry breaking at T = 0, μ = 0, the
minimum of V (�) takes a nonzero value �0 (corresponding
to the symmetry broken phase) for any nonzero magnetic
field and any G > 0, hence inducing a gap in the single-
particle spectrum (for details of the gap equation at zero and
finite μ, see Ref. [33]). In contrast, in the limit of vanishing
magnetic field, a nonzero gap is only reached for couplings
above a critical value G > Gc = 4π2

�2 . Redefining the coupling

constant through the dimensionless parameter g ≡ �2G
4π2 , this

bound conveniently becomes g > 1.
There are some qualitative features from the physics of

phase transitions that we can draw from Eqs. (2) and (3).
Increasing the temperature T from zero but keeping μ = 0,
there is a second-order (continuous) phase transition at T ∼
�0 to the chirally symmetric phase [15,27,34]. On the other
hand, increasing μ but keeping T = 0, one finds there is a
first-order phase transition for μ ∼ �0. In this regime, the
potential (3) takes the form

Vμ,0(�) = − eB

4π2

∞∑
n=0

αn

∫ ∞

−∞
d p�[μ − εn(p)] · [μ − εn(p)].

(4)

where �[x] is the Heaviside step function.
For the rest of the present work, we will focus on this

quantum regime, T = 0. The full potential V (�) as a function
of the order parameter � at zero temperature but a fixed
value of μ is plotted in Fig. 1(a) for different values of the
magnetic field. The main feature is that two minima coexist
for a range of magnetic fields. The critical magnetic field B0 is
defined as the magnetic field for which the potential minima
are degenerate. In addition, we can define two values of the
magnetic fields Ba and Bb for which one of the minima disap-
pear: d2V

d�2 |B=Ba,b = 0 (the symmetric minimum around � = 0
and the symmetry-breaking minimum at � �= 0, respectively).
For magnetic fields B larger than Bb (smaller than Ba), the
symmetric (symmetry-breaking) minimum becomes unsta-
ble. For Ba < B < B0 (Bb > B > B0), the chirality-symmetric
(chirality-breaking) minimum is the global minimum, i.e.,
the stable ground state. It is well known that for sufficiently
small perturbations around B0 whereby the ground state of
the system passes from lying at the global minimum to
simply a local one, the system remains in its original, now
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(a)

(b)

FIG. 1. (a) Plot of V (�) for different magnetic fields, referenced
with respect to the degeneracy value B0, where two minima coexist,
with � = 50μ and δg−1 ≡ g−1 − 1 ≡ �2G

4π2 − 1 = 0.01. (b) Plot of
the value of the critical field B0 as a function of the chemical potential
for varying values of �/μ with fixed g−1 − 1 = 0.01 (left) and
varying values of g−1 − 1 with fixed �/μ = 50 (right). Note that
throughout this work values of g are referenced with respect to its
critical value gc = 1 in the NJL model, as this is where the interaction
gap becomes prominent [14], and is displayed in the right plot of (b).

metastable, ground state [35]. In thermal (i.e., temperature-
driven) first-order phase transitions this phenomenon is known
as supercooling (for temperatures T smaller than a critical
temperature T0) and superheating (for T > T0). However, the
system might transition into the true global minimum well by
some external perturbation (or thermal fluctuations in thermal
phase transitions), or spontaneously at some values of the
magnetic field, B1 and B2, (or any external knob parameter)
with Ba � B1 � B0 � B2 � Bb. In the case where B1 and/or
B2 are different from B0, and the transition takes place dynam-
ically by nucleation of bubbles [36,37], the phase transition
will show a hysteretic behavior [38].

All these considerations are generic of first-order phase
transitions [35]. In our particular case, the effective potential

arises from the pseudorelativistic interacting electrons de-
scribed by the model in Eq. (1), so it is worth highlighting
the formal similarity of this model with the ones studied in
the context of cosmological phase transitions [39–42]. Those
transitions are often characterized by a symmetry-preserving
phase at high temperatures. As the universe expands, it cools
down and the temperature is lowered until the symmetry-
broken phase becomes energetically favorable at a certain
critical temperature T0. If this transition is thermal and of
first order, then for temperatures immediately below T0,
the universe will stay in its original but now metastable
symmetry-preserving phase. This will occur until bubbles of
the symmetry-breaking phase nucleate and expand until they
occupy the entire volume of the universe. In these models the
nucleation rate � is given by the high-temperature Arrhenius-
like dependence � ∝ e−�F/T [40,43,44]. This is in contrast to
the quantum scenario considered here, where, as was argued
previously, the first-order phase transition was observed when
the temperature is the smallest energy scale T 
 μ,

√
eB,�.

The relevant nucleation rate is then given by the semiclassical
expression for � [36,37],

� ≈
(

Sb

2πR2
b

)2

e−Sb, (5)

where Sb is the action for the classical bubble solution to the
equations of motion in four-dimensional (4D) Euclidean space
(that will be specified later), and Rb is the radius of the bubble.
Another important difference with respect to cosmological
phase transitions is that the transition-driving parameter, the
magnetic field B, can be lowered or raised in a controlled
fashion in the experiment. Hence, the transition from the
chirality-breaking to the chirality-preserving phase might be
tuned as the nucleation rate � will depend on the magnetic
field. If the system parameters are such that (B1, B2) are
different enough from B0, the hysteretic behavior might be
observed experimentally. In the following sections we will
first estimate the values of B1 and B2 using a modified version
of the theory of bubble nucleation and later we will com-
pute several observables where this hysteretic behavior can be
measured.

Calculation of the Nucleation Rate. To find the magnetic
fields B1 and B2 on either side of B0 for which the mate-
rial effectively transitions, we calculate the time a critical
bubble takes to nucleate [42,45], defined by t−1

nuc ∼ R3
b�. We

assume that, due to fast expansion of the bubble at speeds
approaching v f , the whole sample transitions once a single
bubble nucleates. From this perspective, the transition from
the symmetric to the broken phase happens at tnuc(B2) < tr ,
where tr is some time reference scale much longer than any
set in an experiment. Similarly, the magnetic field for which
the transition from the broken to the symmetric field occurs
B1 is set by tnuc(B1) < tr . We will consider the conserva-
tive tr = 109 years. As will be checked later, B1 and B2 are
not too sensitive to smaller, perhaps more sensible, values
of tr .

To calculate the bubble configuration, we need to take into
account kinetic effects beyond the static potential V (�) in
Eqs. (2) and (3). This approach has been used, for instance, to
calculate the bubble configurations of first-order chiral phase
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transition of the early universe [46]. Keeping the leading terms
in the corresponding derivative expansion of the effective
action, the kinetic terms for the condensate read

Lk = Z−1(�)

2

[
(∂0�)2 −

∑
i

v2
i (∂i�)2

]
. (6)

To recover a canonical O(4)-symmetric kinetic term, we in-
troduce a new field � defined by

d�

d�
= Z− 1

2 (�), (7)

and assume for the sake of simplicity that the velocity of
the bosons in the plane perpendicular to the magnetic field
v⊥ = v1 = v2 of the � bosons is equal to the longitudinal
velocity, the Fermi velocity v f . This is generally not the case
[14,47] as clearly the magnetic field breaks rotation sym-
metry, but is justified for the cases considered here where
the symmetry-breaking ground state �0 ∼ μ is not extremely
small compared to � and the magnetic field is in a nonultra-
quantum regime eB 
 �2 [48]. The field renormalization can
be calculated from

Z−1(�) = i

2

∫
d4k

(2π )4
tr

[
∂D̃
∂k0

∂D̃
∂k0

]

= eB

24π2�2

⎡
⎣1 −

(
1 − �2

μ2

) 3
2

�(μ − �)

⎤
⎦, (8)

where D̃ is the translation-invariant component of the lowest
Landau level (LLL) propagator in momentum space [14]

D̃(k) = i exp

[
−k2

⊥
eB

]
/k‖ + �

k2
‖ − �2

(1 − iγ 1γ 2), (9)

and k ≡ (k0, k1, k2, k3), k⊥ ≡ (k1, k2), and k‖ ≡ (k0, k3). No-
tice how the μ-dependent term makes the field renormaliza-
tion finite even in the limit � → 0, which would otherwise
diverge in the μ = 0 case [14]. It is therefore essential for this
term to be included, as otherwise if such a divergence were
left unabated, then the gapless ground state of V (�) would
be found at � → ∞ and would inhibit any stable bubble
configuration with a metastable gapless configuration.

The bubble configurations for different values of the mag-
netic field can now be obtained solving the equation of motion
of the canonical field with respect to the radial coordinate ρ,
i.e.,

d2�

dρ2
+ 3

ρ

d�

dρ
= Z

1
2

dV

d�
, (10)

imposing the conditions limρ→∞ � = �meta, where �meta de-
notes the corresponding metastable state, and d�/dρ|ρ=0 =
0, using an undershooting-overshooting algorithm (see, e.g.,
Ref. [49]). These bubble solutions are then used to calculate
the corresponding bubble action

Sb =
∫

d4x

[
1

2
(∇�)2 + V (�) − V (�meta)

]
. (11)

The resulting nucleation times are plotted in Fig. 2. The curves
have a steep descent as they approach B0, so much so that
lowering tr down to 103 years, for instance, would not alter

FIG. 2. Plot of the logarithm of the inverse nucleation time t−1
nuc

(measured in inverse seconds) for different magnetic fields, com-
pared with the reference time tr = 109 years, with g−1 − 1 ≡ �2G

4π2 −
1 = 0.01, � = 50μ, and μ = 0.01 eV.

the values of B1 and B2 significantly. Having determined the
points at which the phase transition occurs, one can now draw
hysteresis curves for gap-dependent quantities.

Observable consequences. In Figs. 3(a) to 3(c) we plot
the hysteresis curves for the gap, the magnetoconductivity
in the quantum limit [50], and the magnetic susceptibility
[7,51]. Although the model predicts that the system should
remain conducting even in the gapped phase because of the
surviving Nambu-Goldstone boson, the axion, the associated
charge density wave is expected to be pinned if no depin-
ning potential is applied [52]. This is the case represented in
Fig. 3(b).

In addition, we also consider the effects of hysteresis
in nonlinear optical response. Since in our model (1) the
Weyl nodes are located at the same energy, the second-order
response is null. Therefore, we consider the third-order re-
sponse, particularly the component σ zzzz at third harmonic
generation, where all incident photons have the same fre-
quency ω [53] and are parallel to the applied magnetic field.
The contribution of the LLL, of interest in the magnetic catal-
ysis scenario, is

σ zzzz(ω,ω,ω)

= (ev f )4 1

3!

eB

4π2

∫ ∞

−∞
d p

× 27�2
(
4ε2

0 (p) − 5�2 + ω2
)

ε0(p)
[
9ω6 − 49ε2

0 (p)ω4 + 56ε4
0 (p)ω2 − 16ε6

0 (p)
] .

(12)

Note that the denominator can be decomposed into
poles around ω = ±2�/n where n = 1, 2, 3. This response
function is a sensitive probe to the phase transition as it is zero
in the gapless phase. This is fundamentally a consequence of
the one-dimensional (1D) LLL dynamics and indeed it can be
checked that it is nonzero in a Weyl SM or graphene [54] in the
absence of a magnetic field. Therefore, as the magnetic field is
turned on and increased, one expects to see a gradual decline
of σ zzzz during the quantum oscillating region until acquiring a
minimal value in the quantum limit. However, once the phase
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FIG. 3. Hysteresis diagrams of the (a) gap, (b) the magnetoconductivity, and (c) the magnetic susceptibility. (d) Plot of the third harmonic
optical magnetoconductivity component σ zzzz at B = B0. The strong peak corresponds to ω = 2�/3. A broadening of η = 0.01μ (such that
ω → ω + iη) is employed. (e) Hysteresis diagram of σ zzzz evaluated at 3ω = 2�(B). In all plots the parameter values g−1 − 1 = 0.01, � =
50μ, and μ = 0.01 eV are used.

transition occurs at B2, it will become finite in the gapped
phase, as is represented in Fig. 3(d). at the critical field B0. The
most prevalent feature is the peak at 3ω = 2� in the real part.
The hysteresis plot for σ zzzz at this frequency is represented in
Fig. 3(e).

The dependence of the critical field B0 on the model
parameters is explored in Fig. 1(b). Curves for B1 and B2 are
not shown but it has been checked that they follow analogous
curves [33], and hence the size of the hysteresis window
relative to B0 shown in Fig. 3 is relatively unchanged. The
hysteresis process is accessible for small chemical potentials,
as this is when the contribution from the LLL (see, again,
Ref. [33]), the key piece in inducing MC, is most relevant. In
addition,near-critical couplings g and not so large UV scales
� also favor the process occurring at realistic scales for the
magnetic field, as is generally expected in MC [7]. It is worth
pointing out however that in the ultraquantum limit �2 
 eB,
no hysteresis should be observed as in that limit the process is
independent of the value of the magnetic field modulus [48].

Conclusions. The present work highlights the fact that a
first-order phase transition for the magnetic catalysis scenario
implies, first, the existence of a chemical potential-dependent
critical magnetic field B0 below which the transition cannot
take place, and second, a hysteretic behavior in the condensate
as a function of the magnetic field, and thus the existence of
hysteresis loops in the physical observables that depend on the
condensate, that is only compatible with the effect of many-

body interactions. We show that a hysteretic process should
indeed be observable, as the transition values of the magnetic
field, B1 and B2, are well distinguished from one another. The
way in which disorder may alter this conclusion remains to be
studied in future work. However, it is reasonable to expect it
to slow nucleation, and hence widen the hysteretic window, as
is the case with 1 + 0D quantum tunneling [55].

From a experimental perspective in the field of WSMs,
the magnetic field-induced axionic phase has been reported
in (TaSe4)2I [52]. Transport measurements in materials in
CDW states can, however, be difficult to interpret due to
the Joule heating associated to the voltage to depin the slid-
ing mode [56]. Also, a metal-insulator transition driven by
external magnetic fields, compatible with the MC scenario,
were claimed to be observed for the case of ZrTe5 and
HfTe5 [57–60]. This point of view has been later disputed
in ZrTe5 [61], where no signatures of an electron instability
were found, and a conclusive experimental situation for these
compounds is still missing. The presence of hysteresis loops
in experimental observables might be a conclusive fingerprint
of many-body instabilites versus single-particle effects.

As a final remark, we note that the pseudorelativistic theory
presented here can be viewed as a condensed matter analog
[62] of a cosmological chiral phase transition [41,42], with the
notable difference that the tuning parameter for the transition
is the magnetic field and not the temperature of the expanding
universe.
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