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Investigating Josephson plasmons in layered cuprates via nonlinear terahertz spectroscopy
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Josephson plasmons in layered superconductors represent a natural source of optical nonlinearity, thanks to
their intrinsically anharmonic nature. Here we derive the selection rules behind nonlinear plasmonics showing
its dependence on plasmonic branches hidden to other spectroscopies, such as RIXS. We benchmark our results
for the case of layered cuprates, showing how in a layered system the combined effect of plasmon dispersion and
light polarization can move the resonance of the bilayer system away from the plasma edge measured in linear
spectroscopy. Our results demonstrate the dependence of the nonlinear THz response on the convoluted plasmon
dispersion in a momentum region complementary to RIXS, and offer a possible perspective for the generation of
THz pulses by artificially designed Josephson heterostructures.
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Introduction. Plasma modes describe the propagation of
longitudinal electromagnetic waves in metals, hybridized with
electronic charge fluctuations. As such, they can be detected
via density-sensitive probes, such as inelastic x-ray scat-
tering [1] (RIXS) or electron energy-loss spectroscopy [2]
(EELS). Whenever the metal becomes superconducting (SC)
the fluctuations of the SC phase, canonically conjugated to the
density, bring up the information on the plasma mode [3].

In layered superconductors, as, e.g., cuprates, the weak
coupling between CuO2 planes induces a marked anisotropy
between in-plane ωxy and out-of-plane ωz long-wavelength
plasma frequencies. While ωxy lies at an energy scale where
no appreciable change occurs across the SC transition, the soft
ωz plasmon becomes undamped by the opening of the SC gap
below Tc, as evidenced by the emergence of a sharp plasma
edge in the c-axis reflectivity at a temperature-dependent scale
ωz(T ) [4–13]. At finite momentum the two energy scales ωxy

and ωz get mixed, and the energy-momentum dispersion of the
layered three-dimensional (3D) plasmon, shown in Fig. 1(a),
acquires acousticlike branches at fixed kz, see Fig. 1(b), due to
the reduced screening between neighboring layers. RIXS and
EELS can probe such a dispersion both in the normal and SC
states, see Figs. 1(b) and 1(c), even though they cannot access
the long-wavelength limit due to charge conservation [14–17].

In cuprates pair tunneling is the dominant interlayer
hopping mechanism below Tc, justifying a Josephson-like
description for the out-of-plane phase modes [18,19]. The
excitation energy of SC Josephson plasmon scales with the co-
sine of the SC phase gradient. Such an intrinsic anharmonicity
turns in a primary source of nonlinear optical response below
Tc, thanks to the minimal coupling of the phase gradient to the
gauge field [18,19]. A typical hallmark of nonlinear response
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is THz third harmonic generation (THG). THG from Joseph-
son plasmons [20–23], as well as additional effects connected
to their nonlinear response [24–26], have been experimen-
tally proven in cuprates. In analogy with nonlinear phononics
[27–32], the main THG process can be understood as a
sum-frequency process where two photons of the THz pulse
centered at � excite simultaneously two plasma waves [33]
with opposite 3D momenta. As a consequence, while linear
reflectivity is only sensitive to the long-wavelength limits ωxy,
ωz of the plasmon dispersion, nonlinear optics is sensitive to
the convolution of plasmon excitations at finite momenta. This
process retrieves the density of states of plasma excitations
in a momentum region complementary to the one measured
by RIXS, see Figs. 1(b) and 1(c), providing in principle a
mechanism to selectively tune the resonance energy for THz
third harmonic generation (THG) in a layered heterostructure.

Here we demonstrate this principle by comparing single-
and bilayer structures. In single-layer systems, with a single
plane per unit cell in the stacking direction, the light po-
larization projects out the full plasmon dispersion towards
the low-energy ωz value measured by linear optics. Since
experiments are performed at a fixed pump frequency � as
a function of temperature, the largest THG is expected at T̄
where � = ωz(T̄ ). Such a prediction, qualitatively similar to
that obtained [33] by neglecting the plasmon dispersion, is
consistent with experiments [20,22].

In bilayer superconductors the modulation of intrabilayer
Jz1 and interbilayer Jz2 Josephson couplings along the stacking
direction, with Jz1 � Jz2, leads to a doubling of the Josephson
plasmon branches, as originally explained in Ref. [8], giving
in the long-wavelength limit two scales ωz1 � ωz2. The lower
one ωz2 ∝ √

Jz2 controls the lower and sharper reflectivity
edge at zero momentum [5–8,10–12], while the upper Joseph-
son branch has been recently measured by RIXS [17], which
turns out to be insensitive to the lower plasmon branch, see
Fig. 1(c). By computing the THG for the bilayer case we show
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FIG. 1. (a) Plasmon dispersion in a layered superconductor from
Eq. (3). Red and green solid lines highlight cuts at fixed kz.
(b) RIXS measurements (dots) from Ref. [16] superimposed to plas-
mon branches plotted with a line intensity proportional to the THG
polarization. In the bilayer case (c) the plasmon branches (shown in
log scale) double, the upper one (dashed line) being the analogous of
the single-layer mode. The lower branch, which rapidly approaches
the ωT scale seen in absorption (see text), is not visible in RIXS
measurements [17]. The momentum scale and color codes are the
same in (b) and (c).

that the dominant contributions of plasma modes to the THG
arise from intrabilayer phase fluctuations, scaling with the
larger Josephson stiffness. As a consequence, in the bilayer
system the momentum integration moves the THG spectral
weight towards a higher energy scale ωzT ≈ ωz1, explaining
the lack of any resonance at the temperature T̄ where � =
ωz2(T̄ ) in the measurements of Ref. [21].

Single-layer case. The contribution of plasma waves to
the nonlinear optical response can be qualitatively understood
within a simplified anisotropic Josephson-like model for the
SC phase. Labeling with θn the SC phase in the nth layer one
can write an effective classical Hamiltonian:

H = 1

8

∫
d2r d

∑
n

[Dxy(∇xyθ )2 − 8Jz cos(θn+1 − θn)], (1)

where the in-plane phase difference has been already pro-
moted to a continuum phase gradient, Dxy is the in-plane
stiffness (equivalent to h̄2ns/m in the continuum, isotropic
limit) and Jz is an energy density defining the superfluid
stiffness as Dz = 4Jzd2 along the out-of-plane z direction,
d being the interlayer distance. Henceforth, unless explicitly
displayed, we set h̄ = kB = 1. The classical model (1) is pro-
moted to a quantum equivalent by including dynamical effects
related to the phase gradient in time, scaling as κ0(∂τ θn)2, with
κ0 the charge compressibility. Once that Coulomb effects are
included, κ0 is replaced by the RPA charge compressibility
[34,35]. By retaining only the quadratic term in the expansion
of the cosine in Eq. (1) we obtain the following Gaussian
quantum action [36–38]:

SG = 1

32πe2

∑
iωm,k

|k|2[ − (iωm)2 + ω2
L(k)

]|θ (iωm, k)|2, (2)

FIG. 2. Comparison between the nonlinear kernel |K (2�, T )| of
Eq. (4) for (a) nondispersive plasmon, corresponding to replacing
ωL (k) with ωz, and (c) the dispersive plasmon. (b) Sketch of the
THG process. The ωL (k) dispersion from Eq. (3) is plotted in log
scale, with a line intensity weighted with the spectral weight of
the two-plasmon process from Eq. (4). Only for � > ωz two light
pulses at � can decay in two plasmons with opposite momenta. At
larger energies the number of available states increases, but these
correspond to a region with smaller spectral weight (see text and
Ref. [36]). The shaded area corresponds to the region kxy < 1/ξ of
allowed in-plane momenta. (d) |K (2�)| from (c) as a function of
temperature for three selected pump frequencies [dashed lines in (c)],
where each curve is normalized to its maximum.

where iωm = 2πmT are bosonic Matsubara frequencies, and
ωL(k) includes the full momentum dependence of the layered
Josephson plasma mode (JPM):

ω2
L(k) = ω2

xy

k2
xy

|k|2 + ω2
z

q2
z

|k|2 , (3)

where ω2
xy,z = 4πe2Dxy,z, qz = (2/d ) sin (kzd/2) and |k|2 =

k2
xy + q2

z . An external gauge field Az polarized along the z
direction enters the model (1) via the minimal coupling substi-
tution θn+1 − θn → θn+1 − θn − 2edAz/c. As detailed in the
Supplemental Material [36], the third-order current JNL ∼
KA3

z can be obtained by expanding the cosine Josephson inter-
action in Eq. (1) beyond second order in the gauge-invariant
phase gradient along z, and integrating out the phase de-
grees of freedom [33]. For a monochromatic incident field
Az = A0 cos(�t ) the resulting THG intensity is proportional
[39–41] to ITHG ∝ |K (2�)|2. The resonant part of the nonlin-
ear kernel K accounts for the density of states of the process
involving the generation of two JPMs with opposite momenta,
see Fig. 2(b), and it is given explicitly by:

K (�) ∝ J2
z

1

V

∑
k

q4
z

|k|4
coth ( βωL (k)

2 )

ωL(k)[4ω2
L(k) − (� + iδ)2]

, (4)

where iωm → � + iδ. Within the Josephson model (1) the
coupling Jz controls both the stiffness and the anharmonic
interaction terms. Thus we will adopt the same experimen-
tal temperature-dependent stiffness Dz(T ), Dxy(T ) both in
the plasmon dispersion (3) and in the effective anharmonic
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FIG. 3. (a) Sketch of the c-axis nonlinear response for the YBCO bilayer system. Since Jz1 � Jz2 the THG signal is mainly determined by
the intrabilayer phase fluctuations. (b) Plasmon branches ω1(k) (dotted lines) and ω2(k) (solid lines) at selected kz for a wide range of kxy value.
(c) Zoom-in of (c) in the region of integration relevant for the THG, as denoted by the gray shaded area. Here the line intensity is rescaled
according to the relative weight of intrabilayer phase fluctuations P̃11

σ of each mode, shown as a color-bar on the right of the panel. A sketch of
the corresponding polarizations of the modes [44] in each momenta region is also reported. (d) Frequency dependence of the nonlinear kernel
|K (2�)| at T = 0. Vertical bars denote the position of ωz1, ωzT , and ωz2. (e) Temperature dependence of the nonlinear kernel |K (2�)| (solid
line) for fixed pump frequency � = 0.5 THz. The dots represents the experimental data from Ref. [21].

couplings, see Refs. [36,42]. In addition, we show in
the Supplemental Material [36] that the effects of the
mixing [43–45] between longitudinal (plasmon) and trans-
verse (polariton) branches below a typical scale kc ∼√

ω2
xy − ω2

z /c is quantitatively irrelevant for the THG, since

the in-plane integration extends up to a much larger
scale kxy ∼ 1/ξ , where ξ ∼ 5d is the in-plane coherence
length [46,47].

In Fig. 2 we show the nonlinear kernel K as a function of
temperature and frequency, by setting ωxy(T = 0) = 250 THz
and ωz(T = 0) = 1.7 THz, as appropriate for optimally doped
LSCO samples (Tc = 38 K) [22]. We compare the case where
the full plasmon dispersion (3) is included [Fig. 2(c)] with the
case, considered previously [33], where ωL(k) is assumed to
be nondispersive [Fig. 2(a)]. The latter case is equivalent to
setting ωL(k) = ωz in Eq. (4), which results in a resonance at
� = ωz of the kernel K (2�). As one can see, even though the
dispersive case leads to a smearing of such a sharp resonance,
the nonlinear kernel shows nonetheless a marked maximum
around ωz, see Fig. 2(c). The reasons are the following. As
detailed in Ref. [36], the spectral weight of the two-plasmon
process is zero when � < ωz, with a discontinuity at the edge,
which consequently causes a singularity in |K (2� = 2ωz )|.
Secondly, the overall factor q4

z /|k|4 in Eq. (4), which accounts
for the polarization of the light in the z direction, projects
out the full dispersion (3) on the phase space where qz/|k| is
large, that corresponds to an energy around ωz. In addition, the
resonance at ωL in Eq. (4) scales overall as 1/ω2

L, highlighting
further low-momentum processes, i.e., those less relevant for
RIXS [14–16], see Fig. 1(b). The combined action of these
effects is visualized in Fig. 2(b), where the intensity of each
plasmon line is proportional to its contribution to the nonlinear
kernel (4), and further discussed in the Supplemental Mate-
rial [36]. The overall enhancement of the kernel at energies
around ωz leads to a nonmonotonic T dependence of the

THG measured at a fixed pump frequency � < ωz(T = 0),
see Fig. 2(d), maximum at T̄ where � = ωz(T̄ ), in qualitative
agreement with the result obtained for a nondispersive plas-
mon [33]. Notice that even if the two-plasmon process is only
possible above 2ωz, the real part of the optical kernel (4) is
finite below it, giving THG even when the pump frequency is
below ωz(T ).

Bilayer case. In the bilayer case one has two planes denoted
as λ = 1, 2 per unit cell, so that one introduces two phase
variables θλ,n. The out-of-plane Hamiltonian density is

H⊥
n = −Jz1 cos(θ1,n − θ2,n) − Jz2 cos(θ1,n+1 − θ2,n), (5)

in close analogy with Eq. (1), while the in-plane part has
the same form. Here we introduced two different Joseph-
son couplings Jz1 and Jz2, with Jz1 � Jz2, corresponding to
a phase difference between the two nearest planes within
the same unit cell (at distance d1 = 3.2 Å for YBCO) or in
neighboring cells (at distance d2 = 8.2 Å for YBCO), d =
d1 + d2 being the periodicity in the z direction [8,44,48], see
Fig. 3(a). The corresponding stiffnesses Dzλ = 4Jzλd2

λ are also
modulated. By introducing the spinor θ̄ = (θ1, θ2) the general-
ization of the Gaussian quantum action (2) to the bilayer case
reads [36]

SG = 1

64πe2

∑
iωm,k

θ̄ (−k)K2
[ − (iωm)21 + �2

L(k)
]
θ̄ (k). (6)

Here we introduced the 2 × 2 matrix K2 = k2
xy1 + K†

zKz,
which generalizes the quadratic term in momentum, where

Kz =
√

2

d

⎛
⎝− e−ikzd1/2√

d1/d
eikzd1/2√

d1/d

eikzd2/2√
d2/d

− e−ikzd2/2√
d2/d

⎞
⎠, (7)

keeps track of the discretization of the phase variables along
the z direction. Analogously �2

L(k) generalizes the plasma
dispersion (3), with �2

L(k) = (K2)−1(ω2
xyk2

xy1 + K†
z �

2
zKz ),
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where (�2
z )λμ = δλμω2

zλ and ω2
zλ = 4πe2Dzλ. From the struc-

ture of Eq. (6) one readily sees that the doubling of the
layers per unit cell leads to a doubling of the JPMs,
defined as the square root of the eigenvalues of the ma-
trix �2

L(k), and shown in Fig. 3(b). The upper plasmon
ω1(k), dispersing between ωz1 and ωxy, is the equivalent of
the single-layer plasmon ωL(k), while the additional low-
energy out-of-plane plasmon ω2(k), dispersing away from
ωz2, is characteristic of the bilayer case. For increasing in-
plane momentum ω2(k) evolves rapidly towards an energy

scale ωzT =
√

(ω2
z1d2 + ω2

z2d1)/d ≈ ωz1 for Jz1 � Jz2, usu-

ally named transverse plasmon in the literature because it
identifies the scale of a resonance peak in the c-axis optical
conductivity [8,9,12]. For even larger values of kxy ω2(k)
grows slowly towards the in-plane frequency ωxy.

The computation of the nonlinear kernel follows the same
steps as before, with both plasmon branches contributing to
the out-of-plane response, so that K (�) = K+(�) + K−(�),
where

K±(�) =
∑
σσ ′,k

Wσσ ′
ωσ ± ωσ ′

4ωσ ωσ ′

coth
(

βωσ

2

) ± coth
(

βωσ ′
2

)
(ωσ ± ωσ ′ )2 − (� + iδ)2

(8)

combines two JPMs from the same (σ = σ ′) or from different
(σ 
= σ ′) plasmon branches, with σ, σ ′ = 1, 2, weighted by
the k-dependent Wσσ ′ prefactors, which project out the con-
tribution of each mode to selected region of momenta. A full
numerical computation of the kernel (8) at T = 0 for param-
eter values appropriate for YBCO is shown in Fig. 3(d). We
set Tc = 61 K, ωz1(T = 0) = 15 THz and ωz2(T = 0) = 1.2
THz [12,21], that gives a peak in the transverse conductivity
at ωzT (T = 0) = 11 THz, in agreement with the experiments
[12]. As one can see, |K (2�)| shows a marked resonance near
the value � ≈ ωz1 ∼ 15 THz, without any signature at the
lower plasmon ωz2 ∼ 1.2 THz, that is the energy scale defin-
ing instead the sharp plasma edge in the c-axis reflectivity
below Tc [5,7,8,12].

A better insight into this result can be obtained by in-
troducing a new sets of phase variables, corresponding to
the intrabilayer θ̃1 ∼ θ2,n − θ1,n and interbilayer θ̃2 ∼ θ1,n+1 −
θ2,n phase gradient in the nth unit cell, respectively. As man-
ifest from (5), the larger scale Jz1 couples the gauge field
Az to θ̃1, while Jz2 controls its coupling to θ̃2. By changing
basis from (θ1, θ2) to (θ̃1, θ̃2) one can write [36] the pro-
jectors as Wσσ ′ ∝ Tr(P̃σCP̃σ ′C), where the diagonal matrix
(C)λμ = Dzλd2

λδλμ comes from the coupling with the gauge
field (∼DzλA2

z dλ
2) and the matrix P̃σ weights each plasmon

branch according to its projection onto interbilayer (11 ele-
ment) and intrabilayer (22 element) phase fluctuations. Since
Dz1 � Dz2, one finds that plasmon branches contribute to
THG in the momentum region where they have a large in-
trabilayer component, P̃11

σ (k). This effect is highlighted in
Fig. 3(c), where the line intensity for each plasmon dispersion,
plotted at fixed kz, scales with its P̃11

σ (k) intrabilayer weight.
The upper plasmon branch ω1(k) is purely intrabilayer for
kxy = 0, and gradually acquires an interbilayer component
as kxy increases. Thus, it contributes to THG in the low-
momenta region where ω1(k) ≈ ωz1, as already observed for
the ωL(k) in the single-layer case. Conversely, the lower plas-

mon branch ω2(k) has exactly zero intrabilayer projection at
kxy = 0, where it is associated with purely interbilayer phase
fluctuations [36,44], while it acquires intrabilayer character as
it approaches the ωzT energy scale. The suppression of spec-
tral weight at low energy comes from the deep entanglement
between the momentum dependence of the plasmon energies
and of the polarization weights, which would not be captured
if the system were described neglecting the dispersion of the
plasmon branches. These two ingredients explain the lack on
any signature at ωz2 in the numerical result of Fig. 3(d) at
T = 0, and the absence of a THG enhancement at � = ωz2(T )
in the THG measurements Ref. [21], performed with fixed
� ∼ 0.5 THz. At the same time the condition � = ωz1(T̄ ) is
achieved at a temperature T̄ so close to Tc that the resonance
itself is washed out by the thermal depletion of the stiffness.
Thus the computed THG, given by the solid line in Fig. 3(e),
increases monotonically in temperature, in remarkable agree-
ment with the experimental THG of Ref. [21], extracted by
the measured reflected electric field Er as [49]:

Er ∝ K (2�)

(
2

n(�) + 1

)3 1

n(3�) + n(�)

1

n(3�) + 1
E3

0 ,

(9)

where n(�) [n(3�)] is the experimentally measured index of
refraction at � (3�). Equation (9) is a modified Fresnel result,
which includes also the role played by the nonlinear current
[49].

Conclusions. The present results for the two-plasmon con-
tribution to the nonlinear response reconcile experiments in
single-layer and bilayer cuprates. The combined effect of the
light polarization and the plasmon dispersion explains a reso-
nant THG for pumping frequency matching the plasma edge
in single-layer materials, while it accounts for a shift of the
resonance frequency towards the larger out-of-plane plasma
mode for bilayer structures. It turns out that in those systems
THG is sensitive exactly to the part of the plasmon branches
that are hidden to RIXS, as shown in Fig 1(c), where recent
RIXS measurements from Ref. [17] have been reported. Even
though such a dichotomy is not yet understood theoretically
[17], we expect that it should come from different selection
rules at play for the plasma-mode contribution to the current
(probed by THG) or to the density (probed by RIXS) response.

On a more general perspective, the present results can
serve as a guide to engineer artificial heterostructures for the
generation of THz pulses via THG up conversion, using the
plasmon dispersion to tune the enhancement of the nonlinear
response for pumping THz field polarized along the layer
stacking direction in cuprate superconductors. In the last few
years giant progresses have been made in the realization of
stable superconducting films of Bi-based cuprates, down to
the dimensions of few unit cells [50–52]. It is now possible to
realize efficient and tunable Josephson junctions by twisting
neighboring films, thanks to the angle dependence of the pair
tunneling in a d-wave superconductor [53–55]. Even though
the present technology is still limited to single junctions, in
the near future the realization of Junction arrays could lead to
controllable artificial bilayer lattices, with a tunable resonance
frequency. At the same time, the full quantum description
of the nonlinear Josephson response is the starting point for
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the understanding of the multidimensional spectrum obtained
in two-dimensional THz protocols [26], and to assess its
potential for disentangling the intrinsic thermal effects from
inhomogeneity broadening in unconventional cuprates.
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