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Topological signatures of a p-wave superconducting wire through light
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We show how the Z2 topological index of a one-dimensional topological p-wave superconductor can be
revealed when driving with a classical vector potential, i.e., an electromagnetic wave, through the light-induced
transition probabilities and the profile of the induced quasiparticle population. As a function of driving frequency
ω, it is possible to obtain a measure of this topological invariant from the resonance envelope classifying the two
distinct topological phases of the short-range Kitaev wire. We propose to probe the topological phase transition
in the model through the responses of the global capacitance in the presence of the light field and through the
Josephson current between the wire and the proximity coupled bulk superconductor. The system may also be
implemented on the Bloch sphere allowing alternative ways to measure the Z and Z2 topological invariants
through circuit or cavity quantum electrodynamics.
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Introduction. The realization and characterization of topo-
logical superconductors have been attracting a lot of attention
for the last decades. This is primarily due to their robustness
against perturbations, and secondly due to zero-energy excita-
tions confined to the edges of the system, guaranteed from the
bulk-edge correspondence relating a mathematical invariant
to a physically observable edge excitation. In one-dimensional
(1D) materials these zero-energy modes are localized at the
edges, which can, e.g., turn into Majorana fermions as a result
of a magnetic impurity [1]. The Kitaev wire [2] is a famous
prototype of a p-wave superconductor hosting a free Majorana
fermion at each edge [Majorana bound state (MBS)], leading
to promising applications for noise-resilient quantum comput-
ing and as building blocks of superconducting circuits and
heterostructures [3,4]. The Kitaev wire is also related to the
XXZ Ising chain via the Jordan-Wigner transformation, and
as such has been realized experimentally also with evidence of
the topological properties and phase transitions [5]. Majorana
fermions can also occur in two-dot systems [6,7] or in a
two-Bloch-spheres model [8–10], such that the Kitaev wire
remains at the heart of modern research. With the prominence
of quantum technologies, the Kitaev wire with its various re-
alizations remains very relevant as a platform to integrate both
experimental and theoretical studies in quantum (information)
physics.

Recent theoretical studies on the topological phase dia-
gram of interacting Kitaev wires [11] and heterostructures
thereof [4,12,13] have revealed a rich phase diagram in
the presence of strong couplings and interactions. Despite
their robust nature, direct evidence of topologically nontrivial
signatures is yet very challenging to obtain, motivating im-
portant current efforts. The Josephson effect [14], or more
broadly the supercurrent between a superconductor and a
metal [15], has been found to reveal signatures of topology
in quantum wires. For example, in superconductor–normal
metal–superconductor (SNS)-type or horseshoe junctions,
the current between the edges of topological supercon-
ductors obtains an additional 4π periodicity [2,16] in the

superconducting phase φ, as opposed to the usual 2π one.
Other proposals have addressed the critical current between
the edges as a probe [17–19]. The dynamical current suscep-
tibility [20] in the presence of a time-dependent flux was also
proposed as a protocol to probe MBSs. However, Andreev
bound states (ABSs) which arise inside the junction can mimic
both zero-energy states [21] as well as topological signatures
in the Josephson current [22]. Despite numerous important
efforts, measuring the topological invariant(s) in a 1D p-wave
superconductor remains a challenge.

The main goal of our Letter is therefore to propose a
simple way to reveal the topological invariant of the Kitaev
wire and quantum phase transition through classical light,
in the general sense of an electromagnetic wave. Through
a junction between the wire and a proximity coupled sub-
strate, we reveal the characteristics of the Z2 topological
index [2,23,24] from geometry and the response functions
associated to the light-induced interband transitions. From the
map onto a quantum Bloch sphere describing the model in
reciprocal (or momentum) space, a link to the Z topological
invariant is also possible, similar to the Haldane model in two
dimensions [10,12,24,25]. Finally, we also discuss probing the
topological phase transition, e.g., from the Josephson effect
and from the linear response of the global capacitance of
the wire in the presence of an electromagnetic wave. In the
low-frequency limit a clear signal is found, directly related to
the bulk-gap closing at criticality. Through light, we then refer
to electromagnetic signals in a general sense including radio
waves and microwaves in the low-frequency domain.

The model. We investigate the model of a 1D p-wave su-
perconducting wire of spinless fermions, also known as the
Kitaev wire. The Hamiltonian [2] reads

HK =
∑

i

(
−μ

2
c†

i ci − tc†
i ci+1 + �eiφc†

i c†
i+1 + H.c.

)
, (1)

where t and � are the hopping and superconducting-pairing
amplitudes with the superconducting (SC) phase φ, respec-
tively, while μ is an on-site chemical potential. The pairing
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term is implicitly induced through the proximity effect such
that � = K〈b〉 with b corresponding to Cooper pairs in a
BCS substrate, and for simplicity we assume spin-polarized
electrons to realize a p-wave symmetry. The model is general
in the sense that it can be equivalently achieved through a
Rashba spin-orbit coupling in nanowires with spin-1/2 elec-
trons [26] and quantum spin chains [5]. The references are
ubiquitous, with, e.g., reviews in Refs. [3,23]. The Hamil-
tonian in (1) admits two topologically distinct phases, with
quantum critical points (QCPs) at μ/t = ±2 [2,3]. The QCP
belongs to the Ising universality class and is described by a
free, chiral Majorana field [12,13,27]. The topological phase
of the Kitaev wire in Eq. (1) can be distinguished by a Z2 in-
dex [2,23], similar to the Fu, Kane, and Mele invariant [28,29].
Equivalently [12], they can also be characterized by a “Chern
number” [10,24,30]. In the Bogoliubov–de Gennes (BdG)
representation ψ

†
k = (c†

k , c−k ), we find for (1),

HK = 1

2

∑
k

ψ
†
k Hkψk ≡ 1

2

∑
k

ψ
†
k

(
εk �k

�∗
k −εk

)
ψk, (2)

with εk = −(μ + 2t cos(k)), �k = 2i�eiφ sin(k) [12], and
Fourier transform c j = 1√

N

∑
k∈BZ eik jck . The length is L =

Na, with lattice spacing a = 1 and N the number of sites. The
Hamiltonian (2) is diagonal in the particle-hole symmetric
(PHS) quasiparticle (QP) basis defined by η+

k = ukck + vkc†
−k

and η−
k = v∗

k ck − u∗
k c†

−k , with u−k = −uk and also |uk|2 +
|vk|2 = 1. We introduce a representation on the Bloch sphere
through [12,13,24]

cos (θk ) = 2t cos (k) + μ

E (k)
= − εk

E (k)
,

sin (θk )e−iϕk = −2i�eiφ sin (k)

E (k)
= − �k

E (k)
, (3)

with spectrum E (k) =
√

ε2
k + |�k|2 and ϕk = −φ + π

2 . Ad-

ditionally, uk = −ie−iφ sin( θk
2 ) and vk = cos( θk

2 ). We equiva-
lently have HK = ∑

k�0 E (k)(η+†
k η+

k − η
−†
k η−

k ), such that for
E (k) > 0 the ground state (GS) is determined by the vacuum
of η+

k particles or equivalently (by PHS) a fully occupied η−
k

band, defined as [12]

|BCS〉 = (δμ<−2t + δμ>−2t c
†
0)(δμ<2t + δμ>2t c

†
π )

×
k< π

a∏
k>0

[
sin

(
θk

2

)
− ieiφ cos

(
θk

2

)
c†

kc†
−k

]
|0〉. (4)

The η+’s annihilate the BCS state and are given by

η+
k = −ie−iφ sin

(
θk

2

)
ck + cos

(
θk

2

)
c†
−k . (5)

From now on we write η+
k = ηk .

Josephson current. Coupling two superconductors results
in the flow of a current through a junction [14,15,31], known
as the Josephson effect. We show how the phase transition
is visible from the bulk current J between the wire and a
proximitized BCS substrate. It is defined via the continu-
ity equation e ∂N

∂t − J = 0, with particle number N [14,15].

FIG. 1. Josephson currents and derivatives at φ = π/2 and
L = 2000a with a = 1.0. Upper: QCPs are revealed through the
diverging slope of ∂μ〈J�〉. Lower: Currents and second derivatives
at various �/t . The transition becomes visibly pronounced in the low
�/t limit. The results are shown in units of [L].

Fixing h̄ = h
2π

= 1 = e, we find

J = ∂N
∂t

= i[HK ,N ] ≡ +J�. (6)

The current operator within the wire resulting from the
hopping of electrons is Jt = −it

∑
i(c

†
i+1ci − c†

i ci+1), and
vanishes on the BCS ground state. The superconducting term
J� on the other hand drives a superflow between the wire and
the substrate, defined for periodic boundaries, as

J� = J +
� (2e) + J −

� (2e), (7)

with J +
� = 2i�eiφ

∑
i c†

i+1c†
i and J −

� = (J +
� )†. On the BCS

ground state with 〈c†
kc†

−k〉 = i
2 sin θk [12,13], the current for a

wire of length L is

〈J 〉 = 〈J�〉 = 2L�

π
sin (φ)

∫ π

0
dk sin (k) sin(θk ), (8)

where we took the continuum limit
∑π

k=0 −→ 1
α

∫ π

0 dk, with
α = 2π

L . The notable difference between the current (8) be-
tween two p-wave SCs, and the current between two s-wave
SCs, is the sin(k) in the integrand [31].

In Fig. 1, we show the Josephson current across the phase
transition for various values of �/t . Notably, we find a diver-
gence of the second derivative of J at the QCP. This is a direct
consequence of the gap closing. As is presented in more detail
in the Supplemental Material (SM) [32], we find from Eq. (8)
the second derivative of the Josephson current,

∂2〈J 〉
∂μ2

= −L�

2π
sin φ

∫ π

0

sin2 (k)

E (k)3
dk

+ 3
L�

2π
sin φ

∫ π

0
sin2 (k)

ε2
k

E (k)5
dk. (9)

As we show in the SM [32], the first integral diverges close
to 0 or π when μ/t = ±2. Through this divergence of ∂2

μ〈J 〉
at μ/t = ±2, the current provides interesting insights into the
bulk properties of Kitaev wires compared to probes such as
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bipartite fluctuations, quantum Fisher information density
[33], or the dynamical susceptibility in superconducting quan-
tum interference device (SQUID) junctions [20].

Response to classical light. Various protocols have sug-
gested measuring the topological properties of a wirethrough
a cavity field in different geometries [34,35]. The same charge
fluctuations and dynamical susceptibility addressed the re-
sponse of the Su-Schrieffer-Heeger (SSH) model [36,37] and
the response of a 1D p-wave superconducting wire [38] in
circuit quantum electrodynamics. For the SSH chain which
presents a similar Z invariant, this response also allowed to
reveal the Zak phase (or winding number) [36,37]. Whereas
various protocols were suggested and then measured for the
SSH model [36,37,39], to the best of our knowledge measur-
ing the topological invariant for the p-wave superconducting
wire remains a challenge. Therefore we propose to measure
the Z2 topological number through the response to classical
light. Aligning the direction of the classical vector potential

A to the direction associated to J� yields

δH (t ) = −A(t )J +
� − A∗(t )J −

� , (10)

in direct analogy to the 2D light-matter interaction with cir-
cularly polarized light [30,40] and from mesoscopic quantum

electrodynamics [41,42], where through Peierls transforma-
tion, the light-matter interaction dresses the SC phase φ.
By introducing the quasiparticle operators Oz

k = (η†
kηk −

η−kη
†
−k ), O+

k = η
†
kη

†
−k , and O−

k = (O+
k )†,

δH (t ) = −4�

π∑
k=0

sin(k)
{
iαkOz

k (A(t ) − A∗(t ))

+ (βkA(t ) + β̃∗
k A∗(t ))O+

k

+ (β̃kA(t ) + β∗
k A∗(t ))O−

k

}
, (11)

with definitions 2αk = − sin(θk ), βk = e−iφ sin2( θk
2 ), and

β̃k = eiφ cos2( θk
2 ). Therefore, classical light both dresses the

BCS vacuum with Oz
k|BCS〉 = |BCS〉, and raises quasiparti-

cles and quasiholes. By coupling to linearly polarized light
we now show how to measure the Z2 index of the Kitaev wire
via QP transition rates.

Topological signatures. We now consider the response to a
coherent signal with tunable frequency ω. The vector potential
describing such an electromagnetic wave is given by A(t ) =
A0eiωt . To leading order, the perturbation can be treated in
the interaction picture |BCS(t )〉 ≈ [I − i

h̄

∫ t
0 dτδHI (τ )]|BCS〉

with subscript I denoting the interaction-picture representa-
tion OI (t ) = eiH0t O(t )e−iH0 . We obtain

|BCS(t )〉 = a(t )|BCS〉 − i
π∑

k=0

B0 sin (k)η†
kη

†
−k

∫ t

0

[
e−iφ sin2

(
θk

2

)
eiω+

k τ + eiφ cos2

(
θk

2

)
e−iω−

k τ

]
dτ |BCS〉. (12)

We used the following definitions ω±
k = ω ± 2E (k), B0 =

4 �A0
h̄ � h̄−1 to simplify, and also write

a(t ) =
(

1 + 2B0

∫ t

0
dτ sin (ωτ )

π∑
k=0

sin (k)αk

)
. (13)

The topology of the Kitaev wire is characterized by a winding
number m. One way to define it is by the amount of times the
Bloch sphere map covers the entire sphere S2. For m = 0 we
have θk < π

2 and within the topological phase, for m = 1, the
angle θk ∈ [0, π ]. Therefore, all the information on topology
is encoded in the trigonometric function sin2( θk

2 ) − cos2( θk
2 ),

which is zero at θk = π
2 .

We propose to measure the Z2 index through the light-
induced transition of an η quasiparticle into the upper
band, i.e., ∼η

†,+
k η−

k . With PHS this defines the excited state
|ES〉 ≡ ∑π

q=0 η†
qη

†
−q|BCS〉, and transition probability P (t ) =

| ∑π
q=0〈BCS|η−qηq|BCS(t )〉|2. This measurement is “blind”

to weak disorder δμ(x), which either acts on the poles k = 0
and k = π or results in excitations ∼η

†
k+qηk . By introducing a

small damping term ε > 0 into the vector potential, for t �
1/ε we find

∫ t�1/ε

0 dτei(±ω±
k +iε)τ ≈ 1

±iω±
k −ε

which becomes

resonant at ω±
k = 0 and has a finite width/height proportional

to ε. Physically, this can be related to a lifetime. At t = ∞ we
obtain P (∞) as

P (∞)

B2
0

=
∣∣∣∣∣
∑

k

sin (k)

[
e−iφ sin2

(
θk
2

)
ω+

k + iε
− eiφ cos2

(
θk
2

)
ω−

k − iε

]∣∣∣∣∣
2

.

(14)

We measure the response at resonance at ω±
k = 0 with two

distinct envelopes depending on the sign of ω.
The phase φ is set to zero for simplicity, and as a result

of the absolute values any dressing of the SC phase due to
an additional Peierls transformation will at most lead to oscil-
lations of the envelopes. We define P+(∞) = P (∞; ω > 0),
and P−(∞) = P (∞; ω < 0), and propose to introduce

�(ω) = P+(∞) − P−(∞). (15)

For t = � this reduces exactly to a Z2 invariant, as here E (k)
is injective and the envelope of �(ω) presents exactly three
zeros for |μ/t | < 2: when sin(k) = 0, i.e., at k = 0, π , and
additionally, when sin θk

2 = cos θk
2 corresponding to θk = π

2
with a k solution of ω±

k = 0; see Fig. 2. The trivial phase for
μ > 2t or μ < −2t is characterized through the two zeros of
the same function at k = 0 and π . Therefore, we propose to
measure the invariant (−1)ζ , where ζ measures the number of
zeros of �(ω).

This makes a link with the “Chern marker” introduced in
Refs. [24,30] measurable from the pseudospin Sz = (c†

kck −
c−kc†

−k ). The Z topological number can then be formulated
as C = 1

2 [〈Sz(0)〉 − 〈Sz(π )〉] on the Bloch sphere with Sz =
Sz(θk ) [12]. At the particular angle θk = π

2 we can write the
identity 2 cos4 θk

2 = 2 sin4 θk
2 = C2 − 1

2 within the topological
phase for |μ| < 2t . The fact that θk ∈ [0; π

2 ] for μ = ±2t
also reveals that the topological invariant jumps from 1 to 0
corresponding then to C = 1

2 or to a winding number on half
a sphere [12,24], i.e., 〈Sz( π

2 )〉 = 0.
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FIG. 2. Upper: Resonance envelopes of (14) at t = � = 1.0. The
QPT is then distinguished by the additional zero in the central do-
main. Lower: Resonance peaks at μ/t = 0.5 in the topological and
μ/t = 3.5 in the trivial phase at different values of �/t . The overall
shape of the envelope is considerably different to �/t = 1.0, how-
ever, �(ω) � 0 is still guaranteed for trivial winding numbers ν = 0,
while �(ω) < 0 is possible in the topological regime. ε = 10−3 and
�ω/t = 5.0 × 10−4 for the resonance peaks. Envelopes scaled by a
global constant (here, b = 6.3) to match peak heights qualitatively.
The system size is L = 80a with a = 1.0, to guarantee a visually
suitable resolution of the resonance peaks.

E (k) is no longer injective when t �= � > 0. Therefore,
ω±

k = 0 for two wavelengths in some cases, which in the
topological region only may lead to negative resonance peaks
for small ε and a lower k-space resolution, cf. the bottom-
left panel of Fig. 2. However, we verified numerically that
these wash out for larger ε or finer grids, and the resulting
resonances again develop exactly one additional zero in the
topological phase.

At this stage, it is interesting to observe the re-
lation with the observable 〈BCS(t )|∑k η

†
kηk|BCS(t )〉 =∑

k〈BCS(t )|η†
kηk|BCS(t )〉 = ∑

k Pk (t ) where

Pk (∞)

B2
0

=
∣∣∣∣∣sin (k)

[
e−iφ sin2

(
θk
2

)
ω+

k + iε
− eiφ cos2

(
θk
2

)
ω−

k − iε

]∣∣∣∣∣
2

. (16)

Measuring the number of QP in the upper band then encodes
similar information as in Eq. (14) when light is at resonance,

FIG. 3. Linear response of the total charge (number) operator Q.
Lower right: Double peak around μ = 2t can be seen for increasing
ω/t , reflecting the resonances in (19) in the gapped phases. Lower
left: Dependence on �, with a zero response at μ/t = 0.0 only at
�/t = 1.0. We used L = 3.5 × 103a and ω/t = 4.0 × 10−3, and t =
� = 1.0 unless otherwise stated.

cf. the number of zeros in Fig. 2 (top). Last but not least, when
ω → 0, Eq. (14) also probes the BCS pairing strength [32].
Driving QP transitions with classical light therefore enables
numerous potential measurement protocols.

Capacitance probe. Lastly, we demonstrate that the topo-
logical phase transition can be revealed from the total charge
Q(t ) at time t in the presence of the light field A(t ). This
could be measured from the capacitance C = Q/V , where V
is the voltage difference between the wire and the probe. The
response to linear order is given by the Kubo formula [43],
and we measure �QL(t ) = −i

∫ t
0 dτA(τ )〈[QI (t ),JI (τ )]〉0 in

the interaction representation with |ψ (0)〉 = |BCS〉. For the
sake of clarity, we present the detailed calculation in the
Supplemental Material [32].

For φ = 0, the current operator J� is given in terms
of the quasiparticle operators O± and Oz as J� =
4�

∑
q sin(q)(O+

q + O−
q ) while the charge reads

Q = −
∑

k

[
cos (θk )Oz

k + i sin(θk )(O+
k − O−

k )
]
. (17)

Due to O−
q |BCS〉 = 0, only the 〈O−

q O+
k 〉0 ∼ δ(k − q) con-

tributes nontrivially to the response �QL(t ). Together with
ω±

k = ω ± 2E (k), we find the formula

�QL(t ) = − i
B0L2

4π2

∫ π

0
dk

∫ π

0
dq

∫ t

0
dτ sin (q) sin (θk ) cos (ωτ )〈iO−

q eiH0(t−τ )O+
k − iO−

k e−iH0 (t−τ )O+
q 〉0

= + B0L

2π

∫ π

0
dk sin (k) sin (θk )

[
sin (ωt ) − sin [2E (k)t]

ω+
k

+ sin (ωt ) + sin [2E (k)t]

ω−
k

]
. (18)

There are two competing oscillations in (18) above, and we perform an additional time average over the domain t ∈ [0, 2π
ω

] to
remove the oscillations in ωt .

Following the same approach as above by fixing φ = 0 for simplicity and for weak B0 such that the topological phase is
robust, we find the frequency-dependent response

Q̃L(ω) = − 1

T

∫ T = 2π
ω

0
�QL(t ) = −B0Lω

4π2

∫ π

0
dk

sin (k) sin (θk )

2E (k)
sin2

(
2πE (k)

ω

)
4E (k)

ω2 − 4E2(k)
. (19)
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At low frequency ω/t � 1, Q̃L(ω) can additionally detect
the QPT at μ = ±2t , as seen in the upper panel of Fig. 3. At
comparatively larger values of ω a splitting of the peaks occurs
(see the lower-right panel). This comes from the 1

ω±2E (k) reso-
nance terms. For t = � = 1.0 we have a vanishing response at
μ/t = 0. In this limit E (k) = t and θk = k [12], and we find
analytically a scaling Q̃L(μ = 0) ∼ sinc2( 2πt

ω
). For � → 0,

since θk → 0, we also verify that the result remains identical.
At μ = −2t , we find with θk = k/2 [12] that there is a sharp
dip in the response of Q̃L at low frequency (with a finite value).
The dip becomes more pronounced for smaller �, revealing
that E−2(k) ∼ (�2k2)−1 when k → 0.

Conclusion. We have presented several methods through
light to reveal both the topological invariant(s) as well as
the topological phase transition of a one-dimensional p-
wave superconducting wire. We hope that our work can then
give further insight on revealing the topological matter with

electromagnetic waves. As a remark, we also find it useful
to add that the presence of Majorana fermions (at zero en-
ergy), e.g., will not modify the finite-frequency light-induced
transition probabilities and the capacitance measure [in the
limit where E (k) → 0]. Also, at the topological transition,
Majorana fermions are located at k = 0 and k = π which then
correspond to two zeros of the function in Eq. (15).
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