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Stability of quasiperiodic superconductors
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We study the effects of quasiperiodicity on the stability of conventional and unconventional superconductors.
Quasiperiodicity is modeled using the three-dimensional Aubry-André (AA) model, a system in which electrons
are coupled to a translation-symmetry-breaking potential that is incommensurate with the underlying lattice.
Upon increasing the strength of the quasiperiodic potential, the single-particle eigenstates undergo a transition
from ballistic to diffusive character. We find that, in the ballistic regime, the system a weak-coupling instability
towards both s-wave and p-wave superconductivity. In contrast, only the conventional s-wave instability survives
in the diffusive regime. Our result suggest a version of Anderson’s theorem for quasiperiodic systems, relating
the normal state dynamics to the stability of conventional and unconventional superconductivity.
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Introduction. Quasiperiodic materials have been studied by
crystallographers since the early 1980s [1], though evidence
of a natural quasicrystal did not arise until 2009 with the
discovery of icosahedrite [2]. Since then, interest in the field
has surged with the realization of quasicrystals in a wide range
of tunable systems, including optical [3–9] and photonic lat-
tices [10–14], cavity polaron devices [15], and moiré materials
[16,17]. With tunability comes the opportunity to study how
quasiperiodicity not only disrupts or stabilizes known physics,
but can also engender new phenomena [18–35].

In this paper, we seek to understand how quasiperiodicity
affects conventional (s-wave) and unconventional (non-s-
wave) superconductivity. We are motivated, in part, by the
existence of superconductivity in moiré systems [17,36–
39]. Although all twisted moiré graphene systems exhibit a
quasiperiodic arrangement of atoms at generic twist angles
[40], the low-energy electronic behavior in most paradigmatic
structures (e.g., twisted bilayer graphene) is determined by
an emergent long-wavelength moiré periodicity [41]. Recent
studies, however, suggest that it is possible to realize super-
conductivity in an incommensurate trilayer system, in which
even the low energy physics is quasiperiodic [42,43]. This dis-
covery has the potential to yield new insight into the nature of
superconductivity in moiré graphene. Because translational
symmetry is broken in systems with either quasiperiodicity or
random disorder, one might expect quasiperiodic systems to
behave similarly to those with disorder. Quasiperiodic lattices,
however, possess multiple periodic orders that are incommen-
surate with each other [44]. Because of these periodic orders,
quasiperiodic systems are highly structured in momentum
space; the diffraction pattern of the ideal, infinite quasicrys-
tal can be characterized by a self-similar arrangement of
Bragg peaks, densely tiled throughout reciprocal space [45].
This results in dynamical properties that are qualitatively
distinct from the randomly-disordered case [46]. A paradig-
matic quasiperiodic system is the Aubry-André (AA) model in
one spatial dimension (1D), a model of fermions on a lattice

subject to a periodically modulating onsite potential that is
incommensurate with the lattice. As the potential strength is
tuned, this system undergoes a transition at finite potential
strength from a phase with ballistic states (i.e., momentum-
space localized states) to a phase with real-space localized
states. The AA model can also be generalized to 3D [47],
where it displays two finite-potential-strength transitions: first
from a ballistic to a diffusive phase, and then from the dif-
fusive phase to a real-space-localized phase. In contrast, in
random systems in 3D, the ballistic-to-diffusive transition oc-
curs at infinitesimal disorder strength.

A number of works have considered superconductivity
in other quasiperiodic systems, such as the Penrose lattice
[48–55] and the 1D AA model [56], where an enhancement
of s-wave superconductivity is observed near the ballistic-
to-localized transition [57] An advantage of working with
the AA model is that the quasiperiodicity can be tuned by
adjusting the strength of the potential, in the same way that
one can study the effects of random disorder simply by tuning
the strength of the disordered potential. In randomly disor-
dered systems, low levels of non-magnetic disorder do not
affect s-wave superconductivity; this is Anderson’s theorem
for disordered superconductors [58]. Unconventional super-
conductors (i.e., those with higher angular momentum pairing
symmetry), however, are fragile to even small amounts of ran-
dom disorder in three dimensions [59,60]. This motivates us
to ask if quasiperiodicity affects conventional and unconven-
tional superconductivity in the same manner as does random
disorder, a previously unaddressed question in the literature.

In the 3D AA model, we find that weak-coupling instabili-
ties of both conventional and unconventional superconductors
are robust to small, but finite, quasiperiodicity. For uncon-
ventional superconductivity, the instability vanishes once the
strength of the quasiperiodic potential exceeds a critical
value coinciding with the transition from ballistic to diffusive
transport. For conventional superconductivity, the weak cou-
pling instability persists throughout the ballistic and diffusive
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FIG. 1. Schematic phase diagram for s- and p-wave super-
conductivity in the 3D Aubry-André model as a function of
quasiperiodic potential strength. In the normal state, ballistic-to-
diffusive and diffusive-to-localized transitions occur at v = vc1 and
v = vc2 respectively.

phases. We find that the Tc for unconventional superconduc-
tivity is strongly suppressed in the diffusive and localized
regimes, while the Tc for conventional superconductivity only
starts to become suppressed in the localized phase. These
findings are illustrated in Fig. 1. For both conventional and un-
conventional superconductivity, we find that the suppression
of Tc is primarily due to phase fluctuations. Taken together,
these results suggest a generalization of Anderson’s theorem
of disordered superconductors to quasiperiodic systems.

Model. Our starting point is the 3D generalization of the
AA model [47]:

H =
∑

σ

∑
r

3∑
i=1

(
eiφi c†

r+ûiσ
crσ + H.c.

) + HQP. (1)

The sum is over all sites r on an L × L × L cubic lattice, {φi}
are arbitrary phases that twist the periodic boundary condi-
tions in all three directions, {ûi} are the lattice basic vectors,
and crσ annihilates a fermion on site r with spin σ =↑,↓. The
quasiperiodic potential is specified by

HQP = 2v
∑

r

3∑
i=1

cos

⎛
⎝2π

3∑
j=1

Bi jr j + φi

⎞
⎠nr, (2)

where nr = ∑
σ c†

rσ crσ , and v controls the strength of the
quasiperiodic potential. The phases {φi} amount to an overall
arbitrary shift of the cosine potential, and are taken to be the
same as in Eq. (1) so that this model is self-dual upon trans-
forming from real to momentum space and sending v → 1/v

[47,61].
The matrix B determines the characteristics of this model

most relevant to this paper. If we wish to define a quasiperi-
odic system, then we impose that

∑
j Bi jr j /∈ Z3 for all r �= 0.

Here we take B = QR(θ ), where Q =
√

5−1
2 is the golden

ratio and R(θ ) can be thought of as a reflection about the
line y = z followed by three Euler rotations (YθXθ Zθ ) around
an angle θ , which we take here to be π/7 [62]. In practice,
it is useful to define the AA model on a finite-size system
on periodic boundary conditions. To do so, we must enforce
periodicity in system size L, which amounts to picking a
rational approximant for B such that LB is an integer-valued
matrix. We also require the approximate form of B to sat-
isfy gcd ( det(LB), L) = 1; as a result, the only translation

symmetry preserved by the cosine potential is r → r + Ln,
with n ∈ Z3. On top of breaking translation symmetry, the
quasiperiodic potential also breaks rotation symmetry around
any axis. The model, however, remains invariant under inver-
sion, r → −r when the phases {φi} are equal to 0 or π .

This model is self-dual at vSD = 1. Previous studies on this
model [47] report an extended diffusive phase, bracketed on
either side by a finite ballistic phase (v < vc1 ) and a real-space
localized phase (v > vc2 ). The mean-square displacement of
an initially localized particle scales ∝ t2 in the ballistic phase,
∝ t in the diffusive phase, and ∝ const. in the localized phase,
where t is time [47]. We can also characterize these phases
according to their inverse participation ratios (IPRs), which
we define in real space as IPRr = ∑

r |ψ (r)|4, and in mo-
mentum space as IPRk = ∑

k |ψ (k)|4, where ψ (r) and ψ (k)
are energy eigenstates of H in the position and momentum
space bases respectively. In the localized phase, IPRr → 1 and
IPRk → 0 in the L → ∞ limit, while in the ballistic phase
IPRr → 0 and IPRk → 1. In the diffusive phase, IPRr → 0
and IPRk → 0. We plot the IPRs for Eq. (1) as a function of
v in Fig. 2. We estimate the value of vc1, the critical point
between the ballistic and diffusive phases, to be ≈0.5 for the
states near half filling, as indicated by the dashed vertical line.
We also calculate the IPRs for a corresponding 3D system
with random disorder. Here, the random disorder potential
is realized by making the phases φi fluctuate randomly with
position: φi → φi(r), with φi ∈ [0, 2π ] chosen randomly on
each site. For random disorder, the system is in the diffusive
phase for any small v > 0.

Cooper logarithm in quasiperiodic systems. BCS theory in-
dicates that, in a clean system, the pairing susceptibility in the
spin-singlet channel diverges as log(T ) at low temperatures.
We define the spin-singlet susceptibility in real space as

χ s
rr′;r′′r′′′ =

∫ β

0
dτ [〈cr↓(τ )c†

r′′↓(0)〉〈cr′↑(τ )c†
r′′′↑(0)〉

+ 〈cr↑(τ )c†
r′′′↑(0)〉〈cr′↓(τ )c†

r′′↓(0)〉], (3)

where crσ (τ ) is the electron creation operator at imaginary
time τ , and β = 1/T . If we treat χ s as a L6 × L6 matrix, then
its largest eigenvalue will scale ∝ log(T ) at low temperatures.
This is the celebrated Cooper logarithm. For a system with
interactions of the form Hint = ∑

r,r′ Vrr′nrnr′ , the real-space
linearized gap equation (LGE) can be expressed in terms of
the pairing susceptibility in the spin-singlet channel as


s
rr′ = −

∑
r′′,r′′′

Vr,r′χ s
rr′;r′′r′′′


s
r′′r′′′ . (4)

Here, 
s
rr′ is the gap function for a pair of particles at r and

r′. The log(T ) divergence of χ s therefore guarantees a finite-
temperature solution to the LGE for arbitrarily weak attractive
interactions.

In the presence of random nonmagnetic impurities, s-wave
superconductors will continue to exhibit this weak-coupling
divergence well into the diffusive phase [58,63]. We contrast
this behavior with that of spin-triplet (p-wave) supercon-
ductors. The pairing susceptibility for the Sz = 0 total spin
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(a) (b)

(c) (d)

FIG. 2. Top row: At low v, the state is initially localized in momentum space (red); as v is increases, the state becomes real-space localized
(blue). The size of the data points corresponds to the density of states. Bottom row: the IPRs as a function v along the E/(1 + v) = 0.75 line
cut.

configuration is

χ
p
rr′;r′′r′′′ =

∫ β

0
dτ [〈cr↓(τ )c†

r′′↓(0)〉〈cr′↑(τ )c†
r′′′↑(0)〉

− 〈cr↑(τ )c†
r′′′↑(0)〉〈cr′↓(τ )c†

r′′↓(0)〉]. (5)

In the case of random disorder, this susceptibility will not
diverge for any finite amount of random disorder [59].

We aim to understand how the s-wave and p-wave suscep-
tibilities behave in the 3D AA model. To this end, consider the
uniform static pairing susceptibility,

χ
s/p,0
δ,δ′ = 1

L6

∑
r,r′

χ
s/p
r,r+δ;r′,r′+δ′ . (6)

Although we do not expect the solution to be spatially uniform
for moderate-to-large strengths of the quasiperiodic disorder,
χ

s/p,0
δ,δ′ will nevertheless capture any divergences present in

the actual susceptibility so long as the two quantities possess
finite overlap. The spatial average also neutralizes spurious
contributions from rare superconducting regions [64], as the
overlap of the uniform solution with any localized solutions
goes to zero as L grows large.

Assuming pairing of time-reversed states, we calculate the
uniform susceptibility [65] for the s-wave (χ s0

0,0) and pz-wave

(χp0
ẑ,ẑ) channels using Eq. (1) with a chemical potential of μ =

0.75(1 + v) [66]. Results are shown in Fig. 3. For the ran-
domly disordered potential, we average over different random
configurations. For the quasiperiodic potential, we average
over different phases {φi}. It is worth noting that the averaged
system possesses inversion symmetry in both cases.

We plot −dχ
s/p,0
δδ′ /d log T , the derivative of the uni-

form susceptibility with respect to the temperature. If this
quantity goes to zero, the susceptibility saturates, and

superconductivity exists only in the presence of finite strength
interactions. Conversely, a plateau where −dχ

s/p,0
δδ′ /d log T �=

0 is indicative of a log(T ) divergence of the susceptibility at
low temperatures, and, by extension, a weak-coupling super-
conducting instability. We find that the logarithmic divergence
of the s-wave channel susceptibility is stable to both quasiperi-
odic and random potentials. In the pz-wave channel, we find
that the uniform susceptibility has a logarithmic divergence
for v < vc1 ≈ 0.5. Hence, there is a weak coupling instability
in the pz-wave channel throughout the ballistic phase of the
model. However, in the diffusive and localized phases (v >

vc1) this logarithmic divergence is completely suppressed. We
emphasize that the log(T ) divergence of the susceptibility in
both conventional and unconventional channels is stable for
small but finite quasiperiodicity. This is unlike the case for
random disorder, where a finite amount of disorder suppresses
the logarithmic divergence in the pz-wave channel.

Transition temperature. Having established the qualita-
tive effects of quasiperiodic disorder on weakly-coupled
superconductors, we now consider introducing finite-strength
interactions to the 3D AA model,

Hint =V0

∑
r

nrnr + V1

2

∑
〈r,r′〉

nrnr′ , (7)

where 〈· · · 〉 indicates nearest neighbors. For the s-wave chan-
nel, we set V0 < 0 and V1 = 0, and for p-wave, we set V0 = 0
and V1 < 0. We treat the problem at a mean field level by
using the following trial Hamiltonians and self-consistency
equations:

H s
MF = 1

2

∑
r

[

s

rr(c
†
r↑c†

r↓ − c†
r↓c†

r↑) + H.c.
]
, (8)


s
r,r = V0

2
[〈cr,↓cr,↑〉 − 〈cr,↑cr,↓〉], (9)
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FIG. 3. Uniform susceptibilities for quasiperiodic (left) and random (disorder) potentials on a 23 × 23 × 23 lattice with θ = π/7 and
Q = (

√
2 − 1)/2 along the constant line cut 0.75 = μ/(1 + v). The vertical dashed line indicates the ballistic-to-diffusive transition at v = vc1.

Error ribbons represent the standard error of the mean, which comes from averaging over N ≈ 35 disorder realizations.

and

Hp
MF = 1

2

∑
〈r,r′〉

[



p
rr′ (c

†
r↑c†

r′↓ + c†
r↓c†

r′↑) + H.c.
]
, (10)



p
r,r′ = V1

2
[〈cr′,↓cr,↑〉 + 〈cr′,↑cr,↓〉], (11)

for s- and p-wave respectively.
The mean-field transition temperature can be identified by

studying solutions of the linearized gap equation. Given an
interaction matrix Vrr′ defined as in Eq. (7), we estimate T LGE

c
by diagonalizing

Ms/p
rr′;r′′r′′′ ≡ −

∑
r′′,r′′′

Vrr′χ
s/p
rr′;r′′r′′′ (12)

and determining the temperature at which the largest eigen-
value of Ms/p is equal to 1 [67].

The LGE solution is plotted using green markers in Fig. 4.
For both s- and p-wave, we observe an initial decrease fol-
lowed by an increase in T LGE

c with v. This latter increase in
T LGE

c is unphysical, in the sense that it does not correspond

FIG. 4. Tc calculated for s-wave (V0 = −3,V1 = 0) and p-wave
(V0 = 0,V1 = −3) superconductivity for a 11 × 11 × 11 lattice.
Green markers correspond to T LGE

c , the transition temperature cal-
culated from the linearized gap equation. Purple markers correspond
to T θ

c , the transition temperature as estimated from the superfluid
stiffness.

to the transition into a state with zero resistance [64]. To
understand why the LGE solution behaves in this way, it
is important to keep in mind that T LGE

c estimates the tem-
perature at which a superconducting condensate first forms.
However, this condensate may be localized to multiple small,
nonoverlapping regions. In this setting, one should really think
of the system as being composed of superconducting islands
coupled to each other via weak Josephson-type coupling [68].
The resistance of such a state will only drop to zero when
the different islands become phase coherent. If the coupling
between different islands is weak, the phases might not cohere
until the temperature is lowered below T LGE

c .
To estimate the temperature at which phase coherence sets

in, we assume that the only relevant degrees of freedom are the
superconducting phases, and model the superconductor as an
XY model. The temperature where phase coherence sets in is
estimated as T θ

c = Ans (0)
4m∗ aSC [68], where ns(0) is the geometric

mean of the super fluid density at zero temperature [69,70], m∗
is the effective mass of the electrons, aSC = min{√πξSC, aL};
aL is the lattice constant; ξ is the superconducting coherence
length, ξ = vF /(π
) [71]; and vF is the Fermi velocity cal-
culated in the clean system. A is a dimensionless number of
order unity that depends on the details of the short-distance
physics, which we take to be 2.2 after Ref. [68]. The superfluid
stiffness ns and coherence length ξ are calculated by solving
the BdG equations [Eqs. (9) and (11)].

Numerical results are shown in Fig 4. The true Tc of the
system is Tc = min(T LGE

c , T θ
c ). For s-wave, Tc remains finite

even into the localized phase v > vc2. Conversely, Tc falls off
sharply close to vc1 for the p-wave case. There does not appear
to be any correlation in Tc with the density of states (see Sup-
plemental Material [72]). These results agree with our previ-
ous analysis of the susceptibilities: p-wave superconductivity
is robust in the ballistic phase but is suppressed in the diffusive
phase, while s-wave remains robust well into the localized
phase.
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Conclusions. Having described the effects of quasiperiod-
icity on s- and p-wave superconductivity, one might naturally
wonder whether these results generalize to other pairing
symmetries as well. Owing to a lack of rotation symme-
try in the model, there is no sharp distinction between s-
and d-wave pairing symmetries. Nevertheless, in the sup-
plement, we present results on spin-singlet nearest neighbor
pairing, which reduces to the dx2−y2 pairing term in the
v → 0 limit. We find good qualitative agreement between
the p-wave and nearest-neighbor spin-singlet data, suggest-
ing that the essential element resulting in the suppression
of the log divergence is not the pairing symmetry, but
rather whether the gap integrates to zero over the Brillouin
zone.

In summary, we have shown that quasiperiodicity behaves
quite unlike random disorder in the context of unconventional

superconductivity. We find that p-wave superconductivity is
robust up to a finite critical value of the potential strength
vc1. This value corresponds to the ballistic-to-diffusive transi-
tion of the non-interacting model. s-wave superconductivity,
conversely, survives in all three phases: ballistic, diffusive,
and localized. Our results do not rule out the possibility of
unconventional superconductivity in quasiperiodic twisted tri-
layer graphene [42]; however, further microscopic studies are
necessary to fully explore this possibility.
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