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Phonon-induced renormalization of exchange interactions in metallic two-dimensional magnets
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The presence of spin-polarized charge carriers in metallic magnets provides a mechanism for spin-lattice
interactions mediated by electron-phonon coupling. Here, we present a theory of this mechanism used to estimate
its effect on the exchange interactions in two-dimensional (2D) magnets. Starting from a square lattice model
at half filling, we show that the presence of electron-phonon coupling with equilibrium phonon distribution
leads to a notable suppression of exchange interactions with temperature. We then apply our approach to the
prototypical 2D metallic ferromagnet, Fe3GeTe2, with moderate electron-phonon coupling. We find that the
exchange interactions undergo a renormalization, leading to a softening of the magnon modes, and suppression
of the Curie temperature by ∼10%. We expect that this effect can be further enhanced in systems with strong
electron-phonon coupling, as well as for the nonequilibrium distribution of phonons induced by strong laser
fields or charge currents.
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Introduction. Magnetism is a quantum phenomenon that
plays an important role in technology. Although the funda-
mental aspects of magnetism had been established decades
ago, understanding the behavior of magnetic materials at the
microscopic scale is still the subject of intensive research.
Recently, the interest in fundamental aspects of magnetism
has been revived due to the emergence of novel materials
that host low-dimensional forms of magnetism, allowing for
its efficient manipulation and control [1–5]. Among these
materials, metallic two-dimensional (2D) magnets with the
most prominent example of Fe3GeTe2 [6,7] constitutes a spe-
cial class of objects where charge carriers provide additional
degrees of freedom for tailoring the magnetic properties.

One of the most basic models in magnetism is the Heisen-
berg model,

H0 =
∑
i> j

Ji jSiS j, (1)

that describes the interaction between magnetic moments Si

via the pairwise exchange interaction Ji j determined by the
electronic structure of a material. A standard way to calculate
Ji j is to employ the so-called magnetic force theorem, yielding
a convenient expression in the form [8–11]

Ji j = 2 TrωL[�iG
↑
i j (iωn)� jG

↓
ji(iωn)]S−2, (2)

where Gσ
i j (iωn) is the spin-polarized electron propagator, �i

is the exchange splitting of electrons at lattice site i, and
TrωL denotes the sum over Matsubara frequencies iωn and
orbital indices L. In most practical situations, �i and Gσ

i j
are derived from single-particle Hamiltonians, disregarding
the explicit treatment of many-body effects. A modification
of Eq. (2) has been proposed in the context of strongly
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correlated systems [9], giving the possibility to take into
account the renormalization of Ji j due to electron-electron
interactions. In this case � is replaced by the spin-dependent
part of the local electron self-energy �σ (iωn), obtained self-
consistently within dynamical mean-field theory (DMFT).
This self-energy accounts for dynamical spin fluctuations and
ensures the temperature dependence of the exchange.

An alternative way to describe the temperature depen-
dence of Ji j due to magnetic fluctuations is to introduce
magnetic disorder within the formalism of disordered local
moments [12–14]. The degree of disorder is temperature
dependent and typically determined from atomistic spin simu-
lations for each temperature. Subsequently, Eq. (2) is modified
to take the disorder into account [15,16]. This approach can be
considered as a semiclassical approximation to DMFT [17].
Recently, semianalytical methods have been proposed to treat
this problem, in which temperature-dependent corrections
to the exchange are evaluated from spin correlation func-
tions [18].

At nonzero temperatures, thermal lattice fluctuations pro-
vide an additional contribution to the temperature dependence
of exchange interactions [19]. This effect is supposed to be
more pronounced in low dimensions where the electronic
structure is more susceptible to perturbations of the atomic
structure. Earlier attempts to describe the spin-lattice effects
in 2D magnets were limited to insulators, such as CrI3 [20],
with the main effect originating from a direct modification
of the hopping integrals upon atomic displacements. In con-
trast, metallic magnets allow for a different mechanism of the
spin-lattice interaction related to the coupling of phonons with
conducting electrons that is strongly temperature dependent.

In this Letter, we study temperature-dependent renormal-
ization of exchange interactions in 2D materials induced by
the electron-phonon coupling (EPC). We propose to general-
ize Eq. (2) for the case of electron-phonon coupling. To this
end, we perform renormalization of the Green’s functions
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using the Dyson equation G−1
k (iωn) → G̃−1

k (iωn) =
G−1

k (iωn) − �k(iωn), which also leads to renormalization
of the exchange splitting � → �̃k(iωn) = � + �

↑
k (iωn) −

�
↓
k (iωn), where we introduced the spin-polarized self-energy

to be evaluated via the standard expression [21–23]

�σ
k (iωn) = −T

∑
k′νm

Gσ
k (iωn)

∣∣gνσ
k k′

∣∣2
Dk−k′ (iωn − iωm), (3)

which connects the electron Gk(iωn) and phonon Dν
q(iωn)

propagators defined on the fermionic Matsubara frequency
axis ωn = πT (2n + 1) via the interaction vertex gνσ

k k′ at tem-
perature T . The vertex corrections can be neglected according
to the Migdal’s theorem [21], due to the smallness of phonon
frequencies in comparison with typical electron energies.

Square lattice. To illustrate the effect of electron-phonon
coupling on the magnetic exchange in metallic 2D magnets,
we begin with a minimal model. Specifically, we consider
spin-polarized electrons in a square lattice at half filling inter-
acting with acoustic phonons in the equilibrium. The model is
described by the Hamiltonian,

H = t
∑
〈i j〉σ

c†
iσ c jσ + �

2

∑
i

(n↑
i − n↓

i )

+
∑

q

ωqb†
qbq +

∑
q,〈i j〉σ

gq(b†
q + b−q)c†

iσ c jσ , (4)

where c†
iσ (ciσ ) and b†

q (bq) are the creation (annihilation)
operators of electrons at site i and spin σ , and phonons with
wave vector q and frequency ωq, nσ

i = c†
iσ ciσ , t is the nearest-

neighbor hopping, and 〈i j〉 labels the nearest-neighbor pairs.
� is the on-site interaction giving rise to the exchange
splitting of electronic bands, and gq is the electron-phonon
coupling. In the insulating state determined by the condition
t/� < 0.125, Eq. (2) results in J 	 4t2/� according to the
Anderson superexchange theory [24]. In the metallic state
(t/� � 0.125) the electron-phonon coupling is, in general,
not negligible, and must be taken into account.

For simplicity, we approximate phonon dispersion by a
simple Debye-like model ωq = vq keeping in mind h̄ωD 

kBT , where ωD = vπ/a is the characteristic frequency and v

is the sound velocity. The electron-phonon interaction matrix
element is then takes the form gq = g0

√
h̄q/(2Mv), where

g0 is the interaction constant and M is the nuclear mass. At
long wavelengths and not too low temperatures (h̄vq � kBT )
phonons can be considered classically with the occupation
〈b†

qbq〉 	 kBT/h̄vq. Then the electron self-energy [Eq. (3)]
can be recast in a simple form as

�σ
k (ω, T ) 	 2λ

kBT

Nσ
F

∑
q

Gσ
k+q(ω), (5)

where λ = g2
qNσ

F /ωq = g2
0Nσ

F /2Mv2 is the dimensionless
electron-phonon coupling constant, and Nσ

F = ∑
k δ(εσ

k ) is the
electron densities of states (DOS) at the Fermi energy. One
can see that in this minimal model, the temperature correction
to the exchange is only determined by the constant λ and by
details of the electronic structure.

FIG. 1. Top: Electron spectral functions and densities of states
(DOS) for a square lattice calculated in the presence of electron-
phonon interactions at different temperatures. Bottom: Temperature
dependence of exchange interaction renormalization in a square lat-
tice calculated for different coupling constants λ and t/� ratios. c is
the renormalization constant introduced in Eq. (6).

In the top panel of Fig. 1, we show the spec-
tral function Aσ

k (ω, T ) = −1/π Im[G̃σ
k (ω, T )] calculated for

spin-polarized electrons in a square lattice in the presence
of a moderate (λ = 0.5) electron-phonon coupling at dif-
ferent temperatures. The coupling results in a k-dependent
band broadening and energy shifts of the band edges, which
scale linearly with temperature. The bottom panel of Fig. 1
shows a relative renormalization of the exchange interaction
J (T )/J (0) for different coupling constants λ and t/� ratios.
Although the spectral function temperatures do not display
any qualitatively new features at finite temperature, even weak
electron-phonon coupling results in a noticeable renormal-
ization of Ji j . Under the assumptions made above, one can
expand the many-body correction to the exchange keeping the
linear terms only, yielding

J (T ) = J (0) − cλT, (6)

where c is a renormalization constant determined by the elec-
tronic structure of the system. This expression assumes that
the electron-phonon contribution to the self-energy can be
considered as a perturbation and taken into account in the
linear approximation which seems to be reasonable in most
cases. Importantly, the temperature correction δJ = −cλT
does not scale with J (0), meaning that the renormalization
effect is more significant when J (0) � cλT . As we are mostly
interested in the ordered phase below the critical temperature,
one can recast the renormalization criterion as c � Tc/λT ,
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keeping in mind the estimate Tc ∼ J (0). In Fig. 1, we pro-
vide these constants fitted for the three cases considered. We
emphasize that the renormalization effect persists even for
spin-independent electron-phonon coupling, i.e., when λ↑ =
λ↓. For unequal λ↑ and λ↓ the effect is expected to be stronger.

As one can see from Fig. 1, at the point of the metal-
insulator transition t/� = 0.125, even small λ = 0.05 already
leads to a ∼10% suppression of the exchange interaction at
T = 50 K, which increases further at higher temperatures
reaching up to 90% for λ � 0.5. At larger t/�, the absolute
value of Ji j increases, which limits its renormalization due to
electron-phonon coupling. In this case the effect can still be
significant for high enough coupling constants and temper-
atures, and will be further enhanced provided λ↑ = λ↓. The
potentially strong temperature dependence of the exchange
interactions suggests that it must be taken into account while
calculating thermodynamic averages. In particular, we expect
suppression of the ordering temperatures for magnetic sys-
tems with strong electron-phonon coupling.

Exchange renormalization in Fe3GeTe2. One of well-
known examples among 2D magnets is metallic Fe3GeTe2, for
which experimental studies demonstrate fingerprints of strong
spin-lattice coupling [25,26]. Let us now estimate the role of
electron-phonon coupling in the magnetic properties of this
system using the approach presented above. The magnetic
lattice of Fe3GeTe2 is schematically shown in the inset of
Fig. 2, which exhibits two distinct positions FeI and FeII

FIG. 2. Top: Spin-resolved electron spectral function of mono-
layer Fe3GeTe2 calculated in the presence of the electron-phonon
coupling at T = 100 K for the states near the Fermi level. The left
and right panels correspond to the spin-up and spin-down states,
respectively. The original single-particle DFT band structure (T = 0)
is shown by the red solid line. Bottom: Temperature dependence of
the renormalized leading exchange interactions shown schematically
in the inset. The numerical values of Ji j are given in the Supplemental
Material (SM) [27].

with magnetic moments 2.4μB and 1.6μB [28]. As a start-
ing point, we calculate the electronic structure of Fe3GeTe2

within density functional theory (DFT) using the plane-wave
pseudopotential method as implemented in the QUANTUM

ESPRESSO (QE) [29,30] package adopting the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [31]. The
phonon-related properties spectra are calculated within
the density functional perturbation theory in the linear-
response regime [32]. In the calculations, we use the same
numerical parameters as in our previous work [33] summa-
rized in the SM [27]. We restrict ourselves to the monolayer
structure with the experimental lattice parameters of bulk
Fe3GeTe2 [34].

The electronic structure of Fe3GeTe2 in the vicinity of the
Fermi energy is mainly formed by Fe(3d ) hybridized with
Te(5p) states [33], which allows us to parametrize them by
maximally localized Wannier functions [35,36]. Using such
parametrization, we construct a tight-binding Hamiltonian in
the basis of Wannier functions to calculate the electron prop-
agators as well as electron-phonon matrix elements needed
to obtain the electron self-energy in the Migdal approxima-
tion (see the SM for details [27]). For this purpose, we use
the EPW code [37,38] modified to treat spin-polarized states.
Figure 2 shows spin-resolved spectral function calculated for
monolayer Fe3GeTe2 at T = 0 and T = 100 K. One can see
that spin-down electrons are more susceptible to the electron-
phonon coupling, which is consistent with distinct coupling
constants λ↑ ∼ 0.5 and λ↓ ∼ 0.26 [33]. Such behavior in-
dicates a phonon-induced renormalization of the exchange
splitting �k(ω), which provides a direct contribution to the
exchange interactions Ji j according to Eq. (2).

The resulting temperature dependence of the renormal-
ized leading exchange interactions between iron atoms in
Fe3GeTe2 is presented in Fig. 2 (see the SM for further de-
tails [27]). Overall, the effect of exchange renormalization
is not large, and found to be within 10% for T = 200 K.
This can be ascribed to a relatively large effective t̃/�̃ ratio,
in accordance with the results presented in Fig. 1. Indeed,
our first-principles calculations yield the average exchange
splitting �̃ of Fe(d ) electrons to be ∼2 eV, while the effective
hopping t̃ determined from the bandwidth Wd 	 10 eV is
estimated to be t̃ 	 Wd/2Nnn ≈ 1.6 eV, where Nnn = 3 is the
number of nearest neighbors in the honeycomb lattice. The re-
sulting effective parameters ratio t̃/�̄ ∼ 0.8 suggests a small
renormalization effect, in agreement with Fig. 1. The cor-
responding renormalization constant c introduced in Eq. (6)
is estimated to be around 0.1–0.2 in Fe3GeTe2, which also
indicates weak renormalization. Despite the effect is relatively
small, the renormalization can still affect the observables
such as the spectrum of spin-wave excitations or the Curie
temperature.

We note that Eq. (2) for the exchange is only applicable
to the ordered phase (T < TC), since in the paramagnetic
phase both �i and 〈Sz

i 〉 tends to zero, and this limit requires a
special careful treatment [39,40]. Here, we restrict ourselves
only to the ferromagnetic phase leaving the problem of the
electron-phonon interaction in the paramagnetic phase for
future studies.

Spin-wave renormalization in Fe3GeTe2. Let us now dis-
cuss the role of exchange renormalization in the stability
of magnetic order. For 2D magnets with long-range order,
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it is crucial to take magnetic anisotropy into account, in
accordance with the Mermin-Wagner theorem [41]. Here,
we consider a spin-1 Heisenberg model in the presence of
single-ion anisotropy (SIA) described by the Hamiltonian

H = H0 + A
∑

i

(
Sz

i

)2
, (7)

where H0 is the isotropic term given by Eq. (1), and
A 	 −0.35 meV is the anisotropy parameter [33].

For a system with multiple magnetic sublattices, the
magnon frequencies �qν can be calculated by diagonalization
of the spin-wave Hamiltonian [42],

HSW
μν (q) =

⎡
⎣δμν

⎛
⎝2A� +

∑
χ

Jμχ (0)

⎞
⎠ − Jμν (q)

⎤
⎦ 〈Sz〉 ,

(8)

where Jμν (q) is the Fourier transform of the exchange in-
teraction matrix, and � = 1 − [1 − 〈S2

z 〉 /2] is the Anderson-
Callen decoupling factor [43,44] for S = 1, which satisfies the
kinematic condition. The indices μ and ν run from 1 to 3 over
magnetic sublattices. From Eq. (8) it follows that the magnon
energies �q ∼ 〈Sz〉, which is not always correct because the
magnon excitations are known to exist beyond the critical tem-
perature, assuming strong short-range magnetic order. Here,
we are not interested in the paramagnetic regime, but note that
the behavior at T > TC can be restored by introducing a short-
range spin-order parameter as it is done, e.g., in self-consistent
spin-wave theory [45].

Figure 3 shows the calculated spin-wave spectra of mono-
layer Fe3GeTe2 that exhibit two optical branches and one
acoustic branch dispersing quadratically �q 	 �0 + Dq2

near the � point, where D is the spin-stiffness constant and
�0 is the SIA-induced gap of the order of meV. The tem-
perature dependence of the magnetization 〈Sz〉 already leads
to a softening of the magnon branches, which drops to 0 at
T = TC. As the same time, taking into account the temperature
dependence of magnetic interactions increases this softening
even more, reducing the spin-stiffness constant D.

At nonzero temperatures, the magnetization 〈Sz〉 is deter-
mined by spin-wave excitations, which suppress long-range
magnetic order. Within the Green’s function formalism, 〈Sz〉
can be determined from the equations [46–48]〈(

Sz
i

)n
S−

i S+
i

〉 = 〈[
S+

i , (Sz
i )nS−

i

]〉 ∑
qν

〈b†
qνbqν〉 (9)

obtained by Tyablikov [also known as the random phase
approximation (RPA) result]. Here, S−

i and S+
i are the

ladder operators, 〈b†
qνbqν〉 = [exp(�qν/kBT ) − 1]−1 is the

equilibrium magnon distribution, and n = 0, 1 for S = 1.
Equations (9) and (8) are to be solved self-consistently with
respect to 〈Sz〉 and 〈S2

z 〉 (see the SM [27] for details).
The exchange parameters calculated at zero temperature

lead to TC 	 315 K, which overestimate the experimental
temperature TC ∼ 200 K [6,7,49–51]. At the same time,
considering the temperature-dependent renormalization of
magnetic interactions, we obtain a ∼10% reduction of the
Curie temperature down to TC 	 295 K. Although the result-
ing effect is not large, we observe a correct trend toward
the experimental values. Other possible reasons for the

FIG. 3. Top: Spin-wave spectra of Fe3GeTe2 calculated for
different temperatures taking into account bare (no EPC) and renor-
malized (with EPC) exchange interactions J . The values in the
left corner correspond to the spin stiffness. Bottom: Temperature-
dependent magnetization in Fe3GeTe2 calculated with and without
renormalization by the electron-phonon coupling.

discrepancy can be related to strong correlation effects ad-
dressed earlier in Ref. [52].

Discussion. It is natural to ask whether the renormalization
of exchange could be enhanced in real materials. For most
of the systems, electron-phonon coupling can be treated adi-
abatically, reflecting the fact that typical phonon energies Eph

are much smaller than typical electron energies Eel. In this
situation, the electron-phonon contribution to the self-energy
is important only within a narrow energy layer of the order
of Eph near the Fermi energy. Hence, its contribution to the
quantities integrated over the whole energy range has a small-
ness in the parameter Eph/Eel [53]. Therefore, one possible
way to achieve a stronger renormalization effect is to focus
on systems for which the adiabatic approximation does not
hold, i.e., when Eel � Eph. Such systems may include, for
instance, materials with narrow (or flat) electron bands close
to the Fermi energy, which potentially leads to exceptionally
strong electron-phonon coupling [54–56]. However, a theo-
retical description of this regime goes beyond the Migdal
theorem Eq. (3), and requires a separate consideration. In this
context, the theory of the antiadiabatic limit developed for
conventional superconductivity appears as a promising direc-
tion for further studies of the exchange renormalization [57].

Another possible approach to enhance the effect is to make
use of out-of-equilibrium distributions in describing the cou-
pled dynamics of electrons and phonons. Such distributions
could be achieved by charge or heat currents flowing through
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the system, as well as by optically driven excitations, leading
to an enhancement of the electron-phonon coupling [58,59].
In the presence of strong visible or ultraviolet laser fields,
corrections are required to compute the exchange interactions,
whose contribution might lead to novel effects [60–62]. The
role of adiabaticity in these cases is much less clear. One
can also expect strong effects under infrared laser fields,
keeping in mind the possibility to reach much larger atomic
displacements than the equilibrium ones [63,64]. Last but not
the least, in this study we limited ourselves to the isotropic
exchange interaction, which is typically the dominant

magnetic interaction in real magnetic materials. Given that
temperature corrections to the exchange obtained in this work
do not scale with the exchange itself, one can expect stronger
renormalization effects for anisotropic magnetic interactions,
such as the Dzyaloshinskii-Moriya interaction (DMI). This
case constitutes another interesting problem, which we leave
for further studies.
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