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Strain-induced antiferromagnetic domain switching via the spin Jahn-Teller effect
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The spin Jahn-Teller effect, where a degeneracy of magnetic ground states is spontaneously lifted by structural
distortions, lends itself to exploitation by the implied magnetoelastic coupling. CoTi2O5 hosts a frustrated
topology of magnetic interactions that could realize such coupling, since the observed magnetic ground state
requires a spontaneous monoclinic distortion of the crystal. Using resonant elastic x-ray scattering to simulta-
neously probe the magnetic structure and lattice distortion of CoTi2O5, we demonstrate near complete magnetic
domain switching by an applied uniaxial stress that is conjugate to the monoclinic strain. Our results, supported
by density functional theory calculations, confirm that CoTi2O5 displays spin Jahn-Teller effects that can be
understood in terms of modulated Heisenberg exchange interactions, and demonstrate the potential functionality
of spin Jahn-Teller materials in spintronic devices sensitive to uniaxial strain.
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The interplay between structural and electronic degrees of
freedom in crystalline materials gives rise to a rich variety of
phase transitions, providing not just a setting to explore funda-
mental materials physics, but also numerous opportunities for
technological exploitation. Such relationships encompass top-
ical phenomena such as magnetoelectric coupling [1,2], and
(pseudo) Jahn-Teller effects in which a variety of electronic
instabilities drive spontaneous crystal distortions [3,4]. In
such cases the role of the crystal structure in mediating micro-
scopic interactions provides a powerful lever for manipulating
the electronic ground state, and the use of uniaxial stress
has emerged as an effective controllable conjugate field. The
respective strain may act both as a tuning parameter within a
given phase, and as a symmetry-breaking distortion, activating
new terms in the Hamiltonian. Eminent examples that demon-
strate the effectiveness of stress in tuning material properties
include the control of superconductivity and charge-density
waves [5–8], antiferromagnetic (AFM) ordering [9,10], metal-
insulator transitions [11,12], and bulk ferromagnetism [13].

The ability to switch magnetic domains via applied
strain is a highly sought-after capability in the spintron-
ics community, where efforts to realize robust magnetic
data storage and manipulation by strain control of mag-
netic domain walls have achieved numerous successes in
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ferromagnetic thin films via ferroelectric and piezoelectric
substrates [14–16]. In antiferromagnetic (AFM) systems, for
which faster dynamics and robustness against perturbation
from magnetic fields can be achieved, studies aimed at do-
main control have typically focused on Néel vector domains
related by rotational symmetries of the paramagnetic parent
and stabilized by magnetocrystalline anisotropy [17–20]. An
alternative strategy to achieve strain-induced domain switch-
ing is to directly modulate the magnetic exchange topology,
thereby energetically selecting a given magnetostructural do-
main. One system with a suitable exchange topology is
CoTi2O5, in which a transition from low-dimensional mag-
netism [21] to long-range antiferromagnetic order occurs
at TN = 26 K. The resultant four magnetic domains are
associated with two propagation vectors k± = ( 1

2 ,± 1
2 , 0), de-

fined with respect to the orthorhombic parent, and broken
time reversal symmetry (2 k-vector (magnetostructural) ×
2 time-reversal = 4 magnetic domains). Domains of different
k are interrelated by mirror symmetries broken at the tran-
sition [21]. Though changes to the crystal structure have
not been reported, a concomitant lattice distortion is implied
by a phenomenological magnetostructural coupling invariant,
which can be aptly understood in the framework of spin
Jahn-Teller theory [22–24]. Here, symmetry-lowering mon-
oclinic distortions in CoTi2O5 lift the degeneracy of magnetic
ground states through a modulation of exchange pathways
that select either k+ or k−. This feature suggests that a
uniform strain field, conjugate to the monoclinic spin Jahn-
Teller strain, can be used to switch between magnetostructural
domains.

In this Letter, we present a combined resonant elastic x-ray
scattering (REXS) and density functional theory (DFT) study
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of CoTi2O5. We demonstrate nearly complete antiferromag-
netic domain switching in a single crystal by application of
uniaxial stress in a direction determined by symmetry anal-
ysis of the magnetostructural phase transition. Reversing the
causal relationship between magnetism and the lattice, strain
selection of k± domains not only represents an original do-
main switching mechanism, but also substantiates the physical
interpretation of the transition based on the spin Jahn-Teller
effect.

Single crystals of CoTi2O5 were cut such that their long
axis was aligned with the (1, 1̄, 0) reciprocal lattice vector,
and an elongated top face was normal to the crystallographic
c axis and polished to a mirror finish. Further details of the
synthesis and preparation of crystals are presented in the
Supplemental Material [26] (see also Refs. [27–36] therein).
REXS measurements were performed in reflection geometry
[(0, 0, l ) specular] on the I16 beamline at Diamond Light
Source with x rays tuned to the Co K edge. We use σ and π

to denote linear polarization perpendicular and parallel to the
scattering plane, respectively. Primed and unprimed symbols
refer to the scattered and incident beams. For each sample,
a number of Bragg reflections were identified and used to
determine the exact orientation of the crystal with respect to
the diffractometer angles. Lattice parameters of a = 3.732,
b = 9.718, and c = 10.069 Å were found at a base temper-
ature of 7 K, consistent with the orthorhombic Cmcm unit cell
established by Ref. [21].

The first sample was mounted directly onto a copper plate
and cooled to low temperature. New diffraction peaks ap-
peared below TN at satellite positions Q0 ± k+ and Q0 ± k−,
originating in scattering from k+ and k− domains, respec-
tively, where Q0 indexes an allowed structural Bragg peak [see
Fig. 1(a) for satellites of the Bragg peak at Q0 = (0, 0, 9)].
The magnetic origin of the new intensities was confirmed by
determining their polarization, energy, and temperature de-
pendencies: At 7 K no signal was detectable at Q0 + k+ in the
σ -σ ′ channel, while in σ -π ′ a strong resonant intensity was
recorded [Figs. 1(b)–1(d)], as expected for E1-E1 scattering
events from parity-even, time-reversal-odd (magnetic) dipoles
[37]. The integrated intensity of the magnetic peaks, being
proportional to the squared magnitude of magnetic moments
on Co2+ sites, showed a typical order parameter dependence
on temperature [Fig. 1(e)]. Fitting of the temperature depen-
dence gave a critical exponent of β ∼ 0.21(5) (we note that
this value should be taken lightly as the density of measured
intensities is low in the critical region), α ∼ 5.2(8), and a tran-
sition temperature of TN = 26 K, in good agreement with the
value determined by bulk studies [21]. The energy dependence
on diffraction intensity shows the main K-edge resonance at
7.724 keV appearing exclusively in the σ -π ′ channel and
a large pre-edge feature at 7.709 keV [Fig. 1(f)] recorded
in both polarization channels. This pre-K-edge resonance
is consistent with E1-E2 scattering events from parity-odd,
time-reversal-odd multipoles, which are allowed by the lack
of inversion centres at Co 4c sites (site symmetry m2m) [38].
A lower bound on the spatial extent of magnetic correla-
tions can be obtained from the half width of peaks scanned
in momentum space, giving minimum correlation lengths of
approximately 600, 300, and 800 nm along a, b, and c, re-
spectively. The widths of the magnetic peaks are comparable

FIG. 1. (a) Structural, Q0 = (0, 0, 9), and magnetic, Q0 ± k+
and Q0 ± k−, diffraction intensities measured below TN and at an
energy of 7.724 keV, shown in black, blue, and red, respectively
(logarithmic intensity scale in the central plot). The peak splitting
observed at Q0 + k+ was due to sample mosaicity. (b)–(d) Scans
along a∗, b∗, and c∗ through the magnetic peak at Q0 + k+. Blue
and gray data points show intensities recorded in the σ -π ′ and σ -σ ′

polarization channels, respectively. Red dashed lines are pseudo-
Voigt fits. (e) Temperature dependence of the integrated intensity of
the Q0 + k+ peak, with the red dashed line representing a fit to the
functional form I = I0[1 − (T/TN )α]2β [25]. (f) Energy scans of the
Q0 + k+ intensity in both polarization channels, with fluorescence
overlaid as a black dashed line.

to that of the nearby structural Bragg peak Q0, indicating that
the magnetic order is well developed and on a comparable
range to the structural order. By raster scanning across the
sample while measuring the relative intensities of the Q0 + k+
and Q0 + k− magnetic peaks, we can reconstruct the do-
main configuration close to the sample surface, as shown in
Figs. 2(a)–2(c). The lateral size of magnetostructural domains
were observed to be >0.3 mm. We note that, as in Ref. [21],
structural Bragg peak splitting resulting from the spontaneous
monoclinic distortion at TN could not be resolved. That no
evidence of structural symmetry breaking was observed may
not be surprising. For example, in the case of magnetoelec-
tric multiferroics a spin-induced polarization and switchable
polar domains can be measured [39,40], while the respective
structural distortions occur at the femtoscale and are seldom
observed [41].
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FIG. 2. (a) Q0 + k− = ( 1
2 , − 1

2 , 9) and (b) Q0 + k+ = ( 1
2 , 1

2 , 9)
magnetic intensities raster mapped across the sample surface.
(c) k domain fraction (Gouraud interpolated) calculated using x± =
I±/(I++I−).

A second crystal was mounted in a Razorbill Instruments
CS100 compensated piezoelectric strain cell, with the long
axis [parallel to (1, 1̄, 0)] of the crystal spanning a gap be-
tween opposing bridges of the cell, as shown in Fig. S1 of
the Supplemental Material [26]. The uniaxial stress applied in
this direction results in a sheer strain field represented by the
infinitesimal strain tensor

⎡
⎣

0 exy 0
exy 0 0
0 0 0

⎤
⎦,

which transforms by the �+
2 irrep. With the cell installed

inside a standard closed cycle refrigerator (CCR), the dis-
tance between the two bridges could be varied by applying
a voltage difference across the piezoelectric stacks, leading
to a controlled strain, �L/L ≡ �d11̄0/d11̄0, on the sample.

�L/L was quantified as a function of applied voltage by
measuring the 2θ positions of coplanar intensities at (1, 1̄, 4)
and (0,0,10), permitting calculation of the interplanar distance
d11̄0 (see Supplemental Material [26]). Hence, the strain was
calibrated within exactly the same sample volume (penetrated
by the beam) from which magnetic diffraction intensities were
measured.

With the temperature held at 7 K, the intensities of the
Q0 + k+ and Q0 + k− peaks were integrated while changing
the applied voltage between −80 and 60 V at 5 V intervals
such that the induced strain along (1, 1̄, 0) transitioned from
compressive to tensile. The resulting values were then used
to calculate k± domain fractions, which are plotted against
strain in Fig. 3(d). Additionally, domain maps were produced
from raster scans of the Q0 + k+ and Q0 + k− peak inten-
sities at −80 and 60 V, corresponding to states of maximal
compressive and tensile strain, respectively [Figs. 3(a)–3(c)
and 3(e)–3(g)]. The results demonstrate near total switching
of magnetostructural domains with strain. Temperature de-
pendencies of the magnetic intensities were also measured at
states of maximal strain, evidencing no detectable change in
the ordering temperature [see Fig. 3(d) inset].

A comprehensive symmetry analysis presented in Ref. [21]
showed that the k+ and k− magnetic domains of CoTi2O5
transform as the mS−

2 irreducible representation (irrep) with
(η, 0) and (0, ε) order parameter directions, respectively.
A phenomenological magnetoelastic free-energy invariant
δ(η2 − ε2) was proposed to facilitate long-range magnetic
ordering via the spin Jahn-Teller effect, based on coupling
to a monoclinic displacive mode transforming as the �+

2 ir-
rep with order parameter δ. Here, the sign of δ selects a
given single-k domain, and it follows that by introducing
a strain mode that also transforms by �+

2 (note +�L/L
corresponds to −δ, and vice versa), one can energetically
bias domains transforming as (η, 0) or (0, ε). Thus, our ex-
perimental results confirm the proposed phenomenological
model.

FIG. 3. (a) and (b) depict raster maps of Q0 + k− and Q0 + k+ intensities, respectively, across a region of the sample surface at a voltage
of −80 V (maximal compressive strain). (c) Domain map calculated using x± = I±/(I+ + I−) showing a near single k+ domain. (d) depicts the
dependence of x± domain fractions on strain as determined by the relative intensities of Q0 + k− and Q0 + k+. The inset shows the temperature
dependencies of the Q0 + k− magnetic intensity at various strains. (e)–(g) were produced in the same manner as (a)–(c) at a voltage of 60 V
(maximal tensile strain).
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FIG. 4. (a), (d), and( g) depict “sheets” of Co2+ ions (blue
spheres) defined by exchange pathways J1 (red) and J2 (amber), J1

(red) and J3 (green), and J1 (red) and J4 (purple), respectively. (b), (e),
and (h) show projections of single sheets with antiparallel moments
colored light and dark blue as in the k+ domain. The �+

2 splitting of
J3 (J4) is depicted as dark solid and light dashed connections. (c), (f),
and (i) are corresponding diagrams for the k− domain.

Total energy DFT+U calculations based on the undistorted
crystal structure (for details, see Supplemental Material [26]),
show that k+ and k− magnetic domains are degenerate to
within 4 mK/f.u. [42]. The �+

2 strain described above will
introduce a slight modulation in the exchange parameters,
resulting in a very small energy difference between k+ and
k− domains, labeled �E . In order to reliably calculate �E ,
the strains were amplified to generate a set of model dis-
torted structures. DFT+U results shown in Fig. S3 confirm
that positive strain (�L/L > 0) does indeed stabilize the k−
domain, and that this effect can be reversed. Furthermore,
structural relaxations indicate subtle magnetostrictive distor-
tions in opposite directions for k+ and k− domains, resulting
in a shortening of the corresponding Co-Co bond on the order
of ∼10−4 Å. Such distortions are typically too small to be
resolved by state-of-the-art diffraction techniques, further cor-
roborating the absence of observable peak splitting in either
the present or prior studies on the unstressed system.

The AFM structures of CoTi2O5 are stabilized by a net-
work of frustrated exchange interactions, as depicted in Fig. 4.
For both domains, buckled sheets of Co2+ ions adopt Néel-
type antiferromagnetic order on a distorted square lattice
spanned by nearest-neighbor superexchange and supersu-
perexchange interactions labeled J1 and J2, respectively [see
Figs. 4(a)–4(c)]. These buckled sheets represent unfrustrated

subunits common to both domains. Connecting each AFM
buckled sheet to its neighbor (related by a [ 1

2 , 1
2 , 0] transla-

tion) are interlayer exchanges J3 and J4 [see Figs. 4(d)–4(f)
and 4(g)–4(i), respectively]. These are also weak supersu-
perexchange pathways which, in the paramagnetic Cmcm
symmetry, perfectly frustrate the magnetic structure. The m2m
site symmetry of Co2+ ions forbids the presence of a net J3

or J4 exchange field at any given site, since equal numbers
of antialigned moments from the neighboring AFM sheets
contribute with the same coupling strength. The effect is that
the AFM J1-J2 sheets are decorrelated from one another. How-
ever, �+

2 distortions induced either spontaneously at a spin
Jahn-Teller transition, or by application of stress described
above, lowers the site symmetry of Co2+ ions to mz, splitting
the interlayer exchanges into inequivalent pairs J3/J ′

3 and
J4/J ′

4. This establishes the sign of the exchange field, and
therefore the relative phase between neighboring AFM sheets,
giving long-range magnetic order with a k+ or k− propagation
vector. For its part, total energy DFT+U calculations show
that J1 ≈ 16.8 K (AFM), in excellent agreement with J de-
termined by fitting magnetic susceptibility [26]. Both J3 and
J4 were found to be small (∼0.2 K), and the magnitude of
J2 was below the resolution of the calculations. We suggest
that the DFT+U approach is not accurate enough to estimate
the subtle differences in exchange associated with the spin
Jahn-Teller distortions. Nonetheless, the perfect frustration of
J3 and J4 exchanges in orthorhombic symmetry, and therefore
the degeneracy of k± domains, can only be lifted in the pres-
ence of �+

2 distortions.
At the mean-field level, the bulk ordering temperature is

determined by an aggregate of the exchange interaction ener-
gies. Therefore, when strain lifts the magnetic frustration of
J3 and J4, one might expect a significant increase in TN. It was
surprising, therefore, that no such increase was observed in
the stressed samples. Thermodynamically, the stress depen-
dence of the critical temperature is captured by the modified
Ehrenfest relation for second-order phase transitions [43,44],

dTN

dσ
= �αδT0

�Cσ

, (1)

where σ is the stress component coupling to the strain, T0

is the transition temperature in zero applied stress, and �Cσ

and �αδ are discontinuities in the heat capacity and thermal
distortion coefficient αδ ≡ ( ∂δ

∂T ) across the transition, respec-
tively. The above relation is derived from a Landau theory
in the Supplemental Material [26]. Diffraction experiments
have shown no detectable change in crystal structure at TN

[21], suggesting a very small value of �αδ . Hence, the stress
dependence of the transition temperature is likely very weak,
explaining the insensitivity of TN to strain. Despite this, re-
markably small strains are sufficient to stabilize k domains.

In summary, we have demonstrated an approach to con-
trol AFM domains by applied stress through exploiting
the spin Jahn-Teller effect in CoTi2O5—a material system
that offers numerous opportunities to the wider frustrated
magnetism community for its complex frustrated exchange
topology, and for the involvement of Co2+ ions that host
large spin-orbit coupling. Looking beyond CoTi2O5, AFM
domain switching is typically achieved by tuning magne-
tocrystalline anisotropies [45]. Instead, we have shown that
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spin Jahn-Teller-based magnetoelastic coupling, which modu-
lates magnetic frustration arising from competing Heisenberg
exchange pathways, can enable direct control of different k
domains. This mechanism may be generalized to account
for the properties of other material systems. For example,
previous studies on CeAl2 demonstrating multi-k-domain
switching by uniaxial strain [46,47] can now be understood
in the context of spin Jahn-Teller theory [23]. Furthermore,
progress towards room-temperature spin Jahn-Teller phase
transitions could lead to striking developments in the field of
spintronics. If such a material can be incorporated into a suit-
able thin-film heterostructure with a piezoelectric substrate,

antiferromagnetic domain structures could be deterministi-
cally manipulated by an electric field.
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