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Since the discovery of two-dimensional ferroelectric and ferromagnetic materials, the van der Waals (vdW)
heterostructures constructed by ferroelectric and ferromagnetic monolayers soon became the ideal platforms
to achieve converse magnetoelectric functions at the nanoscale, namely to use the electric field to control
magnetization. In this Letter, by employing density functional theory calculations and dynamic simulations
of the atomic spin model, we study the key role of the interfacial Dzyaloshinshii-Moriya interaction (DMI)
in CrI3-In2Se3 vdW heterostructures. Our work demonstrates feasible DMI torques pumped by ferroelectric
switching, which can drive current-free and low-energy-consumption domain wall motion. Moreover, such
an interfacial DMI can also significantly enlarge the Walker field in the magnetic-field-driven domain wall
technique.
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Originating from spin-orbit coupling (SOC), the
Dzyaloshinshii-Moriya interaction (DMI) plays a vital
role in modern spintronics. By coupling neighbor spins
in the antisymmetric form HD = D · (Si × S j ) [1], DMI
can lead to many noncollinear spin textures, e.g., canting
antiferromagnetism, chiral domain walls, as well as skyrmions
[2–6]. It is well known that noncollinear spin textures usually
produce nontrivial spin-electron scattering for transportation,
which can contribute to topological (quantum) Hall effects
and the motion of quasiparticles [7–12], facilitating functional
manipulations at the nanoscale. Because the presence of DMI
relies on the lack of space-inversion symmetry, DMI widely
exists in those noncentrosymmetric magnetic materials. In
particular, helimagnets such as MnxFe1−xSi, FexCo1−xSi,
and FeGe, in which the DMI causes spiral orders and/or
skyrmions, have attracted much attention [13–17]. In addition,
the asymmetric interfaces in artificial heterostructures or
superlattices can also produce the interfacial DMI which
leads to various emergent phenomena [3,18–23].

The reversibility of the DMI vector provides a promising
route to control the chirality of magnetism. Multiferroics al-
lows the coexistence of more than one ferroic order within a
single phase material, which provides a platform to control the
DMI vector via electric field or mechanical methods [24–26].
For some specific multiferroic systems, e.g., BiFeO3, due to
the locking between oxygen octahedral distortions and dipole
moments, the DMI vector can be reversed by ferroelectric
switching, leading to the flipping of the canting moment
[27,28]. By reversing the DMI vector, topological spin tex-
tures or solitons can be manipulated [29–32]. Following
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this mechanism, Yu et al. demonstrated chirality-dependent
skyrmion-skyrmion interactions [33].

The magnetic chirality also widely exists in domain walls,
and thus DMI also plays an essential role in domain wall
dynamics [34–39]. For example, reversal of the DMI vector
can produce a dissipative transverse motion during the chi-
rality switching, as demonstrated in perovskite multiferroics
[40,41]. Comparing with the scenario based on current-
dependent torques [42–44], such pure electric field control has
the advantage of lower-energy consumption, which has been
coined as a new class of “DMI torques” [45].

The van der Waals (vdW) heterostructures are ideal plat-
forms to design electronic devices with controllable DMI,
benefiting from their high-usage interfaces and easy control
of stacking modes. As a widely studied system, the α-In2Se3

monolayer was theoretically predicted to be ferroelectric [46],
which was then fabricated and confirmed in experiments [47].
After that, In2Se3-based heterostructures have been theoret-
ically studied and designed for the nonvolatile electric field
manipulation of various physical properties, including mag-
netism [48,49], topological states or spin textures [50–53],
and band alignments and charge transfer [54,55]. Although
domain walls have been attracting more and more attention in
two-dimensional systems [56–58], the DMI control of domain
wall dynamics remains less studied.

In this Letter, the DMI torques and domain wall dynam-
ics of CrI3-In2Se3 vdW heterostructures are studied. Our
first-principles calculations indicate the interfacial DMI in
the CrI3 monolayer can be induced in these heterostructures
and the full reversal of the DMI vector can be achieved in
the In2Se3/CrI3/In2Se3 sandwichlike heterostructure, which
can generate DMI torques to drive the motion of domain
walls. Furthermore, the existence of interfacial DMI can en-
large the critical field of the Walker breakdown in magnetic
field-driven domain wall motion. Such magnetoelectric vdW
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FIG. 1. (a) Schematic honeycomb lattice of magnetic layer
stacking on a substrate, where the exchange interaction J and
interfacial DMI vectors Dμ (μ = 1, 2, 3) are located at each nearest-
neighboring bond between the A site and B site. eμ: normalized
axes. (b) Néel-type domain walls with clockwise or counterclock-
wise chiralities, plotted as one-dimensional coordinate functions of
spin component Sx (x). Such chirality can be determined by the DMI
vectors correspondingly.

heterostructures shed light on low-energy-consuming domain
wall nanoelectronic applications.

The CrI3 monolayer is a well-recognized two-dimensional
ferromagnetic sheet with a magnetic easy axis perpendicular
to its plane [59]. The effective spin Hamiltonian for CrI3’s
honeycomb lattice can be written as

H = −J
∑
〈i, j〉

Si · S j −
∑
〈i, j〉

Di j · (Si × S j ) − A
∑

i

(
Sz

i

)2
, (1)

where S is the normalized spin vector, i/ j are site indices, and
〈 〉 denotes nearest neighbors. As depicted in Fig. 1(a), the first
term is the ferromagnetic exchange (J > 0), and the second
term describes the interfacial DMI with the coefficient vector
D. Due to the inversion symmetry, D = 0 for an isolated CrI3

monolayer. However, the symmetry can be broken from the
original D3d to C3v for the CrI3 monolayer on a substrate,
producing nonzero DMI vectors satisfy Dμ = Dez × eμ (μ =
1, 2, 3) as depicted in Fig. 1(a), where D is the amplitude
of the DMI vector. The last term is the magnetocrystalline
anisotropy with the easy axis along the z axis (A > 0).

Due to the presence of DMI, the magnetic domain walls
should belong to the Néel-type with specific chirality [i.e.,
clockwise (CW) or counterclockwise (CCW)] to reduce the
energy cost from DMI, as sketched in Fig. 1(b). In such a
honeycomb lattice, although domain walls are possibly propa-
gating along the zigzag or armchair directions, i.e., the shadow
stripes in Fig. 1(a), they can be proved to be equivalent in
the magnetic dynamics [60]. Then in the continuous limit, the
model Hamiltonian for Néel-type domain walls propagating
along the x axis can be expressed as

H =
∫ [

J

2
(∇S)2 − Dey · (S × ∇S) − 4A

3
(Sz )2

]
dx. (2)

Therefore, the domain wall can be described as Sx =
sech(x/�) with the characteristic width � = √

3J/8A [61]. It
is worthy to note that the effective width of the domain walls
in the honeycomb lattice should be π�a0 [a0 is the Cr-Cr
distance as defined in Fig. 1(a)].

To obtain effective coefficients from real heterostructures,
first-principles calculations based on density functional theory
(DFT) are performed, and technical details of the calculations
can be found in the Supplemental Material (SM) [60]. Both
CrI3 and In2Se3 monolayers are hexagonal lattices, as shown
in Figs. 2(a) and 2(b), and their lattice constants are well
matched by following the (1 × 1)/(

√
3 × √

3) stacking mode
with a less than 0.5% mismatch. The CrI3/In2Se3 bilayer
and In2Se3/CrI3/In2Se3 trilayer are considered. Here, the en-
ergetically most favorable stacking modes are displayed in
Figs. 2(c)–2(f), while other stacking modes are discussed in
SM [60]. The CrI3/In2Se3 bilayer is polar despite the polar-
ization direction of In2Se3. The In2Se3/CrI3/In2Se3 trilayer
can be polar or nonpolar, depending on the combination of
polarizations of two In2Se3 layers, as shown in Figs. 2(e) and
2(f). For bilayer heterostructures CrI3/ ↑ and CrI3/ ↓ (here, ↑
or ↓ denotes the polarization direction in the In2Se3 layer), the
energy is calculated as the function of the interlayer distance
L. As shown in Fig. 2(g), their optimal distances L↑ and L↓
are only slightly different. A similar conclusion is also appli-
cable to the trilayer heterostructures, in which the optimal L’s
slightly depend on the polarization of In2Se3 layers.

As aforementioned, the DMI can be induced by the prox-
imity effects at the interfaces. Microscopically, DMI can
originate from multiple factors, including the lattice dis-
tortion, orbital hybridization, electrostatic field, and charge
transfer. Here, although the lattice distortions between Cr-
I-Cr bonds are rather tiny after optimization, the charge
density is significantly different between the upper I and
lower I surfaces, due to the electrostatic field from In2Se3,
as shown in Fig. 3(a). To calculate the DMI vector, two
noncollinear magnetic orders with an identical exchange
energy but opposite chiralities as depicted in Fig. 3(b),
are calculated with SOC. The energy difference between
these two states is only contributed by the DMI according
to D = (ECCW − ECW)/4.

All calculated coefficients including J , D, and A are sum-
marized in Figs. 3(c) and 3(d). On one hand, comparing with
monolayer CrI3, the ferromagnetic exchange J is strengthened
by 15%–28% in these heterostructures, while the magne-
tocrystalline anisotropy A is reduced by 0%–26%. Thus the
ferromagnetism of CrI3 should remain robust. On the other
hand, nonzero D’s appear only in those polar heterostructures.
For bilayers, the amplitude of DMIs are estimated as 0.16 and
0.3 meV for CrI3/ ↑ and CrI3/ ↓, respectively. Interestingly,
the sign of DMI does not change upon ferroelectric switch-
ing, implying that the single interface itself contributes to
0.23 meV while the reversible DMI contributes to 0.07 meV.
For trilayers, the DMI is completely reversed from 0.08 meV
in ↑ /CrI3/ ↑ to −0.08 meV in ↓ /CrI3/ ↓, while it is zero
in ↑ /CrI3/ ↓ or ↓ /CrI3/ ↑ as expected from the inversion
symmetry.

To study the spin dynamics of domain walls in the
CrI3 layer, we employed atomic simulations by solving
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FIG. 2. Structures of CrI3-In2Se3 heterostructures. (a), (b) Top view of CrI3 monolayer (unit cell) and the
√

3 × √
3 supercell of α-In2Se3.

(c)–(f) Side views of heterostructures. (c) CrI3/ ↑, (d) CrI3/ ↓, (e) ↑ /CrI3/ ↑, and (f) ↑ /CrI3/ ↓, in which ↑ or ↓ denotes the polarization
direction in the In2Se3 layer. (g) The total energy as a function of interlayer distance L for CrI3/ ↑ and CrI3/ ↓, where L↑ and L↓ represent
their optimal interlayer distances.

Landau-Lifshitz-Gilbert (LLG) equation [61],

∂S
∂t

= γ

μs

(
S × ∂H

∂S

)
+ α

(
S × ∂S

∂t

)
, (3)

where γ = gμB/h̄ is the gyromagnetic ratio. μs = 3μB is the
atomic magnetic moment for Cr3+. The last term is for Gilbert
damping with coefficient α, which is typically determined
by electron spin resonance in experiments. A stripy honey-
comb lattice N = 600 × 4 is adopted, with periodic boundary
conditions along the y direction and open boundary condi-
tions along the x direction. The two x ends are fixed as spin
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FIG. 3. (a) Charge redistribution between the upper I and lower I
surfaces in CrI3/ ↓. The charge density is plotted near the Fermi level
with range of [−0.3, 0] eV with an isosurface level as 0.005 e/Å3.
(b) Noncollinear Cr-spin orders in a honeycomb lattice of the CrI3

layer, where out-of-plane (blue arrows) and in-plane (red arrows)
spins are in arrangements with different chiralities of CW or CCW.
(c), (d) The exchange coefficient J , magnetocrystalline anisotropy A,
and strength of the DMI vector D in the CrI3 monolayer (ML) and
CrI3-In2Se3 heterostructures, where ↑ or ↓ denotes the polarization
of the In2Se3 layer.

up and spin down. The fourth-order Runge-Kutta method is
used to solve the LLG equation to obtain the time-dependent
evolution of spins.

In the trilayer heterostructures, the DMI vector can be
reversed by flipping the polarization, i.e., from +0.08 to
−0.08 meV, which is anticipated to pump the DMI torques
for spin dynamics [40,45]. Here, we study an isolated do-
main wall at the honeycomb lattice, starting from a sharp
boundary between the spin-up domain and spin-down domain.
As shown in Fig. 4(a), due to the DMI (D = 0.08 meV) in
↑ /CrI3/ ↑, the final stable state is a CW Néel-type domain
wall. After the polarization flipping to ↓ /CrI3/ ↓, the DMI
energy will produce an effective field acting on the domain
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FIG. 4. DMI torque-driven domain wall motion. (a), (b) Snap-
shots of S texture with an isolated domain wall, before and after
polarization flipping. The chirality of the domain wall is reversed
from CW (at 0 ns) to CCW (at 0.8 ns). (c) The time-dependent
domain wall position d with different damping coefficients. (d) The
average velocities (solid circles) for the DMI torque-driven domain
wall motion as a function of α, which can be well fitted using the
formula vm(α2 + 1)−1.

L060406-3



JUN CHEN, CHUREN GUI, AND SHUAI DONG PHYSICAL REVIEW B 110, L060406 (2024)

wall, and thus pump a DMI torque as

�D = −2Dγ

μs
(S · ey)∇S, (4)

which will reverse the chirality of the domain wall and in-
duce a transverse motion as well. As shown in Fig. 4(b),
with a large damping coefficient α = 0.2, the domain wall
moves by ∼15 nm along the x direction within 0.8 ns, ac-
companying its chirality reversal to CCW. This dynamic
process with a smaller damping coefficient α = 0.1 is also
calculated for comparison. As shown in Fig. 4(c), the trans-
verse motion distance d reaches ∼30 nm within ∼1.5 ns.
The motion of the domain wall converges to stop gradu-
ally, thus it is not precise to define the motion time and
the final distance ds. In fact, for the honeycomb lattice,
the DMI torque-driven domain wall motion can be well
described by

d = a0�

α
arctan

[
sinh

(
t

Q

)]
, (5)

where Q = 8�(α + α−1)μs/(3πγ D) denotes the characteris-
tic time and the maximal moving distance is ds = a0�π/α.
More details about the derivatives can be found in the Sup-
plemental Material, and this kind of domain wall motion is
similar to the “rolling-downhill”-type motion discovered in
multiferroic perovskites [40]. All the simulation results are in
perfect agreement with the theory, in which the moving dis-
tance is proportional to α−1 and independent on the strength
of DMI. Here, we can define the effective time for the mo-
tion as ∼2πQ, thus the average velocity can be calculated
by v̄ = 3a0πγ D/[16(α2 + 1)μs]. The average velocity v̄ in-
creases with decreasing α and its maximal limitation is vm =
3a0πγ D/16μs when α → 0, in consistent with the simulation
results as shown in Fig. 4(d). For the In2Se3/CrI3/In2Se3

heterostructure, the maximal average velocity is estimated
as ∼20 m/s, which is close to the typical velocity of
magnetic field-driven ferromagnetic domain walls below
50 mT [35,62–64].

For completeness of domain wall motion, we also inves-
tigate the magnetic field-driven domain wall motion with
different polarizations. Considering a magnetic field h along
the z direction, the Zeeman energy term can be expressed
as H = −hμs

∑
i ez · Si, which gives rise to a magnetic field

torque as

�h = γ hez × S. (6)

The snapshots of domain wall dynamics in CrI3/ ↓ are dis-
played in Figs. 5(a) and 5(b), where the magnetic field torque
together with Gilbert damping produce a dissipative torque
to shift the domain wall and reduce the Zeeman energy. In
this process, there is a critical field, called the Walker field
hW [62]. Below hW, the dynamic process is mainly the steady
motion, while it becomes a processional motion above hW

[Fig. 5(d)]. Here, the time-dependent domain wall motions
under various magnetic fields are plotted in Figs. 5(c) and
5(d), which indicates hW ∼ 152 mT.

It is known that this hW originates from the in-plane mag-
netic anisotropy. However, for the CrI3 monolayer itself, the
fully occupied t2g orbitals at the Cr ion together with the
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FIG. 5. Magnetic field-driven domain wall motion with α = 0.2.
(a), (b) Snapshots of the S textures in CrI3/ ↓ under different mag-
netic fields. Under a small field of 152 mT, the dynamic process is
mainly the steady motion, while it becomes a processional motion
under 220 mT. (c) Time-dependent domain wall positions under
various magnetic fields. (d) Average velocity of domain wall motion
as a function of magnetic field for monolayer CrI3 and CrI3-In2Se3

heterostructures, where dashed lines indicate the Walker fields calcu-
lated by Eq. (7).

D3d point symmetry of the honeycomb lattice, preserve the
in-plane symmetry and thus the in-plane magnetic anisotropy
is almost zero [65–67], as confirmed in our calculations.
Therefore, the magnetic in-plane anisotropy comes from the
interfacial DMI. With the coarse-graining approximation, the
Walker field can be derived as

hW = 3παD

8�μs
, (7)

which agrees very well with the above numerical value as
shown in Fig. 5(d).

Without this interfacial DMI, e.g., in the CrI3 monolayer,
the domain wall motion can only be the processional mo-
tion, which leads to a velocity vp = a0αγ�h/(1 + α2). In
heterostructures, below hW, the domain wall motion reaches
a final steady velocity vs after a very short speeding dura-
tion (∼0.04 ns). This vs = a0γ�h/α is much higher than
the vp. The numerical results of average velocity v̄ are
plotted in Fig. 5(d) as a function of magnetic field for dif-
ferent heterostructures. Compared with those D = 0 cases
(CrI3 monolayer and nonpolar ↑ /CrI3/ ↓), all polar het-
erostructures have larger hW and higher v̄, as expected. In
particular, below hW, the velocity of domain wall can be
up to ∼140 m/s for CrI3/ ↓, which is considerably large
and similar to the gate-voltage effect in those magnetic film
experiments [64,68].

In conclusion, by employing first-principles calculations
and atomic spin dynamics simulations, we have studied the
mechanism of interfacial DMI and domain wall dynamics
in CrI3-In2Se3 heterostructures. We have demonstrated the
DMI torques can be pumped into In2Se3/CrI3/In2Se3 trilayer
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heterostructures by polarization flipping, which contributes an
efficient domain wall motion without either magnetic field or
current. Furthermore, the existing and tunable DMI within
heterostructures also plays an important role in improving the
critical Walker field for magnetic field-driven domain wall
motion, exhibiting a tunable and nonvolatile bias effect. In
addition, our results are completely portable to other vdW
heterostructures, which can be described by the effective spin
model as well. Our results have performed rich manipulations

of magnetic domain walls, which can be achieved in magne-
toelectric vdW heterostructures.
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