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Symmetry, superposition, and fragmentation in classical spin liquids:
A general framework and applications to square kagome magnets
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Classical magnets exhibit exotic ground-state properties such as spin liquids and fractionalization, promising
a manifestation of superposition and projective symmetry construction in classical theory. While system-specific
spin-ice or soft-spin models exist, a formal theory for general classical magnets remains elusive. Here, we
introduce a generic symmetry group construction built from a vector field in a plaquette of classical spins,
demonstrating how classical spins superpose in irreducible representations (irreps) of the symmetry group. The
corresponding probability amplitudes serve as order parameters and local spins as fragmented excitations. The
formalism offers a many-body vector field representation of diverse ground states, including spin liquids and
fragmented phases described as degenerate ensembles of irreps. We apply the theory to a frustrated square
kagome lattice, where spin-ice or soft spin rules are inapt, to describe spin liquids and fragmented phases, all
validated through irreps ensembles and unbiased Monte Carlo simulation. Our generic theory sheds light on
previously unknown aspects of spin-liquid phases and fragmentation and broadens their applications to other
branches of field theory.

DOI: 10.1103/PhysRevB.110.L060401

Introduction. Classical spin models can potentially cap-
ture exotic phenomena like spin liquid [1–6], spin ice [7–9],
fragmentation [2,10–13], order by disorder [14–19], and
prethermal discrete time crystals [20], and exciting progress
lies in designing novel and generic frameworks [6,21–29].
While quantum theory allows the ground state of a spin liq-
uid to be a superposition state, this concept does not have
a classical analog. Classically, two main approaches so far
describe the spin liquid phase. The spin ice model applies to
specific spin Hamiltonians that can be expressed in terms of
|Sc|2, where the total spin in a cluster c is as follows: Sc =∑

i∈c ηiSi, with ηi being suitably chosen rational numbers [6].
This way all possible Sc = 0 microstates describe a degener-
ate ground state [2,3,6,11,23,24]. However, this rule does not
hold for models with Dzyaloshinskii-Moriya (DM) interac-
tions. Recently, a Luttinger-Tisza approximation, also known
as the spherical or soft-spin approximation, has been em-
ployed to analyze the degenerate energy state in momentum
space in terms of extended states of classical spin [23–27]. A
flat band in this model indicates the degeneracy characteristic
of spin liquids. The drawback of this model is that it relaxes
the local |Si| = 1 constraint, imposing it at the global spin
value. Both approaches are suited for specific Hamiltonians
and have so far been applied only to spin-ice models.

Magnetic fragmentation is another exotic phenomenon in
the classical spin systems that has drawn recent attention
[10–13,30,31]. In this phase, a local classical field (such as
spin or magnetization) fragments into components with one
(or more) components exhibiting order while others remain
disordered or liquidlike. This phenomenon has so far been
studied using Landau’s coarse-grained magnetization fields,
with or without local spin constraints. Despite progress in un-
derstanding specific models with ground-state degeneracy or

fragmentation, a comprehensive analytical framework, which
would ideally encompass all lattice symmetries, frustration,
DM interactions, and local spin constraints, and hence do not
necessarily follow the spin-ice rule, remains elusive.

Research on frustrated lattices, like pyrochlore [6,32–37],
triangular [38–40], kagome [41–43], and others [4,15,18,
44,45], has been a major focus in exploring spin liquids and
related phenomena. Recently, the square kagome lattice has
sparked excitement due to experimental hints of spin liq-
uid phases [46–48] and supporting theoretical investigations
[49–53]. However, these materials likely possess a strong DM
interaction [46–48] which the spin-ice and soft-spin models
do not incorporate. Additionally, the square kagome lattice
boasts multiple sublattices, offering a richer platform with po-
tentially larger degenerate manifolds and more fragmentation
possibilities.

Here, we introduce a generic framework for studying
ground-state degeneracy and fragmentation in classical spin
systems using a group theory approach. Our approach tran-
scends a prior approach [35,43], used primarily for ordered
phases, to encompass spin liquids and fragmented phases.
We define a vector space representing the spins within a
lattice plaquette, designed to be invariant under the lattice’s
point-group symmetry. The plaquette spin vector can be ex-
pressed as a superposition of the irreducible representations
(irreps) of the symmetry group. The expansion parameters of
this superposition vector act as Landau-like order parameters.
However, unlike traditional order parameters, they transform
under “discrete” spatial rotations and acquire continuous sym-
metry through degeneracy and irreps multiplets. Interestingly,
these order parameters serve as spins’ “probability ampli-
tudes” and “occupation densities” to irreps state and energy
levels, respectively. This approach, with its resemblance to
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quantum concepts, paves the way for a novel construction of
classical spin liquids and fragmentation states.

We apply the theory to a model consisting of XXZ and
DM interactions in a two-dimensional (2D) square kagome
lattice. We also employ unbiased classical Monte Carlo (MC)
simulations to validate our group theory results and reproduce
the phase diagram. We find that DM interactions promote a
uniform or staggered ordering of specific irreps, containing a
vortex or an antivortex. Near the critical boundaries between
these ordered phases, we observe the emergence of classical
spin liquid (CSL) states. Within the CSL phase, local spins
remain fully disordered if the ground state consists of a ran-
domly distributed irrep ensemble. Alternatively, the ground
state can scramble ordered and disordered irreps to fragment
the local spin vector into coexisting extended/collective and
pointlike excitations. Additionally, the spin-spin correlation
function is analyzed in each phase to distinguish between
magnetic Bragg peaks for the collective excitations in the
ordered phase and the “pinch-point” excitations in the liquid
phases.

Mathematical foundation. We define a local vector field in
a plaquette network p to be invariant under the lattice’s point-
group symmetry G:

Sp =
⊕

i∈p

Si. (1)

Si = (Sx
i Sy

i Sz
i )T ∈ Oi(3) at the ith site, and Sp ∈ Op(3n),

where n is the number of sublattices in p. [Oi(n) and Op(n)
distinguish the orthogonal symmetry of the vector at the i
site and the p plaquette, respectively]. Each plaquette, like a
conventional unit cell, includes more sites than the primitive
unit cell. This redundancy is adjusted by introducing a nor-
malization factor in the dual vector definition to fix the length
of Sp [55].

The transformation from the spin space to the irreps space
of group G involves an orthogonal matrix, whose column
vectors Vα form the orthonormal basis of the irreps represen-
tation. Expressing Sp in this irrep space yields

Sp =
3n∑

α=1

mαVα. (2)

Here mα ∈ R are the coefficients of the expansions. We keep
the plaquette index in m and V implicit for simplicity in nota-
tion. Interestingly, mα conforms to Landau’s order parameter
as the coarse-grain average of local fields; except, here, it is
invariant under a discrete symmetry group in a plaquette and
is interpreted as the probability amplitude of the vector field:
mα = VT

α Sp [55]. The local spins are defined by a rectangular
projection matrix Pi∈p as Si∈p = Pi∈pSp = ∑

α mαPi∈pVα .
Reformulating the order parameters in terms of the irreps

conveniently decouples them in a symmetry-invariant Hamil-
tonian, albeit the irreps’ multiples can mix among themselves.
To account for the multiplets’ submanifold and emergent sym-
metry, it is convenient to introduce an Op(dα ) “spinor-like”
field, mα := (m(1)

α . . . m(dα )
α )T , for the α irrep with dα multi-

plets. Then, the eigenmodes are obtained by the orthogonal
rotation m̃α = eiLα ·φα mα , where Lα are the corresponding
generators for the angle φα . φα lives on the Hamiltonian’s
parameter space and assumes fixed values for the energy

eigenmodes. The orthonormal basis states ensure the con-
straint |Sp|2 = ST

p Sp = ∑
α dα|mα|2 = nS2, ∀p, where |Si| =

S, is an additional hardcore constraint on the classical spins
[55]. Not all irreps necessarily adhere to the local constraint,
requiring them to collaborate with others for existence. Such
irrep ensembles may lead to nonanalyticity and fragmentation
into an order-disorder mixed phase.

We have the 3nN-dimensional vector space S = ⊕
p Sp

for a generic N-unit cell lattice, commencing a 3nN × 3nN-
matrix-valued quadratic-in-spin Hamiltonian (see the SM [54]
for further details). However, thanks to nearest-neighbor in-
teraction and discrete translation invariance of the lattice, the
Hamiltonian can be brought to a block-diagonal form in terms
of the plaquette Hamiltonian Hp:

Hp = 1

2
ST

p HpSp. (3)

Here Hp is an orthogonal matrix-valued Hamiltonian, analo-
gous to the second quantized Hamiltonian, whose components
consist of all possible interactions between Si and S j for
〈i j〉 ∈ p. However, lattice symmetries restrict the allowed fi-
nite components in Hp, which we now consider for a square
kagome lattice.

Realizations in a square kagome lattice. The square kagome
lattice belongs to the dihedral (D4) group with n = 8 sub-
lattice spins, giving a 24-dimensional vector representation.
Denoting the group element g ∈ D4 in the Sp representa-
tion by the matrix-valued operators D(g), we impose the
symmetry criterion that under a local symmetry transfor-
mation Sp → D(g)Sp the local Hamiltonian Hp is invariant
if [D(g),Hp] = 0, ∀p, g. Since local Oi(3) and sublattice
symmetries are abandoned, the plaquette symmetry allows
us to have bond- and spin-dependent interactions Jμν

i j with
six exchange and three DM interactions (see SM [54] for
the details), leading to a bond-dependent XYZ-Heisenberg
model with XY-DM interaction. However, imposing bond-
independent interactions, we consider an XXZ model with
DM interaction as more appropriate for realistic materials
[46–48], H = ∑

〈i j〉,μν JμνSμ
i Sν

j . This can, for future conve-
nience, be expressed as

H = J
∑

〈i j〉,τ=±

(
Dτ eiτ (�i+� j )S⊥

i S⊥
j + �Sz

i Sz
j

)
. (4)

Here Jμν = Jδμν + JDεμν , for μ = x and y, and Jzz = J�,
where δμν is the Kronecker delta and εμν is the Levi-Civita
tensor. J is the exchange term, � is the z-axis anisotropy ratio,
and JD is the XY-DM interaction strength. By diagonalizing
the tensor Jμν , we define two “circularly polarized” fields:
Sτ

i = S⊥
i eiτ�i ∈ Oi(2) ∼= Ui(1), where S⊥

i = √
S2 − (Sz

i )2 is
the coplanar spin magnitude and �i is the azimuthal angle in
the spin space, which interact via the complex (dimensionless)
interaction Dτ = 1 + iτD.

Irreps in square kagome lattice. There are five con-
jugacy classes in this non-Abelian group, giving five
irreps: mα ≡ A(dα )

1,2 , B(dα )
1,2 , and E(dα ), where the su-

perscript denotes their multiplicity (dα ) = (2, 4, 3, 3, 6),
respectively. We organize these irreps into a coplanar
set, m⊥ := {A(a,b)

1,2 , B(a,b)
1,2 , E(ax,y,bx,y,cx,y,dx,y )}, and an out-of-
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FIG. 1. (a) A plaquette of a 2D square kagome lattice, belonging
to the D4 group, is shown with sublattices enumerated as i = 0–7.
(b) Among five irreps with different multiplets, we show a few rep-
resentative irreps here, while others are shown in the Supplemental
Material (SM) [54]. Each irrep consists of either S⊥

i (horizontal
arrow) or Sz

i (open and solid dots for up and down spins) components,
with the sizes of the arrows or dots dictating their magnitudes.

plane/colinear set, m|| := {A(c,d)
2 , B(c)

1,2, E(ex,y,fx,y )}. Represen-
tative irreps’ configurations are shown in Fig. 1(b).

In the coplanar irreps A(a,b)
1,2 and B(a,b)

1,2 , even/odd under
C4, the local spins Sτ

i are arranged in a topological tex-
ture following �i∈p = Qpθi + γp, where �i and θi are the
azimuthal angles in the spin and position manifolds, respec-
tively. γp ∈ [0, π ) is the helicity angle, and Qp ∈ π1(S1) ∼= Z
is the topological charge. As shown in Fig. 1(b), this leads
to vortices for A(a,b)

1,2 and antivortices for B(a,b)
1,2 irreps. In fact,

each (anti)vortex consists of two concentric (anti)vortices in
the outer and inner squares, which are not related by symme-
try but interact with each other by the interaction term Dτ .
A(a,b)

1 consist of concentric vortices with the same/opposite
helicities (γp = ±π/2), while A(a,b)

2 , odd under reflection,
have γp = ±π . B(a,b)

1,2 irreps (odd under C4) are similar, except

they contain antivortices. The out-of-plane A(c,d)
2 are colinear

ferromagnetic (FM)/antiferromagnetic (AFM) irreps, while
B(c)

1,2 are colinear AFM irreps. Finally, among the sixfold mul-
tiplets of 2D E irreps, E(a−d) are coplaner FM/nematic/AFM
order parameters, while E(e,f) are colinear irreps. Notably, the
colinear irreps B(c)

1,2 and E(e,f) violate the local constraints, and
hence their low-energy configurations vitiate any long-range
order.

Eigenenergies. The final task is to diagonalize the multiples
of the irreps. In our case, the irreps’ multiplets split as either
Op(dα ) = Op(2) ⊕ Op(2) ⊕ · · · or Op(dα ) = Op(2) ⊕ Z2 ⊕
· · · , in which all Op(2) operators have the same generator
Lα = iσy. φα depends only on arg(Dτ ) in the eigenstates of
Hp. The resultant diagonal Hamiltonian per plaquette is

Hp =
3n∑

ν=1

Eν |m̃ν |2. (5)

Here |m̃ν |2 serves as “occupation density” to the νth energy
level Eν . Henceforth, we omit the tilde symbol for simplicity,
and all irreps are considered eigenmodes unless mentioned
otherwise. The functional form of Eν in terms of J , D, and
� is given in the SM [54]. Constrained by symmetry, Eν∈m⊥
depends solely on Dτ , while Eν∈m|| is proportional to � [56].
One or more irreps can form an ordered phase with a global

energy minimum at NEν if they satisfy the constraint and
frustration; otherwise, they blend with other irreps to form
a degenerate ensemble, giving disordered, liquid, and mixed
phases. A zero-temperature phase transition occurs at the
Eν = 0 line.

Phase diagrams and correlation functions. We solve the
Hamiltonian in Eq. (4) both numerically using classical MC
simulations and the group theory analysis. The details of the
MC simulation are given in the SM [54]. The corresponding
phase diagram is summarized in Table I and shown in Fig. 2.
Note that the same phase diagram is also reproduced by the
lowest-energy eigenvalue Eν , and the values of mν are ob-
tained from the MC result as shown in the lower panels in
Fig. 2 and agree with the group theory results.

Remarkably, we find that all the phases can be understood
in terms of an analytical form of the many-body ground-state
vector field as

SGS =
⊕

p

∑

{νp}
mνpVνp . (6)

The ordered phase harbors a summated state of a fixed irrep
ν̄ ∈ {νp} (with mν̄ = m̄, mν �=ν̄ = 0, ∀p); while the staggered
phase features two alternating but fixed irreps ν̄p and ν̄q in
neighboring plaquettes. The CSL state, on the other hand,
combines an ensemble of irreps {νp} within each plaquette p.
Within this ensemble, the probability amplitude mνp may vary
randomly, subject to local constraints, corresponding to the
same plaquette energy. The random distribution of mνp differs
between plaquettes, resulting in an extensively degenerate
ground state.

In addition, we also compare our results with a soft-spin
approximation in the Fourier space [23–27], and the result-
ing dispersion relation is shown in the SM [54]. Given that
we have experimental access to the correlation function of
local spins Si∈p, we report the spin-spin correlation func-
tion. We project the structure factor χ (k) = 1/N

∑
i, j〈Si ·

S j〉 exp [ik · (ri − r j )] to the irreps space as

〈Si · S j〉 =
∑

νpνq

mνpmνq

〈
VT

νp
PT

i P jVνq

〉
, (7)

with ri being the ith spin’s position in p and j ∈ q plaquette.
The phase diagram in Fig. 2 reveals a predominance of

(uniform or staggered) order phases in both J < 0 (frustra-
tion inactive) and J > 0 (frustration active) regions. A CSL
phase emerges only at the critical line of D → 0, which
turns into distinct mixed/fragmented phases for 2|D|/� < 1.
For D → 0 and J > 0, three distinct CSL phases emerge
with increasing � in Fig. 2(a) (cyan color). As � → 0, we
have an XX model in Eq. (4), and the contributing irreps
arise from the degenerate manifold of the coplanar irrep
ensemble {mνp} ⊆ m⊥. This gives a CSL phase of Sτ

i ∈
Oi(2) spins. The structure factor χ (k) displays a character-
istic disorder pattern without any magnetic Bragg peak but
with a prominent pinch-point around k = (±π,±3π ). The
pinch-point characterizes a Coloumb phase with an algebraic
spin-spin correlation feature [2]. At � = 1, the Hamiltonian
is subject to a full Oi(3) symmetry constraint per site, re-
sulting in symmetry-allowed access to the entire ensemble
{mνp} ⊆ m⊥ ∪ m||. For example, {mν} ∈ {mA(a,b,c,d)

1,2
, mB(a,b)

1,2
} are
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TABLE I. We tabulate all the phases and the contributing irreps obtained consistently with the MC simulation and the group theory analysis.
The irrep with a bar in the third column reflects it is ordered; otherwise, it is a disordered irrep.

Phase Acronym Irreps {νp} Parameters Color code

Classical spin liquid CSL m⊥ ∪ m|| J = 1, � > 0, D = 0 Cyan

Vortex order VO Ā(a)
1,2 J = 1, � < 2D, D > 0 Magenta

Antivortex order AO B̄(a)
1,2 J = 1, � < 2D, D < 0 Red

Fragmented AFM vortex FAV Ā(a)
1,2 ∪ B(c)

1 J = 1, � > 2D, D > 0 Black

Fragmented AFM antivortex FAA B̄(a)
1,2 ∪ B(c)

1 J = 1, � > 2D, D < 0 Black

Fragmented ferromagnet FFM Ē(a) ∪ m|| J = −1, � > 2|D|, ±D Black

Colinear ferromagnet order ||-FM Ā(c)
2 �J < 0, |�| > 2|D| Green

Coplanar ferromagnet order ⊥-FM Ē(a) J = −1, |�| < 2|D| Blue

degenerate at Eν = −2J and {mν ′ } ∈ {mB(c)
1,2

, mE(c,d)} are degen-
erate at Eν ′ = −4J , making a larger CSL ensemble degenerate
at energy Ep = m2

νEν + m2
ν ′Eν ′ = −4J for mν = √

2mν ′ . Con-
sequently, χ (k) displays pinch-point correlations among both
Sτ

i and Sz
i . Finally, as � → ∞, the Hamiltonian [last term in

Eq. (4)] retains a residual local Z2 symmetry constraint, and
the disordered ground state solely stems from the {mνp} ⊆ m||
ensemble. χ (k) is contributed solely by Sz

i with pinch-points
at k = (±π,±3π ). Based on their distinct local constraints,
it is convenient to refer to these phases as O(2), O(3), and
Z2 CSLs, respectively, without implying a Landau-type phase
boundary between them.

Any finite D steers the CSL phase into either ordered
or fragmented (mixed) phases. Note that vortex irreps A(a,b)

1

and A(a,b)
2 are degenerate at Eν = 2D ± 2

√
D2 + (1 + D)2,

while the antivortex irreps B(a,b)
1 and B(a,b)

2 are degenerate at
Eν = −2D ± 2

√
D2 + (1 − D)2. This makes all the phases in

Figs. 2(a) and 2(b) symmetric for D ↔ −D with vortices ↔
antivortices. Hence, we mainly focus on the −D region with
antivortices for the discussions.

For weak out-of-plane anisotropy � < 2|D|, we have
ordered phases of (anti)vortices for ∓D, which we call
antivortex order/vortex order (AO/VO) phases (red/magenta

regions in Fig. 2). In the AO phase, the degenerate irreps
B(a)

1,2 are mixed in an O(2) order parameter and are staggered
between the neighboring plaquettes with a γp = π phase shift.
The extracted values of the order parameter m from the MC
data confirm the only finite and uniform weight of the m̄B(a)

1,2

irreps in the AO phase, as shown in Fig. 2(d) (lower panel).
The ordering is also evident in χ (k) with a magnetic Bragg
peak at k = (π, π ). Interestingly, the CSL lies at the phase
transition line between the VO and AO phases.

However, for strong � > 2|D| (with AFM anisotropy
J� > 0), the coplanar ordered irreps become scrambled with
disordered out-of-plane irreps: {mνp}mix ⊆ m̄A/B ∪ m||, in the
black region in Fig. 2(a). In particular, the outer (anti)vortex
maintains coplanarity, while the inner (anti)vortex mixes with
the mB(c)

1
∈ m|| irrep. The combination produces a novel AFM

vortex/AFM antivortex texture within the inner square where
neighboring spins possess opposite easy axes [57]. Conse-
quently, Si spin fragments into its Sz

i components, which
become noninteracting and fail to order or exhibit any sig-
nificant correlation, while the Sτ

i fields exhibit long-range
order with magnetic Bragg peaks in the structure factor [see
Figs. 3(b) and 3(c)]. We denote these phases as fragmented
AFM vortex (FAV) and fragmented AFM antivortex (FAA)

FIG. 2. Computed phase diagrams within the MC simulation (also group theory analysis) are shown for (a) AFM (J = +1) and (b) FM
(J = −1) couplings. We highlight spin textures in a randomly chosen four-plaquette setting for representative phases (upper panels) and
respective ensembles of irreps in four plaquettes (lower panels). (c) CSL at (J, �, D) = (1, 1, 0) showing disordered values of mν from both
in-plane and out-of-plane ensembles. (d) Antivortex order (AO) at (1, 0, −3) where degenerate irreps B(a)

1,2 are staggered. (e) FAA phase at
(1, 4, −1) where B(a)

1,2 are ordered but B(c)
1 is disordered. (f) FFM phase at (−1,−2.5, 0) where 2D irrep E(a) is ferromagnetically ordered

in-plane, but out-of-plane irreps are disordered. Note that all disordered values take random numbers between different plaquettes, while we
display only four representative plaquettes here.
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FIG. 3. Simulated χ (k) is plotted in the momentum space for
the four phases discussed in Fig. 2. (a) CSL at (J,�, D) = (1, 1, 0),
where red dots are plotted separately to signify additional strong
magnetic Bragg-like peaks that overwhelm the spectral density of
the disordered pattern. (b), (c) FFA at (1, 4, −1) where the plots
for the ordered S⊥

i and disordered Sz
i components are separated in

panels (b) and (c), respectively. (d) AO at (1, 0, −3) showing Bragg
peaks similar to S⊥

i components in panel (b). (e), (f) FFM phase at
(−1, −2.5, 0) with FM ordered S⊥

i and disordered Sz
i are separated in

panels (e) and (f). Panels (a) and (f) host pinch-points around (π, 3π )
and its equivalent points.

for ±D regions and confirm the same values of mν from the
MC result.

For strong � > 2|D| with FM anisotropy, � < 0 and
J > 0 naturally select colinear FM order of the A(c)

2 irrep
[green region Fig. 2(a)]. We denote this phase as ||−FM. The
same phase reemerges for � > 0 and J < 0 in Fig. 2(b).

The interplay between the FM interaction, J = −1, and
the strong AFM anisotropy, � > 2|D|, generates a distinct
fragmented phase [see Fig. 2(b) (black region)]. The extracted
values of m from the MC data show that the in-plane FM 2D
irrep m̄E(a) is ordered while the out-of-plane AFM irreps ∈ m||
are disordered [see Fig. 2(f)]. These out-of-plane irreps vio-
late the local constraint, leading to an intriguing fragmented
structure in χ (k), resulting in an in-plane FM order in Sτ

i , but
a pinch-point disorder in Sz

i [see Figs. 3(e) and 3(f)]. We dub
this a fragmented FM (FFM) phase.

Any finite D disfavors this mixed phase, causing a phase
transition at D > 2� to in-plane VO or AO orders for ±D,
as observed in the J = 1 phase diagram. The remaining
two phases are readily identifiable: a uniform coplanar FM
(namely, ⊥-FM) order with an m̄E(a) irrep at � → 0 [blue
region in Fig. 2(b)], and an out-of-plane ||-FM order with m̄A(c)

2

for J� → ∞ [green region in Fig. 2(b)].
Conclusions and outlook. Discussions on the excita-

tions and phase transitions of VO/AO phases are merited.
The VO/AO phases (red and magenta) exhibit novel collective
excitations. Gapless collective excitations emerge from the
long-wavelength fluctuation of the helicity angle γp across the
lattice, protected by the topology of the irreps’ space through
the charge Qp ∈ Z. These modes, termed helicity phase
modes or phasons, possess novel characteristics. The two
concentric vortices per plaquette are coupled by interaction
but not symmetry. Frustration affects only the outer vortex,
resulting in the fragmentation of the excitation spectrum into
a collective mode for the ordered fields and local excitations
for the disordered components. The Mermin-Wagner theorem
dictates the instability of ordered states to gapless magnons or
phason modes, while disordered phases tend to order via ther-
mal fluctuations according to the order-by-disorder paradigm
[14,16–18]. Moreover, the VO/AO phases for ±D consist of
different irreps, i.e., distinct conjugacy classes, that do not
couple in the Hamiltonian. Hence, their phase boundary at
D = 0 signifies a topological phase transition associated with
a spin liquid phase at the critical point, reminiscent of the
deconfined critical point [58]. The CSL critical point can be
extended by applying a magnetic field in the z direction (see
the SM [54]). Finally, transitions between ordered and frag-
mented phases, or within fragmented phases, offer intriguing
avenues for studying non-Landau-type phase transitions.
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