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Measurement-induced phase transition in a single-body tight-binding model
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We study the statistical properties of a single free quantum particle evolving coherently on a discrete lattice in
d spatial dimensions where every lattice site is additionally subject to continuous measurement of the occupation
number. Our numerical results indicate that the system undergoes a measurement-induced phase transition
(MiPT) for d > 1 from a delocalized to a localized phase as the measurement strength γ is increased beyond
a critical value γc. In the language of surface growth, the delocalized phase corresponds to a smooth phase
while the localized phase corresponds to a rough phase. We support our numerical results with perturbative
renormalization group (RG) computations which are in qualitative agreement at one-loop order.
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Introduction. Recently, it has been discovered that quantum
chaotic systems subject to continuous or projective measure-
ments could undergo a phase transition characterized by a
change of the scaling properties of the entanglement entropy
with time or system size, a phenomenon now referred to
as measurement-induced phase transition (MiPT) [1]. MiPT
constitutes a fascinating problem at the crossroad of statistical
physics and quantum information. As such, it has attracted
a tremendeous amount of interest in recent years [2–14].
MiPTs are often characterized by a transition from an area
law phase, i.e., a phase where the entanglement entropy (EE)
of a subsystem doesn’t scale with its size, to a volume law
phase, i.e., a phase where the EE scales with the system size.
Such a scaling transition occurs upon increasing the strength
of the measurement and is observed in various systems such
as in 1d interacting chaotic many-body systems. However,
surprisingly, the existence of a MiPT between two nontrivially
entangled phases for free or Gaussian fermions undergoing
measurements remains an actively debated question. While
the original study of entanglement in 1d free fermions [15]
showed no signs of a phase transition, more recent numerical
and theoretical investigations showed either the existence of a
phase where the EE scales as log L [16,17] for fermions with
U (1) symmetry or log L [18] and log2 L [19] for Z2 symmetry.
Another recent study [20] also argued that the observed tran-
sitions for U (1) fermions are in fact sharp crossovers. See also
[21] for a discussion of the roles played by global symmetries
on purification times scales.

In this work, we provide new insights on this conundrum
by studying the simpler, yet nontrivial single-body prob-
lem of a particle evolving coherently on a discrete lattice
in d spatial dimensions, where every lattice site is subject
to independent, continuous measurements of its occupation
number; see Fig. 1. Combining numerical simulations and
perturbative renormalization group (RG) methods, we show
that, while we do not find evidence of a transition in d = 1,
there exists a phase transition from a smooth/delocalized

phase to a rough/localized phase when d > 1 (throughout the
manuscript, a localized behavior refers to a spatially peaked
wave function, without any statement about transport prop-
erties). Interestingly, this shows that many-body effects are
not necessary to observe a MiPT and corroborates the result
obtained in [22] for a classical random walker undergoing
continuous measurements.

Model. We consider a single quantum particle on a square
lattice of V = Nd sites with periodic boundary conditions.
Let {| j〉} j∈[1,N]d denote the position basis. The dynam-
ics is described by a unitary tight-binding evolution Ĥ :=
−τ

∑
{|e|=1} | j〉〈 j + e| where {|e| = 1} is the set of vectors

of norm 1. In addition, each site undergoes continuous mea-
surements of strength γ of the local occupation n̂ j := | j〉〈 j|,
resulting in the stochastic differential equation (SDE) [23]

d|ψ〉 = −iH |ψ〉dt +
∑

j

(
− γ

2
(n̂ j − 〈n̂ j〉t )

2dt

+ √
γ (n̂ j − 〈n̂ j〉t )dB j

t

)
|ψ〉, (1)

where 〈•〉t := tr(ρt•). In (1), the {B j
t } j∈[1,N]d are Nd inde-

pendent Brownian processes with average E[dB j
t ] = 0 and

Itō rules dB j
t dBk

t ′ = 10(t − t ′)δ j,kdt where 10 is the indicator
function. This model was originally introduced in [24] for
the free fermionic case and has been subsequently studied
in [15–17,25] in the context of MiPTs-see also [26,27] for
applications to transport and thermal engines.

In terms of the basis elements ψ j defined as |ψ〉 =∑
j ψ j | j〉, Eq.(1) can be written as

dψ j = iτ
∑

{|e|=1}
ψ j+edt − γ

2
ψ j

(
1 − 2|ψ j |2 +

∑
m

|ψm|4
)

dt

+ √
γψ j

(
dB j

t −
∑

m

|ψm|2dBm
t

)
. (2)
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FIG. 1. (a) A single quantum walker on a d-dimensional square
lattice undergoing a unitary tight-binding evolution and subject to
independent continuous measurements of the occupation number at
every site. In d > 1, a phase transition from a smooth/delocalized
phase to a rough/localized phase occurs upon increasing the mea-
surement rate γ beyond a critical value γc. This is illustrated in
(b) which shows the scaling of the inverse partition ratio (defined
as IPR = ∑

j |ψ j |4) with the volume as a function of γ for different
system sizes in dimension three. In the delocalized phase, the IPR
∝ V −1 while the IPR ∝ 1 in the localized phase. The insets show a
typical density profile in each of these phases, where one of the spa-
tial direction has been projected out. Parameters: τ = 1.5, N = 41,
dt = 0.01.

Throughout the rest of the manuscript, we will fix the initial
condition of the system to be ψ j (t = 0) = N−d/2 for all j.
Note that by construction,

∑
j |ψ j |2 is preserved for each

realization of the noise.
Even though (2) describes the dynamics of a single parti-

cle, getting an exact solution of such a SDE is in general a
formidable task. One way to make progress is to restrict it to
what we will refer to as the delocalized phase, i.e., to assume
that |ψ j | is of order N−d/2. Under this assumption, keeping the
leading order in N−1 in (2) gives the simpler expression

dψ j =
(

iτ
∑

{|e|=1}
ψ j+e − γ

2
ψ j

)
dt + √

γψ jdB j
t , (3)

which is now local and linear in ψ j . We further take
the continuous limit by introducing the lattice spacing b
and the continuous quantities �r = jb, ϕ(�r = jb) = b−d/2ψ j ,
dη(�r, t ) := b−d/2dB j

t , and D := b2τ , λ := γ bd. Up to a global
phase, (3) then becomes

dϕ =
(

iD∇2ϕ − γ

2
ϕ

)
dt +

√
λϕdη. (4)

It is important to note that the noise becomes multiplicative
in (4). This allows us to draw an analogy between (4) and
the stochastic heat equation (SHE), thereby relating (3) to

FIG. 2. Schematic of the renormalization flow of (3) (blue) and
(2) (red) as a function of dimension. Despite flowing toward different
fixed points (i.e. distinct critical exponents), both systems exhibit a
similar phenomenology: when d � 2 they feature a genuine phase
transition between a smooth and a rough phase upon varying γ , while
when d = 1 they only exhibit a single rough phase.

KPZ physics [28,29]. Such an analogy was already fruitfully
exploited in [22], where it led to an intuitive understanding
of a MiPT in a classical context. The difference with this
previous study is that we deal with an imaginary diffusion
term D as well as a real “mass” term γ /2. We will see
that, perhaps surprisingly, this qualitatively modifies the phase
diagram as shown in Fig. 2. Most notably, the lower critical di-
mension becomes one instead of two. We observe this feature
numerically, both for the local (3) and nonlocal model (2) (see
Fig. 4).

We expect Eq. (3) to be valid as long as |ψ j | remains
close to the homogeneous profile of order N−d/2. Such an as-
sumption is verified when the renormalization flow is directed
toward the delocalized phase: in this case, |ψ j | is indeed
driven closer to the homogeneous profile. On the opposite,
if the renormalization flow is directed toward the localized
phase, |ψ j | is driven away from the homogeneous profile and
we don’t expect (3) to remain valid at long time. Since we start
from a flat initial condition, we also expect the local approxi-
mation to be good at short times, i.e., for t 
 1

γ
. Although (3)

does not describe the strongly localized regime, it still allows
us to study the critical line separating the two phases. Note
that this approach was successfully used in a previous work to
study the classical counterpart of (2) [22].

Numerical results. We begin by providing numerical sim-
ulations of the microscopic nonlocal evolution (2) (labeled
NL) and systematically compare with the approximate local
equation (3) (labeled L). In order to characterize the different

(a) (b)

FIG. 3. Log-log plot of the rescaled width as a function of the
rescaled time in dimension three for (2) (a) and (3) (b). Exponents:
α3d

NL = 0.33, ν3d
NL = 1.83, α3d

L = 0.09, ν3d
L = 0.16, and β3d = 0.25.

Parameters: τ = 1, dt = 0.01, γ = 8.
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FIG. 4. Critical exponent α as a function of the measurement strength γ obtained in numerical simulations of (2) (nonlocal) and (3)
(local) in dimension one, two, and three (from left to right) for different system sizes N . In both 2d and 3d we observe a transition from a
smooth to a rough phase: the insets are zoom over the critical γc at which these transitions occur. Smaller plots show the finite-size scaling
α = f ((γ − γc )V ξ ) corresponding to the graphs on their left. Parameters: τ = 1, dt = 0.01.

phases, we introduce the height h j ,

h j := 1√
γ

log(|ψ j |2). (5)

Drawing on the analogy with the classical counterpart of (2)
[22], we expect that the width w will follow a Family-Vicsek
[30,31] type scaling according to

w :=
√√√√ 1

V

∑
j

(h j − 〈h〉s)2 ∝ V α f

(
t

V α/β

)
, (6)

where the bracket denotes the spatial average 〈h〉s = 1
V

∑
j h j .

The function f is such that f (x) ∝ xβ for x 
 1 while f (x) ∝
1 for x � 1. The universal exponents α and β characterize the
dynamical phases and are respectively called the roughness
and growth exponents.

We show in Fig. 3 a typical plot of the width as a function
of time for both the local (3) and nonlocal evolution (2) taken
in the rough phase in d = 3. Note that the early time growth
behaviors are the same in both cases, indicating that the non-
local terms does not contribute at this time scale. However,
after this early regime, there is a crossover to another univer-
sality class, different for the local and nonlocal equations and
characterized by the growth exponent νL/NL. See, e.g., [32,33]
for a discussion of crossovers in the real KPZ.

We further show on Fig. 4 the dependence of α as a func-
tion of γ in d = 1, 2, 3 for different system sizes. In 1d, we
see that all the curves collapse to the value α ≈ 1 indicating
a rough/localized phase while in 2d and 3d, we see a clear
crossing of the curves and a finite-size scaling collapse for
both the local and nonlocal models at a finite value of γ = γc.
This indicates a phase transition from a smooth/delocalized
phase with α ≈ 0 to a rough/localized phase with finite α.

Importantly, while the local and nonlocal evolutions lead to
different dynamical exponent in the strong coupling phase,
they both entail the same value for the critical rate γc in
d = 2 and d = 3. This confirms that the local equation is a
good approximation in the smooth phase and is further able to
capture the phase transition.

The numerically extracted values for α, β, and ν in the
rough phase are reported in Table I. Interestingly, we note that
the value of αL only matches with the known values of the real
KPZ in d = 1 [34], further confirming that the strong coupling
phase of the complex SHE lies in a different universality class
than the real one when d > 1.

Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) ac-
tion. We will now analyze our phase transition with field
theory methods by deriving the MSRJD action [35–38] Z
associated to (4). The details of the derivation are presented in
the SM [39]. Let the superscript a denote the auxiliary fields.

TABLE I. Different values of the roughness exponent for the
local Eq. (3) (L) and nonlocal Eq. (2) (NL) evolutions. For the real
KPZ class, the values for α are taken from [34] and β from the
relation α + α

β
= 2. Remark that αL and β are consistent with the

known coefficient of the KPZ class only for d = 1.

d = 1 d = 2 d = 3

αL 0.5 0.18 0.09
αNL 1 0.48 0.32
αKPZ 1/2 0.39 0.31

νL 0.3 0.21 0.16
νNL 1.41 1.46 1.83
β 0.37 0.3 0.25
βKPZ 1/3 0.24 0.18
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We have that

Z =
∫

D[ϕ, ϕ̄, ϕa, ϕ̄a]eiS0+iSν , (7)

where the bar denotes complex conjugation, and S0, Sν are
respectively the quadratic and quartic part of the action:

S0 =
∫

dd�rdt (ϕ̄, ϕ̄a)G−1
0

(
ϕ

ϕa

)
, (8)

G−1
0 = 1

2

(
0 − γ

2 + ∂t − iD∇2

− γ

2 − ∂t + iD∇2 0

)
, (9)

Sν = i

8

∫
dd�rdt (λI(ϕ̄a)2

ϕ2 + λIIϕ̄aϕ̄ϕaϕ + c.c.). (10)

In (10), we introduced the labels I, II for the interacting terms,
as they will behave differently under renormalization. For the
microscopic theory (3), we have λI = λII = λ = γ bd.

Inverting (9) yields the free propagator in momentum �q and
frequency ω:

GR
0 (�q, ω) = 2i

Dq2 − ω − i γ

2

, (11)

where the R label refers to the retarded propagator. The
advanced propagator A is obtained by complex conjugation
GA

0 (�q, ω) = GR
0 (�q, ω)∗.

Renormalization flow. We proceed to the one-loop pertur-
bative renormalization group (RG) analysis of (4). We employ
standard momentum-shell analysis [36]. Let � be the micro-
scopic momentum cutoff of the theory. The critical exponents
associated to t , ϕ, and ϕ̄ are named, respectively, z, χ, and χ̄ .
The flow is parametrized by l .

At the one-loop level, there are no diagrams renormalizing
the quadratic part of the action. Imposing the stationarity of
the terms proportional to ∂t and ∇2 under the flow imposes

χ + χ̄ + d = 0, z = 2, (12)

and the renormalization of the “mass” term γ is given by
dimensional analysis: γ = γ0e2l , where γ0 is the bare value.
At one-loop level, the quartic interacting terms renormalize
independently according to [39]

dλI

dl
= (2 − d)λI + Kd

(λI )2

γ + 2iD�2
, (13)

dλII

dl
= (2 − d)λII + Kd

(λII )2

γ
, (14)

where we introduced Kd := �d

�(d/2)2d−1πd/2 with � the Gamma
function. Remark that even though the microscopic model is
defined with real parameters, the flow takes λI to complex
values.

Starting from the same initial conditions for λI and λII, we
necessarily have |λI| � λII, hence we focus on λII to char-
acterize the phase transition as it will be the first to diverge.
Equation (14) can be solved exactly:

λII = λII
0

e(2−d)l

1 − Kdλ
II
0

dγ0
(1 − e−dl )

. (15)

For d = 1, the flow is always divergent as l → ∞. For d > 1,

the flow diverges for Kdλ
II
0

dγ0
� 1 while for Kdλ

II
0

dγ0
< 1 it either

converges to a finite value (d = 2) or to zero (d � 3), see
Fig. 5. We thus see that the lower critical dimension is one
(instead of two for the real SHE equation), in agreement with
the numerical computations. However, note that the micro-

scopic value of λII
0

γ0
on which the behavior of the flow depends

is fixed in the simulations and can’t be fine tuned across
the transition. More realistically, Eq. (14) should contain a
D dependence that is not captured at one-loop level. Future
investigations should aim at improving the RG scheme by,
e.g., using dimensional regularization [40] or nonperturbative
methods [41].

Conclusion. We have provided numerical and analytical
arguments showing the existence of a MiPT for a single free
particle undergoing continuous measurement when d > 1 and
its absence when d = 1. Our work is one of the first to demon-
strate the critical role played by dimensionality to observe the
existence of a transition or lack thereof in a quantum setting.
Compared to previous studies in the literature, it is remarkable
that many-body effects play no role in the emergence of this
transition. Additionally, for a single particle, the fermionic or
bosonic statistics play no role.

An important byproduct of our study is the local equa-
tion (4), used as an approximation but interesting in itself.
As mentioned above, it can be naturally interpreted as a
complex version of the SHE equation. We showed however
that its behavior departs significantly from its real counterpart
as exemplified by the different lower critical dimension and
the different critical exponents in the rough phase. This is
particularly relevant in light of the recent connection estab-
lished between Anderson localization and a complex directed
polymer problem [42]. This calls for a systematic study of
complex SHE/directed polymer by allowing any value for the
diffusion and noise parameter in the complex plane that we
leave for future works.

Concerning future directions, one exciting possibility is
that our transition is already visible at the level of quanti-
ties linear in the density matrix, for instance transport-related
quantities. In 1d, it is known that measurements induce a
crossover from a ballistic to diffusive transport [43–47] in
free fermionic system. If we associate the ballistic behavior
to the delocalized phase and the diffusive behavior to the
localized one, a tempting conjecture is that this crossover
becomes a phase transition in higher dimensions. This route
for characterizing MiPT would be particularly interesting for
experiments, since the measurement of EE is computationally
very heavy, often requiring tomography of the full quantum
trajectories and/or costly postselection procedure [48,49].

Finally, on the theoretical side, we note that a recent in-
teresting body of literature has proposed nonlinear σ models
as good effective descriptions of free fermionic or spin chains
under measurements [18–20]. An alternative route proposed
in these works to get the action is to write the stochastic
Keldysh action associated to the tight-binding plus measure-
ments model and to use replicas to study the fluctuations. It
would be instructive to understand whether this approach is
compatible with our MSRJD action in the single-body limit.
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FIG. 5. Plots of Eq. (15) for different initial values λII
0 and dimensions. For the plots, we fixed a = 1, � = π , γ0 = 1. The red curves in

d = 2 and d = 3 indicate the critical values which separate the phase where λII → ∞ from the phase where it goes to either a finite (d = 2) or
0 value (d = 3).

Note added. During the completion of this manuscript,
two additional works studying MiPT in free fermions in
two dimensions through the lenses of replica field the-
ories and effective nonlinear sigma models came to our
awareness [50–53].
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