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We propose a family of exactly solvable quasiperiodic lattice models with analytical complex mobility edges,
which can incorporate mosaic modulations as a straightforward generalization. By sweeping a potential tuning
parameter δ, we demonstrate a kind of interesting butterflylike spectra in a complex energy plane, which
depicts energy-dependent extended-localized transitions sharing common exact non-Hermitian mobility edges.
Applying Avila’s global theory, we are able to analytically calculate the Lyapunov exponents and determine
the mobility edges exactly. For the minimal model without mosaic modulation, we obtain a compactly analytic
formula for the complex mobility edges, which indicates clearly mobility edges having a loop structure in the
complex energy plane. Together with an analytical estimation of the range of the complex energy spectrum,
we can obtain the true mobility edge. The non-Hermitian mobility edges are further verified by numerical
calculations of the fractal dimension and spatial distribution of the wave functions. Tuning the parameters
of non-Hermitian potentials, we also investigate the variations of the non-Hermitian mobility edges and the
corresponding butterfly spectra, which exhibit a richness of spectrum structures.
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Introduction. In the past few decades, quasiperiodic lat-
tices [1–7] have become a versatile platform to investigate
disorder-induced localization transitions, which is one of the
key topics of fundamental importance in the frontiers of
condensed matter physics. As is well known, the topic was
originally proposed by Anderson in his seminal work in the
context of electronic systems with truly random disorders
[8,9]. While scaling theory [10] demonstrates that for truly
random systems all single-particle eigenstates are already
localized in one and two dimensions even under arbitrary
small but finite disorder strength and thus there is no extra
space left for a localization transition to occur, quasicrystals
containing so-called determinant correlated disorders [1–7]
have been proven to be able to host various extended-localized
transitions in low-dimensional systems. Moreover, intrigu-
ing energy-dependent localization transitions have also been
revealed in various low-dimensional quasiperiodic systems,
for which under the same set of parameters extended and
localized single-particle eigenstates can coexist and be sep-
arated by a critical energy Ec, known as the mobility edge
(ME) [11]. Inspired by the influential Aubry-André-Harper
(AAH) model, various generalized AAH-like models have
been proposed [12–17] and discovered to be capable of
accommodating localization transitions with mobility edges
[17–30]. Notably, a few of these models are exactly solvable
[16,17,19,20], which is a fact highly appealing and significant
for further exploration of the mobility edge physics.
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In recent years, non-Hermitian physics has experienced
a revival and become a renewed prosperous research field.
Growing attention has been paid to the interplay of non-
Hermiticity and quasiperiodicity [31–57]. Many previous
research efforts [33–39,49–54] have been devoted to parity-
time (PT ) symmetric [58] quasiperiodical systems, for which
a well-established correspondence between the real-complex
transition in eigenenergy and extended-localized transition
has been revealed. However, for a general non-Hermitian
quasiperiodical system, the spectrum is usually complex, and
no obligate relation between the change of spectrum structure
and localization transition exists. Although some recent works
have demonstrated the existence of a complex mobility edge
in various non-Hermitian quasiperiodical systems [48,49], an-
alytical results of complex mobility edges are rare and thus
are particularly important for the broadening of the concept of
MEs from the real to the complex plane.

In this Letter, we propose a family of non-Hermitian
quasiperiodic models with a compact analytical expression of
complex mobility edges, which can further incorporate mo-
saic modulations as a straightforward generalization. Utilizing
Avila’s global theory, we are able to calculate the Lyapunov
exponent �(E ) analytically and get a uniform formula of
non-Hermitian mobility edge (NHME). Thus, an accurate
characterization of the NHME can be implemented and its
intersection with the physical spectrum produces the true mo-
bility edge. By varying a potential parameter δ, we obtain a
kind of intriguing butterflylike spectra in the complex energy
plane. For a typical system, we showcase that the extended
and localized states are distributed on the body and wings of
butterfly, respectively, separated by the NHMEs. Varying the
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FIG. 1. (a) Sketch of the family of a one-dimensional (1D) non-
Hermitian quasiperiodic lattice model. The solid blue lines denote
the homogeneous hopping t . The red circles denote lattice sites with
a non-Hermitian quasiperiodic potential Vκm with m being an integer,
while the other circles in between denote lattice sites with zero
potential. (b) The non-Hermitian butterfly spectrum of the minimal
model with κ = 1. The fractal dimension (FD) of each eigenstate
is encoded in the color of each energy point in the spectrum. The
true non-Hermitian mobility edge is denoted by a green line which
is given by a comprehensive consideration of both Eq. (3) and the
actual range of the model’s spectrum. Parameters: L = 987, λ = 1,
α = 0.5, γ = π/2, θ = 0, t = 1, and the modulation parameter δ

varies from −7 to 7.

non-Hermiticity parameter γ can lead to the change of the
spectrum structure and NHME. We also show the deforma-
tion of the non-Hermitian butterfly spectra for systems with
various parameters.

Model and non-Hermitian butterfly spectrum. We propose a
family of generic non-Hermitian quasiperiodic models which
are described in a unified manner by the following eigenvalue
equation,

t (φ j−1 + φ j+1) + Vjφ j = Eφ j, (1)

where j is the index of the lattice site, and t is the nearest-
neighbor hopping amplitude. The core feature of the model
Eq. (1) then is the non-Hermitian quasiperiodic mosaic [19]
on-site potential with

Vj =
{

λeiγ cos(2π jb+θ )+δ

1−α cos(2π jb+θ ) , j = mκ,

0, otherwise,
(2)

in which κ is a positive integer and m = 1, 2, . . . , N . Ap-
parently, the quasiperiodic potential occurs periodically with
period κ , which is pictorially shown in Fig. 1(a). N can be
seen as the number of quasicells, therefore the lattice size of
the model is L = Nκ . So κ = 1 is for the usual quasiperiodic
lattice while each κ � 2 corresponds to a mosaic quasiperi-
odic lattice [19,34]. Here, the quasiperiodic on-site potential

is controlled by two modulation parameters λ, δ and a defor-
mation parameter α. The parameter b is an irrational number
which is responsible for the quasiperiodicity of the on-site
potential. To be concrete and without loss of generality, in
this Letter we choose b = (

√
5 − 1)/2. The parameter γ is a

phase angle dictating the non-Hermitian nature of the on-site
quasiperiodic potential and θ denotes a phase offset. Obvi-
ously, a non-Hermitian potential in this form does not respect
parity-time (PT ) symmetry which is otherwise a key ingredi-
ent of previous works addressing non-Hermitian localization
transitions [33–39,49–54]. For convenience, we shall set t = 1
as the energy unit in the following calculation.

In this Letter, we shall study the general non-Hermitian
case with κ � 1 and α ∈ (−1, 1) in the presence of both λ

and δ terms. By applying Avila’s global theory, we can derive
NHMEs analytically by calculating the Lyapunov exponents
for the general case with κ � 1. We shall prove that the model
has exact NHMEs separating localized states and extended
states. However, to facilitate our discussion we focus on the
minimal model with κ = 1 and then showcase examples with
κ � 2. For the minimal model, a compactly analytical formula
for the non-Hermitian mobility edges (NHMEs) can be ob-
tained,

[α Re(E ) + λ cos γ ]2 + [α Im(E ) + λ sin γ ]2

1 − α2
= 4t2, (3)

where Re(E ) and Im(E ) are respectively the real and imag-
inary parts of E . Equation (3) is our key result. For the
general case with γ �= nπ , Eq. (3) indicates that the ME
takes a complex value, which is irrelevant to the parameter
δ. When γ = 0, the potential Vj is real, and the model reduces
to the generalized Ganeshan-Pixley-Das Sarma (GPD) model
[17,59,60]. Since E takes a real value, Eq. (3) is simplified to
α Re(E ) + λ cos γ = ±2t , consistent with the results of the
generalized GPD model.

Before proceeding with a rigorous proof of Eq. (3), we
first conduct a numerical verification to gain an intuitive
understanding. In Fig. 1(b), by implementing numerical cal-
culations we display in the complex plane the energy spectrum
of Eq. (1) with the color encoding the fractal dimension
(FD) of the corresponding eigenstate. For an arbitrary normal-
ized eigenstate φ, the fractal dimension is defined as FD =
− limL→∞ ln(

∑
j |φ j |4)/ ln L, which acts as a good indica-

tor for distinguishing localized and extended states in that
FD → 0 for localized states and FD → 1 for extended states.
As the modulation parameter δ varies, we get intriguing non-
Hermitian butterfly spectra displayed in Fig. 1(b), in which the
localized states and extended states are well separated. Obvi-
ously, the separation between localized and extended states
is energy dependent in the complex-energy plane, coinciding
well with the green line plotted according to the analytical
formula Eq. (3), which predicts the mobility edges forming a
closed elliptic loop in the complex plane.

Representative distributions of the eigenstates correspond-
ing to different regions of the non-Hermitian butterfly
spectrum in Fig. 1(b) are shown in Fig. 2. The three eigen-
states are denoted respectively by a blue diamond, black
triangle, and red dot in the non-Hermitian butterfly spectrum.
Clearly, Figs. 2(a) and 2(c) display a typical extended state and
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FIG. 2. Typical spatial distributions of eigenstates in different
regions of the non-Hermitian butterfly spectrum. (a) Extended state
corresponding to eigenenergy denoted by a blue diamond in Fig. 1.
(b) Critical state corresponding to eigenenergy denoted by a black
triangle in Fig. 1. (c) Localized state corresponding to eigenenergy
denoted by a red dot in Fig. 1. Model parameters are the same as in
Fig. 1.

localized state, respectively, while Fig. 2(b) shows a critical
state with a multifractal structure.

Analytical derivation of NHME. Analytically, the non-
Hermitian mobility edge of the generic non-Hermitian
quasiperiodic mosaic model in Eq. (1) can be exactly
derived by computing the Lyapunov exponent. For conve-
nience, t is absorbed into λ and E in the intermediate
derivation process and will be restored later. According to
Avila’s global theory of a one-frequency analytical SL(2,C)
cocycle [61,62], the Lyapunov exponent �(E ) can be
calculated as

�(E ) = lim
N→∞

1

Nκ
ln

∣∣∣∣∣∣∏N

m=1
Tm

∣∣∣∣∣∣, (4)

where ‖ · ‖ denotes the norm of the matrix. Tm is the one-
step transfer matrix of the Schrödinger operator at the mth
quasicell, which can be explicitly written as

Tm =
(

E − Vκm −1
1 0

)(
E −1
1 0

)κ−1

, (5)

with Vκm given by Eq. (2).
To ease the calculation of �(E ) according to Eq. (4),

one can reorganize Tm as Tm = Ym
Xm

, where Xm = 1 −
α cos(2πbκm + θ ) and

Ym =
(

EXm − VκmXm −Xm

Xm 0

)(
aκ −aκ−1

aκ−1 −aκ−2

)
.

Note that a convenient mathematical relation has been imple-
mented above as(

E −1
1 0

)κ−1

=
(

aκ −aκ−1

aκ−1 −aκ−2

)
,

in which

aκ = 1

D

[(
E + D

2

)κ

−
(

E − D

2

)κ]
, (6)

with D = √
E2 − 4.

In this way, the Lyapunov exponent can be rewritten as

�(E ) = lim
N→∞

1

Nκ

[
ln

∥∥∥∏N

m=1
Ym

∥∥∥ −
∑N

m=1
ln |Xm|

]
, (7)

in which

lim
N→∞

1

Nκ

N∑
m=1

ln |Xm| = 1

2πκ

∫ 2π

0
ln(1 − α cos ϕ)dϕ

= 1

κ
ln

1 + √
1 − α2

2
.

With the above preparations, we can now focus on tack-
ling the remaining part of Eq. (7). Avila’s global theory
can also be generalized to investigate non-Hermitian systems
[34,35,61,62]. The first step is to perform an analytical con-
tinuation of the phase in Ym, i.e., θ → θ + iε. Considering a
large-ε limit, a straightforward derivation leads to

Ym(ε) = 1

2
e−i(2πbκm+θ )eε

×
(−χaκ + αaκ−1 χaκ−1 − αaκ−2

−αaκ αaκ−1

)
+ o(1),

where χ = αE + λeiγ . This accordingly leads to

lim
N→∞

1

Nκ
ln

∥∥∥∏N

m=1
Ym

∥∥∥ = 1

κ
ε + 1

κ
ln f ,

in which

f = max

{∣∣∣∣2αaκ−1 − χaκ ± G

4

∣∣∣∣
}
, (8)

with

G =
√

χ2a2
κ − 4αχaκaκ−1 + 4α2aκaκ−2. (9)

Thus, we have κ�ε (E ) = ε + ln 2 f
1+√

1−α2 . Avila’s global the-
ory [61] shows that κ�ε (E ) is a convex, piecewise linear
function of ε with integer slopes. This implies that κ�ε (E ) =
max{ε + ln 2 f

1+√
1−α2 , κ�0(E )}. Furthermore, Avila’s global

theory proves that E does not belong to the spectrum, if
and only if �0(E ) > 0, and �ε (E ) is an affine function in
a neighborhood of ε = 0. Therefore, for any E lying in the
spectrum, we have

�(E ) = 1

κ
max

{
ln

2 f

1 + √
1 − α2

, 0

}
. (10)

Then NHMEs for general κ can be determined exactly by
letting �(E ) = 0. Notably, a compact formula Eq. (3) of
NHMEs for the simplest case κ = 1 can be obtained in this
way. NHMEs for other cases with κ � 2 could be found in
the Supplemental Material [63].

Variations of the non-Hermitian butterfly spectrum. The
richness and exact solvability of the proposed generic non-
Hermitian quasiperiodic model given in Eq. (1) grants us
plenty of tangible freedom to introduce variations to the
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FIG. 3. Variations of the non-Hermitian butterfly spectrum for the minimal model with κ = 1 by tuning model parameters. (a) γ = π/4,
λ = 1.5, and α = 0.5. (b) γ = 3π/4, λ = 1.5, and α = 0.5. (c) γ = π/4, λ = 1.5, and α = 0.3. (d) γ = π/2, λ = 2, and α = 0.5. Fractal
dimension (FD) of each eigenstate is denoted by the color of each energy point in the spectrum. The true non-Hermitian mobility edge is
denoted by a green line which is given by a comprehensive consideration of both Eq. (3) and the actual range of the model’s spectrum. Other
parameters are as follows: L = 987, t = 1, θ = 0, and the modulation parameter δ varies from −7 to 7.

interesting butterfly spectrum and the exact non-Hermitian
mobility edge within the spectrum.

The minimal model with κ = 1 possesses a favorable and
compact analytic formula Eq. (3) for the exact NHME, which
is simply an ellipse equation with properties that are familiar
to us. Apparently, the center of the exact NHME lies at the
point (−λ cos γ /α,−λ sin γ /α) of the complex plane. As
the non-Hermiticity parameter γ varies from 0 to 2π , the
center of the ellipse, which is also the center of the possibly
presented extended region in the butterfly spectrum, will run
around a circle. In other words, the parameter γ determines
the orientation of the center of the ellipse, while the ratio
between λ and α controls the distance of the ellipse center
from the origin of the complex plane. In Figs. 3(a) and 3(b),
we show the non-Hermitian butterfly spectrum and the corre-
sponding NHME line for the minimal model with a different
non-Hermiticity parameter γ , i.e., in Fig. 3(a), γ = π/4, and
in Fig. 3(b), γ = 3π/4. It is clearly shown that the orientation
of the non-Hermitian mobility edge line is dependent on the
non-Hermiticity parameter γ .

Moreover, it is obvious that the semimajor axis and
the semiminor axis of the ellipse are a = |2t/α| and b =
|2t

√
1 − α2/α|, respectively. As the hopping amplitude t has

been set to be the energy unit throughout this Letter, the
deformation parameter α is the sole parameter which can
be used to monitor the size of the ellipse. Since the energy
area inside the ellipse in the complex plane corresponds to
extended eigenstates, changing the value of α may alter the
portion of extended eigenstates in the whole spectra. This can
be clearly illustrated by comparing Figs. 3(a) and 3(c). Com-
pared to Fig. 3(a), the deformation parameter α for Fig. 3(c)
decreases from 0.5 to 0.3, resulting in the obvious enlargement
of the extended region in the exotic non-Hermitian butterfly
spectra.

From Fig. 3(d), we see that the number of localized eigen-
states increases with the increase of λ, whereas the number
of extended eigenstates decreases. For Figs. 1(b) and 3(d),
all model parameters are the same except λ increased from
1 to 2. As a result, the extended region in the non-Hermitian
butterfly spectrum clearly shrinks. It is worth noting that
in order to precisely modulate the interesting non-Hermitian
butterfly spectrum and the NHME, we also need to consider
the structure and the actual distribution range of the system’s
energy spectrum. A rough analytic estimation of the range
of the model’s complex energy spectrum is provided in the
Supplemental Material [63].
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FIG. 4. The non-Hermitian butterfly spectrum of the generic
non-Hermitian mosaic quasiperiodic model with (a) κ = 2 and
(b) κ = 3. Fractal dimension (FD) of each eigenstate is denoted
by the color of each energy point in the spectrum. The exact non-
Hermitian mobility edge is denoted by a green line which is obtained
by numerically solving the exact relation Eq. (11) and considering
the actual range of the model’s spectrum at the same time. Pa-
rameters: (a) L = 610, λ = 1.1, α = 0.5, γ = π/4, θ = 0, t = 1;
(b) L = 987, λ = 1, α = 0.5, γ = π/2, θ = 0, t = 1. The modula-
tion parameter δ varies from −7 to 7.

Next, we showcase the spectra and NHMEs for the cases
with κ = 2 and κ = 3. The exact NHME for general κ can be
obtained by solving the following exact relation [63],

2 f

1 + √
1 − α2

= 1, (11)

with f given by Eq. (8). As shown in Figs. 4(a) and 4(b),
both spectra display intriguing butterflylike structures and the
numerical results agree well with curves of NHMEs plot-
ted according to solving Eq. (11) with κ = 2 and κ = 3,
respectively.

Summary and discussions. In summary, we have proposed
a family of exactly solvable 1D quasiperiodic lattice models
with complex MEs. With the help of Avila’s global theory,
we derived a compactly analytical formula of NHMEs, which
indicates clearly how the complex mobility edges form and
are affected by modulation parameters. Our models exhibit
intriguing butterflylike spectra in the complex energy plane
with extended and localized states separated by NHMEs. Tun-
ing the parameters of non-Hermitian potentials leads to the
change of the NHMEs and deformation of the butterfly spec-
tra, which exhibit rich structures. Our models can be directly
extended to cases incorporating mosaic modulations. Our an-
alytical results provide a firm ground for the broadening of the
concept of MEs from the real to the complex plane.

For Hermitian systems, localization implies the absence
of particle transport, while delocalization signifies particle
motion. From the perspective of wave functions, the meaning
of localized or extended for an eigenstate of a non-Hermitian
system is similar. A localized eigenstate indicates that the
distribution of the wave function is highly confined to a
few lattice sites, while an extended state implies that the
distribution spreads across almost all lattice sites. However,
there may exist losses and gains in a non-Hermitian system.
Thus, the amplitude of the initial wave shall increase or de-
crease exponentially due to the presence of gain or loss. If
we normalize the wave function during the evolution process
[64], the expansion dynamics is very similar to the Hermitian
quasiperiodic systems. To gain some intuitive physical in-
sights, a numerical implementation of single-particle quantum
walks in non-Hermitian quasiperiodic lattices can be found in
the Supplemental Material [63]. The expansion dynamics of
the particle is clearly affected by the localization properties of
eigenstates.

The general non-Hermitian quasiperiodic model in this
Letter may be experimentally implemented on several state-
of-the-art experimental platforms. For example, Hermitian
quasiperiodic models have already been realized in photonic
lattices [7,65–67]. Non-Hermiticity can be further incorpo-
rated [68–73] through a delicate design of the complex
refractive index or through the direct introduction of gain and
loss elements. The complex on-site potential Eq. (2) could
be hopefully realized along this line. Alternatively, the model
could also be implemented in phononic crystals [74,75] pro-
vided that the characteristic frequency, gain, and loss in each
active unit are precisely and independently controlled by ad-
justing the cavity height, the loudspeaker, and the microphone,
respectively. In addition, the ultracold atom platform [6,21,76]
is also a good candidate to be further generalized to realize
this class of general non-Hermitian quasiperiodic models with
mosaic modulations.

Note added. Recently, we became aware of a work
which also demonstrates complex mobility edges in a dif-
ferent non-Hermitian system [77]. Their work examines the
issue mainly from the perspective of the specific struc-
ture of the complex mobility edges. In this Letter, in
addition to revealing the structure by deriving an ana-
lytical formula for the genuine complex mobility edges
exactly, we further study the physical spectra and other re-
lated properties of a family of non-Hermitian quasiperiodic
models.
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