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Interaction corrections to the thermopower of the disordered two-dimensional electron gas
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At low temperatures, the transport coefficients in the disordered electron gas acquire quantum corrections
as a result of the complex interplay of disorder and interactions. The interaction corrections to the electric
conductivity have their origin in virtual processes with typical electronic energies far exceeding the temperature.
Here, we study interaction corrections δS to the thermopower S of the two-dimensional disordered electron gas
with long-range Coulomb interactions. We show that while both real and virtual processes contribute to these
corrections, the real processes are dominant and lead to a logarithmic temperature dependence of δS/S with
δS/S < 0.
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Introduction. The low-temperature transport properties of
disordered electron liquids have fascinated researchers for
decades [1–3]; for a recent review see Ref. [4]. Transport
anomalies in quantum critical metals have recently triggered
a renewed interest in the intricate interplay of disorder and
electron-electron interactions characteristic for these systems
[5–8]. Despite the long research history on disordered elec-
tronic systems, theoretical studies of interaction corrections to
thermoelectric transport are rather rare [9,10]. Yet, compared
to electric and thermal transport, the thermoelectric transport
coefficient offers complementary information as it probes dif-
ferent aspects of the electron dynamics. In this manuscript, we
investigate thermoelectric transport at low temperatures in the
context of the two-dimensional disordered electron gas with
long-range Coulomb interactions.

The charge current j and the heat current jk flowing in
a system of electrons in response to an electric field E or
a temperature gradient ∇T are characterized by a matrix of
transport coefficients [11,12] as

(
j
jk

)
=

(
σ α

αT κ

)(
E

−∇T

)
. (1)

In a conventional Fermi liquid, the electric conductivity σ and
the thermal conductivity κ fulfill the Wiedemann-Franz law
[13] κ = LσT at low temperatures T , where L = π2/3e2 is
the Lorenz number, and e is the electron charge [14]. The
off-diagonal matrix elements in Eq. (1) differ only by a factor
of temperature, a manifestation of the Onsager relation known
from nonequilibrium statistical mechanics [15–17]. The coef-
ficient α governs thermoelectric response. Experimentally, it
can be found from measurements of the Seebeck coefficient
S = α/σ , which is also known as thermopower.

Due to the combined effect of disorder and interactions,
the electric conductivity of the disordered electron gas ac-
quires quantum corrections at low temperatures [1–3]. These
interaction corrections become particularly strong when
the temperature is small compared to the impurity scatter-
ing rate T � 1/τ . The inequality T � 1/τ characterizes the
diffusive transport regime, which we will focus on in this

manuscript. In two dimensions (2D), the correction to the
electric conductivity caused by the Coulomb interaction is
logarithmic and takes the universal form [1]

δσ = − e2

2π2
log

1

T τ
. (2)

This correction originates from virtual processes with elec-
tronic energies in the interval (T, 1/τ ), the energy interval that
also underlies the renormalization group (RG) analysis of the
disordered electron gas [2,18].

The thermal conductivity κ acquires interaction corrections
from the RG energy interval as well [19], in accordance with
the Wiedemann-Franz law. In addition, logarithmic correc-
tions to κ arise from real processes, specifically from the
subthermal energy interval (T 2/Dκ2

s , T ), where κs is the
inverse screening radius and D is the diffusion coefficient
[20–26]. These corrections violate the Wiedemann-Franz law
by increasing the thermal conductivity disproportionately

δκ

κ
= δσ

σ
+ 1

2
Ih, (3)

where Ih = ρ log(Dκ2
s /T ), ρ = 1/(4π2ν0D) is the dimen-

sionless resistance, ν0 is the density of states per spin
direction, and the classical Drude result σ = 2e2ν0D implies
δσ/σ = −ρ log 1/T τ . It is worth mentioning that in a model
system where particles interact via short-range Fermi liquid-
type amplitudes, logarithmic corrections arise from the RG
energy interval only, and the Wiedemann-Franz law holds
[19,27].

Results. In this manuscript, we develop a theory of inter-
action corrections to the thermopower of the 2D disordered
electron gas with long-range Coulomb interactions [28]. We
show that the thermopower S acquires logarithmic corrections
from the RG energy interval as well as from subthermal ener-
gies. We find the following result:

δS

S
= −1

4

δσ

σ
− Ih. (4)

The logarithmic corrections represented by δσ/σ originate
from the RG energy interval, and those entering via Ih from
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subthermal energies. In view of the localizing character of the
interaction corrections to the electric conductivity, δσ/σ < 0,
and due to Ih > 0, the two corrections to the thermopower par-
tially cancel. Remarkably, the correction from the subthermal
energy interval dominates and thereby determines the overall
sign of δS. Thus, real processes carry a larger weight for the
corrections to the thermopower than virtual processes. This
is in sharp contrast to the electric conductivity, for which the
corrections are caused by virtual processes only, while real
processes do not contribute at all. Overall, the result for the
interaction corrections to the thermopower can be written as

δS

S
= −3

4
ρ log

Ē

T
< 0, (5)

where Ē = (Dκ2
s )4/3τ 1/3 serves as an effective energy scale.

Corrections to the thermopower from the RG energy interval
have been addressed in the seminal work of Ref. [10]. How-
ever, our results differ from those obtained in this reference,
as well as the earlier Ref. [9] (see remark [29]). In particular,
the role of the sub-thermal energy interval was not recognized
in these previous studies. Here, we find that corrections from
the sub-thermal energy interval change the overall sign of the
correction to the thermopower compared to the prediction of
Ref. [10].

The role of particle-hole asymmetry. There is a crucial
difference between the diagonal elements of the matrix of
transport coefficients in Eq. (1), and the off-diagonal ones
describing thermoelectricity. Thermoelectric transport is a
sensitive probe of particle-hole symmetry in electronic sys-
tems [11]. Since the response of particles to a nonuniform
temperature is independent of the sign of their charge, the
resulting thermopower vanishes in particle-hole symmetric
systems. This implies that the energy-dependence of pa-
rameters like the density of states, electron velocity, and
the momentum relaxation time, which requires particle-hole
asymmetry, becomes crucial. For instance, in metals these
parameters are almost constant as a function of energy up
to corrections of the order of T/μ, where μ is the chemical
potential. The role of particle-hole asymmetry for thermoelec-
tric transport is already visible in Drude-Boltzmann transport
theory, where α = (2π2/3)eT (νεDε )′. In this expression, νε

and Dε denote the frequency-dependent density of states and
diffusion coefficient, respectively, and the prime indicates a
derivative with respect to frequency. In 2D, and for a quadratic
dispersion, the density of states and the disorder scattering
time τ are approximately constant [10,30]. Correspondingly,
the thermoelectric transport coefficient α is governed by the
frequency dependence of the diffusion coefficient, which in
turn reflects the frequency dependence of the electron ve-
locity, Dε = v2

ε τ/2. The crucial role played by particle-hole
asymmetry implies that a calculation of the thermopower has
to be performed at a higher accuracy compared to electric or
thermal conductivities. For the same reason, the most power-
ful analytical tools developed for the description of electronic
transport in disordered systems, the conventional nonlinear
sigma model (NLσM) approach [2,31,32] or the quasiclassi-
cal Green’s function technique [33], are not straightforwardly
applicable. We therefore make use of a recently derived
generalized NLσM for interacting systems, which includes
particle-hole asymmetry [30].

Structure of the correlation function. Our calculation of
the transport coefficients is based on the heat density-density
correlation function χkn, as in Ref. [10]. It is instructive
to discuss the compatibility of the interaction corrections
with the general structure of χkn, which is strongly con-
strained by particle and energy conservation laws. The
retarded heat density-density correlation function is defined
as χkn(x1, x2) = −iθ (t1 − t2)〈[k̂(x1), n̂(x2)]〉T , where n̂ is the
density operator, k̂ = ĥ − μn̂ is the heat density operator, with
Hamiltonian density ĥ and chemical potential μ, x = (r, t )
combined spatial coordinates r and time t , and 〈. . . 〉T de-
notes thermal averaging. As a function of momentum q and
frequency ω, the disorder averaged correlation function in the
diffusive regime takes the following form [10,34]:

χkn(q, ω) = Dnq2Dkq2χ st
kn + iLq2ω

(Dnq2 − iω)(Dkq2 − iω)
. (6)

In this equation, Dn and Dk are the diffusion coefficients
for charge and heat, respectively, while L is connected to
the transport coefficient α and the Seebeck coefficient S as
α = eL/T , S = eL/(σT ). The static part of the correlation
function is related to a thermodynamic susceptibility, χ st

kn =
−T ∂T n. The conservation laws for particle number and en-
ergy impose the constraint χkn(q = 0, ω → 0) = 0. For the
2D disordered electron gas with quadratic dispersion, and in
the absence of interactions, the parameters are given as Dn =
Dk = D0, χ st

kn = 0, and L = T c0D′
ε, where D0 = v2

F τ/2, D′
ε =

D0/μ, and c0 = 2π2T ν0/3 is the specific heat. In the presence
of interaction corrections, the static part of the correla-
tion function χ st

kn depends on the parameter z familiar from
the renormalization of the Finkel’stein model [2] as χ st

kn =
−c0T ∂μz [10,30]. With this relation at hand, the leading order
quantum corrections to the parameters Dn, Dk , and L can be
found from the dynamical part of the correlation function.

The diffusion coefficients Dn and Dk are well known
from studies of electric and thermal transport [2,18,19,27,35].
The heat density-heat density correlation function takes the
form χkk (q, ω) = −T cDkq2/(Dkq2 − iω), where c is the spe-
cific heat, and allows to determine the thermal conductivity
as κ = cDk [19,27,35]. The charge diffusion coefficient, in
turn, is known from the density-density correlation function
χnn(q, ω) = −∂μn Dnq2/(Dnq2 − iω), which is related to the
electric conductivity as σ = e2∂μn Dn [2,18]. These relations
provide tight constraints for the calculation of χkn. Our result
for Dn = D0 + δD, where δD/D0 = −ρ log 1/T τ , is fully
consistent with the known RG result, Dn = D/z1 [2,18], when
applied to the Coulomb-only model, since z1 = 1 in the ab-
sence of Fermi-liquid renormalizations. The case of the heat
diffusion coefficient Dk is more subtle. Here, we obtain [34]
Dk = (D0 + δD)/(1 + δz) + Ih/2, which is consistent with
previous results for the diffusion of heat in the disordered
electron liquid [25,26]. The first term in the expression for Dk

reflects the relation Dk = D/z obtained from the RG energy
interval [19,27,35], with δz = − 1

2ρ log 1/T τ . The second
term, which originates from subthermal energies, is respon-
sible for the violation of the Wiedemann-Franz law in Eq. (3)
[25,26]. The coefficient L characterizing thermoelectric trans-
port is obtained as L = L0(1 − 3

4 I − Ih) with I = ρ log 1/T τ ,
which leads us to Eq. (4). We will discuss the different types of
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corrections to L in more detail after introducing the formalism
underlying our calculation.

NLσM approach. The use of the NLσM formalism for the
calculation of χkn requires a generalization of the Finkel’stein
model [2] to include particle-hole asymmetry. It is fur-
ther convenient to equip the model with potentials that can
serve as source fields for generating the correlation function
χkn, namely a scalar potential coupling to the density, and
Luttinger’s gravitational potential [36] coupling to the heat
density. The generalized Keldysh NLσM for the disordered
electron gas with particle-hole asymmetry in the presence of
the scalar potential ϕ and gravitational potential η can be
written as the sum of two terms [30], S = SF [X̂ ] + SM[Q̂],
where

SF [X̂ ] = iπν

4
tr[D(∇X̂ )2 + 4iε̂η

ϕδX̂ ]

− π2ν2

4

∫
r,r′,εi

(
tr[γ̂i{λ̂(r)δX̂ (r)}ε1ε2 ]

× γ̂
i j
2 Vs(r − r′)tr[γ̂ jδX̂ ε3ε4

(r′)]
)
δε1−ε2,ε4−ε3 , (7)

SM[Q̂] =πν

16
DD′

εtr[∇2Q̂(∇Q̂)2]. (8)

The fields X̂ and Q̂ are matrices in Keldysh space carrying
two spin and two frequency indices [30,37,38]. The field Q̂
is familiar from the conventional NLσM formalism without
particle-hole asymmetry [2,31,32] and fulfills the constraint
Q̂2 = 1. It takes the form Q̂ = Û σ̂3

ˆ̄U , where Û ˆ̄U = 1 and σ̂3

denotes the third Pauli matrix in Keldysh space. The field X̂ is
related to Q̂ as X̂ = Q̂ + 1

4i D
′
ε(∇Q̂)2. In Eq. (7), we also used

the notation δX̂ = X̂ − σ̂3. The trace operation “tr” accounts
for all degrees of freedom including the integration in r, unless
written explicitly. The frequency operator ε̂η

ϕ is defined as
ε̂η
ϕ = 1

2 {ε̂ − ϕ̂, λ̂}, where λ̂ = 1/(1 + η̂). The matrix structure
of the scalar fields is defined as in ϕ̂l = �k=1,2ϕ

l
k γ̂k , where

γ̂1 = σ̂0 and γ̂2 = σ̂1 are Pauli matrices in Keldysh space.
The scalar fields also acquire a matrix structure in frequency
space via (ϕ̂r )εε′ = ϕ̂r,ε−ε′ . Information about the occupation
of states is encoded in the matrix

ûε =
(

1 Fε

0 −1

)
, Fε = tanh

ε

2T
, (9)

which enters the action through δX̂ = ûδX̂ û. The statically
screened Coulomb interaction is denoted as Vs. In momentum
space, it reads as Vs(q) = 2πe2/(|q| + κs).

The part of the action denoted as SF [X̂ ] stands for
the conventional Finkel’stein model [2], supplemented with
source fields, and extended to include particle-hole asymme-
try through the replacement Q̂ → X̂ . The noninteracting part
of SF , in the absence of sources, takes the form S0[Q̂] =
iπν

4 tr[Dε̂(∇Q̂)2 + 4iε̂Q̂]. This action differs from the conven-
tional model for noninteracting systems only by the frequency
dependence of the diffusion coefficient. Correspondingly, the
frequency-dependent diffusion Dε

q,ω = (Dεq2 − iω)−1, where
ε is the center of mass frequency of the contributing retarded
and advanced Green’s functions, will form the basis of our
perturbative calculation. In a microscopic derivation, SF [X̂ ] is
found from a gradient expansion around the metallic saddle
point σ̂3 without account of the massive modes and includes

up to four gradients. By contrast, SM is obtained from a cu-
mulant expansion including the coupling of soft and massive
modes [30,39]. It is worth noting that both SF and SM contain
a term with four gradients, of the same form, albeit with
different coefficients. In our calculation, the (combined) four-
gradient term will contribute to Hikami boxes, generalized to
include particle-hole asymmetry.

Due to the approximate constancy of the density of states,
the terms representing particle-hole asymmetry in the NLσM
are all proportional to the derivative of the diffusion coef-
ficient D′

ε. These terms also differ from the terms present
in the conventional model by their symmetry. The con-
ventional Finkel’stein model in the absence of sources is
invariant under the transformation Q̂ → Q̂′, where Q̂′

ε1ε2
=

−σ2σ̂1Q̂t
−ε1,−ε2

σ̂1σ2, σ̂1 is a Pauli matrix in Keldysh space,
and σ2 acts in spin space [30]. Each term in the action has
a partner term in the generalized model, obtained via the re-
placement Q̂ → X̂ (with an additional change of coefficients
for the four-gradient term due to the presence of SM), which is
proportional to D′

ε and odd under the transformation Q̂ → Q̂′.
This has important consequences. Extending the symmetry
analysis to the source terms [30], one finds that a nonvanishing
result for χkn can only be obtained by including terms with D′

ε

in the analysis.
Calculation. The correlation functions χkn in the dif-

fusive limit can be obtained from the Keldysh partition
function Z = ∫

DQ exp(iS) as the functional derivative
χkn(x1, x2) = (i/2)δ2Z/δη2(x1)δϕ1(x2) evaluated at �η = �ϕ =
0. The particle-hole asymmetry is explicit through the D′

ε

dependence of the action. The generalized NLSM with source
fields η̂ and ϕ̂ therefore allows us to formulate a systematic
linear response theory for the thermoelectric transport coeffi-
cient. The static part of the correlation function has already
been analyzed in Refs. [10] and [30]. Here, we will focus on
the dynamical part.

A first order expansion of ε̂η
ϕ in η2 and ϕ1 is sufficient for

finding the dynamical part of the heat density-density correla-
tion function, χ

dyn
kn = χkn − χ stat

kn . For the perturbative calcu-
lation, we employ a one-parameter family of parametrizations
of the Q̂ matrix with unit Jacobian, Q̂ = σ̂3 f (P̂), where
f (x) = (x/2 +

√
1 + (1 − λ)x2/4)2/(1 − λx2/4) [40]. The

independence of the results for the correlation function on
the parameter λ serves as a useful consistency check [41].
Relevant diagrams for the corrections to the diffusion prop-
agator are displayed in Fig. 1. While heat vertex corrections
and charge vertex corrections are crucial for establishing the
structure of the correlation function χkn in Eq. (6) [34], the
corrections to L (and thereby to α and S) are found from
the diagrams displayed in Fig. 1. For each diagram, an ex-
pansion in D′

ε is required in order to obtain a finite result.
This expansion may originate from different terms, namely
from diffusions Dε

q,ω, from the generalized Hikami box terms
through Tr[Dε∇2Q̂] or DD′

εTr[∇2Q̂(∇Q̂)2], or from source
and interaction terms that become D′

ε dependent via the re-
placement Q̂ → X̂ . The advantage of the described method is
that the particle-hole asymmetry is explicit, so that a system-
atic expansion can be achieved straightforwardly. On the other
hand, each diagram gives rise to several distinct contributions,
which need to be added consistently. Fortunately, the structure
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(a) (c)(b)

(d) (f)(e)

(g) (h)

FIG. 1. Interaction corrections to the diffuson [42]. Solid lines
represent electronic Green’s functions, wiggly lines the dynamically
screened Coulomb interaction, and shaded rectangles or arcs the
diffusion Dε (q, ω). The full circle indicates heat density vertices and
is shown on the left, the density vertex is on the right. Each diagram
represents a class of two [in the case of (b) four] symmetry-related
diagrams.

of the correlation function imposes tight constraints on the
calculation. In particular, the results for Dn and Dk obtained
from the calculation of χkn can be checked against those
known from studies of χnn and χkk as discussed above.

The result for δα can conveniently be expressed through
the corrections to the frequency-dependent diffusion coeffi-
cient [34],

δα = ec0δD′
ε, δDε = δD(1)

ε + δD(2)
ε + δDh

ε , (10)

with ε � T assumed. The first two terms in this sum are con-
tributions from the RG interval of energies. In particular, δD(1)

ε

is a generalization of the conventional interaction correction
δD to the diffusion coefficient related to Fig. 1(c) [43],

δD = iD
∫

k,ν

�ε,νV R
k,νDk2D3

k,ν . (11)

In this formula, the combination of distribution functions
�ε,ν = Fε+ν − Fε−ν favors large frequencies ν > T . The cor-
rection δD(1)

ε includes δD, but also incorporates the frequency
dependence of the bare diffusion coefficient as

δD(1)
ε = iDε

∫
�ε,νV R

k,νDεk2(Dε
k,ν

)3
. (12)

The correction δD is universal in the sense that it does not
depend on D. Correspondingly, if we replace V R

k,ν by V R
k,ν;ε =

(Vs(k) + �k,ν;ε )−1 with �k,ν;ε ≡ 2ν0Dεk2Dε
k,ν in the equa-

tion for δD(1)
ε , so that all diffusion coefficients on the right

hand side depend on the same frequency ε, then δD(1)
ε coin-

cides with δD. We can therefore write

δD(1)
ε = δD − iDε

∫
k,ν

�ε,νδV R
k,ν;εDεk2

(
Dε

k,ν

)3
(13)

with δV R
k,ν;ε = V R

k,ν;ε − V R
k,ν . Since δV R is already of first order

in ε, we may neglect the ε dependence of all other terms in
the expression, expand to first order in ε, and evaluate the
resulting logarithmic integral (in the universal limit V R ≈
�−1):

δD(1)
ε − δD = εD′

ε

∫
k,ν

�ε,ννV R
k,νDk2D4

k,ν = −1

2
εD′

εI.

(14)

This correction was absent in Ref. [10].

The second term in the expression for δDε in Eq. (10),
δD(2)

ε , is obtained from the generalized Hikami-box diagrams
in Fig. 1(a) and Fig. 1(b). The contribution of Fig. 1(a) has
its origin in the total four-gradient term in the action, δStot

4 =
−SM . It takes the form

δD(2a)
ε = 1

4
D′

ε

∫
k,ν

�̄ε,νV R
k,νDk2D2

k,ν (15)

with �̄εν = Fε+ν + Fε−ν . The contribution of the diagram in
Fig. 1(b) arises through the D′

ε dependence of δX̂ in the inter-
action part of SF [X̂ ], δD(2b)

ε = − 1
2 D′

ε

∫
k,ν

�̄ε,νV R
k,νDk2D2

k,ν =
−2δD(2a). We confirmed that in a conventional diagrammatic
calculation the total correction

δD(2)
ε = δD(2a)

ε + δD(2b)
ε = −1

4
D′

εεI (16)

is entirely obtained from a careful expansion of the Hikami-
box diagram with account of the particle-hole asymmetry
[34]. This correction has also been identified in Ref. [10], with
the same result.

The term δDh
ε in Eq. (10) represents the interaction correc-

tions from the subthermal energy interval. All the diagrams
displayed in Fig. 1 contribute to these corrections [34]. Here,
we discuss one of the contributions, δDh(a)

ε , which is obtained
from diagrams 1(e)–1(h)

δDh(a)
ε = −iD′

ε

∫
k,ν

�̄ε,ν�V R
k,νDk,ν = −D′

εεIh. (17)

It is worth elaborating on the specific form of the integrand.
Under the integral, the function �̄ε,ν = Fε+ν + Fε−ν restricts
the range of relevant frequencies to |ν| � T . For momenta k
fulfilling the inequalities |ν|/Dκs < k <

√|ν|/D, the imagi-
nary part of the interaction can be approximated as �V R

k,ν ≈
− 1

2ν0

ν
Dk2 . It is this bare 1/Dk2 singularity that gives rise to the

logarithmic correction. The same range of momenta is also re-
sponsible for the double-logarithmic temperature-dependence
of the tunneling density of states [1,44] as well as spurious
double-logarithmic contributions that appear at intermediate
steps of the calculation for the correlation function. In contrast
to these examples, both |ν| and Dk2 in the expression for
δDh(a)

ε are bound to be smaller than T . This is why only a
single logarithm arises, and the contribution falls outside of
the RG range of energies.

The total correction from the subthermal energy interval
coincides with δDh(a)

ε , namely δDh
ε = −D′

εεIh [34]. After
combining this result with δD(1)

ε and δD(2)
ε , Eq. (10) leads

directly to

δα

α
= 3

4

δσ

σ
− Ih. (18)

We see that both types of logarithmic corrections contribute
to a decrease of δα/α. Our main result for the interaction
correction to the thermopower δS/S, stated in Eq. (4), follows
immediately.

Discussion. (i) As argued in Ref. [45], weak localization
effects do not affect α at first order in the dimensionless
resistance ρ. As long as quantum corrections remain small, the
temperature-dependence of α/T can therefore be expected to
be dominated by the interaction corrections discussed in this
manuscript. Weak localization corrections do contribute to the
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thermopower S = α/σ through δσ . These corrections have
been studied via their magnetic field dependence in Ref. [46].

(ii) Thermopower measurements are well within ex-
perimental capabilities [46–48]. References [47] and [48]
primarily addressed strong correlation effects in the vicinity
of the metal-insulator transition. Finding the thermopower on
the metallic side of the metal-insulator transition theoretically
will require an extension of the presented approach to a full

RG analysis, combined with a calculation of subthermal cor-
rections with the renormalized action, a program previously
implemented for the thermal conductivity [25,26,35].
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