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Quantization of the anyonic spectral density of heat currents
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It is well known that the thermal conductance of Abelian integer and fractional quantum Hall (QH) states is
quantized and is determined by the net and total chirality of downstream and upstream modes. We furthermore
demonstrate that the finite frequency noise of the heat current of the Abelian particle and holelike states is
quantized when the system size is smaller than the thermal equilibration length. It is shown that the finite
frequency noise of the heat current is a universal and independent physical quantity, which provides information
about the microscopic structure of edge excitations.
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A two dimensional electron gas at low temperature and
subject to a strong perpendicular applied magnetic field ex-
hibits the QH effect [1,2]. In the regime of the QH effect, the
charge transport occurs through one dimensional chiral edge
states, which are quantum analogs of skipping orbits [3]. The
edge excitations in such channels strictly propagates in one
direction since backscattering for a quantum Hall edge state
is prohibited [4]. As a result, the QH effect has surprising
peculiarities such as precise quantization of the Hall conduc-
tance [5,6]. To be specific, the Hall conductance G = νGq is
quantized, where the filling factor ν takes on either integer or
fractional values and Gq = e2/2π h̄ is the elementary quan-
tum conductance [3]. Furthermore, excitations with fractional
charge can be observed [3]. Apart from charge, the QH edge
states transport heat and quantization of the heat conductance
occurs. Similar to the quantization of the electrical conduc-
tance, the quantization of the heat conductance can be shown.
Particularly, at filling factor ν = 1 (free electrons) the thermal
Hall conductance is given by the quantum heat conductance
Kq = πk2

BT/6h̄, where T is temperature. Therefore, in case
of ν = 1 the thermal and electrical conductances satisfy the
Wiedemann-Franz law for free electrons [7,8].

It is known that hierarchical fractional QH edge states con-
sist of multiple propagating channels, moreover some of them
propagate in the opposite direction (upstream modes) of the
skipping orbits (downstream modes) defined by the magnetic
field [9]. In this case, in contrast to the integer QH effect,
the thermal K and electrical G conductances do not satisfy
the Wiedemann-Franz law [7]. Thus, the thermal conductance
is a universal and independent physical quantity, which can
provide additional information about the microscopic struc-
ture of edge excitations. The recent experimental progress has
allowed for measurements of the thermal heat conductance
for different filling factors with a high precision [10–18].
Additionally, with the help of heat transport measurements, an
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essential step toward the detection of the upstream modes was
made [19–22]. It was confirmed that the thermal conductance
of Abelian integer and fractional QH states is quantized and
is determined by the net chirality of the downstream and up-
stream modes, K = (Nd − Nu)Kq, for a thermally equilibrated
edge. In contrast, a thermally non-equilibrated edge demon-
strates quantization, which is controlled by the total chirality,
K = (Nd + Nu)Kq. The crossover from the equilibrated to the
non-equilibrated heat transport regime is defined by the ther-
mal equilibration length, which generally depends on temper-
ature, scattering between modes and disorder on the edge [23].

In this Letter we make important progress in the study
of thermal transport of Abelian particlelike (Laughlin-Jain
series) and holelike (1/2 < ν < 1) QH states. Our aim is to
show that apart from the quantization of the anyonic heat flow,
furthermore, the anyonic noise of the heat current, at finite fre-
quency, is quantized when the system size is smaller than the
thermal equilibration length. The quantization is completely
different from the quantization of the heat conductance. This
is because, in general, there is no fluctuation-dissipation the-
orem [24,25], which relates the spectral density and thermal
conductance (or heat current) in the presence of temperature
gradients. This means that the finite frequency noise of the
heat current is an independent physical quantity, which can
give additional information about the physics of QH edge
excitations. In order to investigate the fluctuations of the heat
current we consider a two-terminal setup with cold and hot
reservoirs (see Fig. 1). We restrict the consideration to the
case of clean edges and the ballistic nature of edge modes,
namely when the size of the system is smaller than the thermal
equilibration length.

To study the QH edge modes we use a low-energy effective
field theory. According to the effective theory, the edge states
are the collective fluctuations of one-dimensional densities
[7,26]. The Hamiltonian of a QH edge is given by

Ĥ = 1

4π

∫
dx

∑
i j

∂x�̂iUi j∂x�̂ j, (1)

2469-9950/2024/110(4)/L041402(4) L041402-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0039-2134
https://ror.org/01km6p862
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.L041402&domain=pdf&date_stamp=2024-07-08
https://doi.org/10.1103/PhysRevB.110.L041402


EDVIN G. IDRISOV AND JOHAN EKSTRÖM PHYSICAL REVIEW B 110, L041402 (2024)

Th Tc

lower edge

upper edge

B

FIG. 1. Schematic of a two terminal setup. As an example the
case of ν = 3/5 with Nd = 1 chiral downstream modes and Nu = 2
chiral upstream modes on each (upper and lower) edge is shown.
The direction of the downstream modes is defined by the magnetic
field B. The upstream modes propagate in the opposite direction of
the downstream modes. The hot edge modes are emanated from the
left reservoir with temperature Th, while the cold edge modes have a
temperature of the right reservoir Tc.

where ∂x�̂i are one-dimensional densities, and Ui j are nonuni-
versal interactions at the edge. These densities satisfy the
Kac-Moody commutation relations

[�̂i(x), �̂ j (y)] = iπK−1
i j sgn(x − y), (2)

where the quadratic matrix Ki j stores information about
the topological order of the fractional QH state, and i, j =
1, 2, . . . , n refer to the edge modes. The electric charge car-
ried by each edge mode is characterized by a charge vector
ti, such that the total edge charge density is defined by the
sum ρ̂ ∝ ∑

i ti∂x�̂i. The filling factor is determined by Ki j

and ti via ν = ∑
i j tiK

−1
i j t j . The specific representations of

the matrix Ki j and basis ti can be found in Ref. [26]. It is
known that the electrical conductance in this model is quan-
tized [7]. The constant bias, V , couples to the total charge in
the Hamiltonian, Ĥext = −V

∫
dxρ̂(x) and the minimization

of the Hamiltonian with respect to ρ̂ results in a quantized
conductance. The average current is given by j = νGqV .

In order to study heat transport, it is convenient to rewrite
Eqs. (1) and (2) on a diagonal form, with the help of the
linear transformation ∂x�̂i = ∑

j �i j∂xφ̂ j . The matrix � can
be chosen such that both Ki j and Ui j are simultaneously di-
agonalized, i.e., (�T K�)i j = ηiδi j and (�T U�)i j = viδi j . In
the new bosonic basis φi the Hamiltonian takes the diagonal
form

Ĥ = 1

4π

∫
dx

∑
i

vi(∂xφ̂i )
2, (3)

where the new charge densities obey the Kac-Moody commu-
tation algebra with a diagonal prefactor on the right hand side

[φ̂i(x), φ̂ j (y)] = iπηiδi jsgn(x − y). (4)

The physical interpretation of Eqs. (3) and (4) is as follows:
each mode on the upper (or lower) edge describes an inde-
pendent chiral density that propagates at group velocity vi in
the ηi = ±1 direction. Since (�T K�)i j = ηiδi j , the number
of upstream and downstream modes is a universal property
of Ki j .

We first consider the case of filling factor ν = 1 (or al-
ternatively ν = 1/3) with one edge mode at v1 = v in the
two-terminal setup (see Fig. 1). The description of heat trans-
port by a ballistic channel starts with the Hamiltonian given
by Eq. (3), Ĥ = ∫

dxĤ(x), where the bosonized Hamilto-
nian density is Ĥ = (v/4π )(∂xφ̂)2. Writing the equation of
motion for the Hamiltonian density Ĥ in the form of the
continuity equation ∂tĤ + ∂xĴQ = 0, one obtains the ex-
pression for the heat current operator ĴQ(x, t ) = vĤ(x, t ).
Taking into account the expansion of the one-dimensional
density in terms of bosonic annihilation and creation oper-
ators, ∂xφ̂(x, t ) = i

∑
k>0

√
2πk/LB̂k (x, t ), where B̂k (x, t ) =

b̂keik(x−vt ) − b̂†
ke−ik(x−vt ), we obtain the following expression

for heat current operator

ĴQ(x, t ) =
∑

k,p>0

v

2L

√
vkB̂k (x, t )

√
vpB̂†

p(x, t ), (5)

where L is the normalization length. Hereafter, in the calcu-
lations, the phases with spatial coordinate x mutually cancel
each other due to momentum conservation. Averaging the
above expression in the thermodynamic limit and subtracting
the ground state contribution at zero temperature, we obtain
the average heat current

JQ ≡ 〈ĴQ〉 = π

12h̄

(
T 2

h − T 2
c

)
, (6)

Setting Th/c = T ± �T/2 and taking the derivative with re-
spect to �T → 0 we obtain the result for the quantum heat
conductance Kq = πk2

BT/6h̄.
For the case of several edge modes, according to Eq. (3),

the operator of the heat current must be provided by an ad-
ditional summation with respect to i—the total number of
modes on upper (or lower) edge

Ĵth(x, t ) =
∑

i;k,p>0

ηivi

2L

√
vikB̂k,i(x, t )

√
vi pB̂†

p,i(x, t ), (7)

where the factor ηi in front of velocity vi is a consequence of
the commutation relation in Eq. (4) and the bosonic operators
satisfy the standard commutation relation [b̂k,i, b̂†

p, j] = δkpδi j .
The edge modes with linear spectrum εk,i = vik, emanating
from left and right reservoirs, are thermally populated with
a Bose-Einstein distribution fB,i(εk,i ) = (eεk/T − 1)−1 at tem-
perature T = Th/c. We can visualize these modes as collective
bosonic excitations propagating at the edge and contributing
to heat transfer. Repeating the same steps as in the case of one
chiral edge mode, one arrives to the final result for the thermal
conductance, Kth = KqN+, which is quantized and depends
on the total chirality, N+ = Nd + Nu. It is worth mentioning
that in the regime of a small thermal equilibration length,
compared to the system’s size, the thermal conductance Kth =
KqN− is as well quantized and it is defined by net chirality,
N− = Nd − Nu. In particular, for filling factor ν = 2/3 one
needs to take into account the diffusive character of transport
carefully to obtain the nonzero conductance [7,23].

The aim of this work is to demonstrate that the nonsym-
metrized spectral density of heat current fluctuations,

Sth(ω) =
∫

dteiωt 〈δĴth(t )δĴth(0)〉, (8)
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is quantized, where δĴth(t ) = Ĵth(t ) − 〈Ĵth(t )〉. Here the spec-
tral function is calculated at the same spatial point x [see
Eq. (7)]. The integrand of the Fourier transform depends only
on one time variable due to time translation invariance. The
average in Eq. (8) is taken with respect to the equilibrium
density matrix ρ̂h ⊗ ρ̂c, with ρ̂l ∝ exp(−Ĥ/Tl ) and l = h, c.

In what follows, we first consider the case of filling factor
ν = 1 with one downstream mode (Nd = 1) at the QH edge.
Substituting the heat current operator ĴQ from Eq. (5) into
Eq. (8) and applying Wick’s theorem for the bosonic operators
b̂k and b̂†

k , we obtain the final result for spectral density in the
form

SQ(ω) = ω

48π

∑
l=h,c

Sl
Q(ω),

Sl
Q(ω) = [(2πkBTl )

2 + (h̄ω)2][1 + coth (h̄ω/2kBTl )]. (9)

First, at equilibrium Th = Tc = T and for zero frequency, one
obtains SQ(0) = 2kBT 2Kq. Second, because of the quadratic
term (h̄ω)2 in square brackets, the finite frequency noise at
zero temperature Th = Tc = 0 does not vanish and is given by
SQ(ω) = (h̄ω)3sgn(ω)/24π h̄. This noise is of pure quantum
nature and originates from quantum vacuum fluctuations. The
nonvanishing spectral density function at zero temperature for
narrow constrictions such as quantum point contact, molec-
ular and acoustic phonon wires was already demonstrated in
Refs. [25,27,28]. It is worth mentioning that for pure 1D mode
the result is the same for bosonic, fermionic, and anyonic
cases, in agreement with the general fact that the exchange
statistics do not affect the simple thermodynamic properties
of 1D systems.

Now for the case of several modes, substituting Eq. (7)
into Eq. (8) and taking into account that edge modes are
independent, one arrives at the following expression for the

noise of the heat current

Sth(ω) = N+ · SQ(ω), (10)

where N+ = Nd + Nu is the total number of upstream and
downstream modes on the upper (or lower) edge. Therefore,
the noise Sth(ω) is quantized. The symmetric noise is given by
the sum [Sth(ω) + Sth(−ω)]/2 and is also quantized. More-
over, if one instead of noise calculates the nth moment of heat
current for any integer n, one would get N+ times a “unit
of quantization” calculated from a single free boson mode.
It is worth mentioning that there is no direct relation between
thermal conductance and spectral density function in the equi-
librium case, since there is no fluctuation dissipation theorem
which relates these two quantities. Therefore, the spectral
density of the heat current can be regarded as an independent
and universal quantity which provides information about edge
excitations. One needs to point out that for a special form of
the confining potential, edge reconstruction can occur. We as-
sume that the effect of edge reconstruction equally influences
on the number of downstream and upstream modes [10,29]
and thus does not change the statement of the paper regarding
the quantization of the noise of the heat current.

To summarize, we have studied the finite frequency noise
of Abelian particlelike and holelike QH states using a simple
picture of downstream and upstream ballistic modes. It has
been shown that the finite frequency noise of the heat current
is quantized, when the system size is smaller than the thermal
equilibration length, and determined by the total number of
modes on the QH edge. The direct measurements of spectral
density of the heat current [30] together with the thermal
conductance can provide additional information about the mi-
croscopic structure of the QH edge and particularly about the
existence of ballistic upstream modes.
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