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Spin-polarized saddle points in the topological surface states of elemental bismuth revealed
by pump-probe spin- and angle-resolved photoemission spectroscopy

Yuto Fukushima,1 Kaishu Kawaguchi,1 Kenta Kuroda ,2,3,4 Masayuki Ochi ,5,6 Motoaki Hirayama,7,8 Ryo Mori ,1

Hiroaki Tanaka ,1 Ayumi Harasawa ,1 Takushi Iimori,1 Zhigang Zhao,1,9 Shuntaro Tani ,1 Koichiro Yaji ,10 Shik Shin,11

Fumio Komori ,1 Yohei Kobayashi ,1 and Takeshi Kondo 1,12,*

1Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
2Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8526, Japan

3International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University,
Higashi-hiroshima, Hiroshima 739-8526, Japan

4Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
5Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

6Forefront Research Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
7Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

8RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
9School of Information Science and Engineering, Shandong University, Qingdao, 266237, China

10Center for Basic Research on Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003, Japan
11Office of University Professor, The University of Tokyo, Kashiwa, Chiba 277-8581 Japan
12Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-0033, Japan

(Received 19 March 2023; revised 15 November 2023; accepted 3 June 2024; published 1 July 2024)

We use pump-probe, spin- and angle-resolved photoemission spectroscopy (ARPES) with a 10.7 eV laser
accessible up to the Brillouin zone edge, and reveal the entire band structure around the Fermi level, including
the unoccupied side, for the elemental bismuth (Bi) with the spin-polarized surface states. Our data identify Bi as
in a strong topological insulator phase (Z2 = 1) against the prediction of most band calculations. We unveil that
the unoccupied topological surface states possess spin-polarized saddle points yielding the van Hove singularity.
The unique feature provides an excellent platform for the future development of optospintronics.
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Elemental bismuth has the largest spin-orbit interaction
among all the stable and safe elements, making it a popular
choice for generating spin currents in spintronics research
[1–5]. The interest in spin currents has grown significantly
following the discovery of the spin Hall effect [6–9] and the
Edelstein effect [10–12], which are brought by the occupied
states in matters with strong spin-orbital interaction. Recently,
a new generation of spintronics, so-called optospintronics
[13–18], has been actively investigated. Unlike traditional
spintronics, optospintronics actively exploit the unoccupied
side of a material’s band structure through photoexcitation,
potentially revealing unexplored material functionalities. De-
spite their potential significance, the spin-polarized band
structures on the unoccupied side of materials remain elusive
due to the difficulties associated with their direct observation.
Elemental bismuth, with its largely spin-split surface bands
[19,20], emerges as one of the most promising materials
for optospintronics research. However, its critical unoccupied
side has been awaiting experimental observation.

The elemental bismuth (Bi) is also the most popular el-
ement for a material design realizing topological phases of
matter. Note that prototype Z2 topological insulators (TIs) all
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contain the element: prototype strong TIs were realized in
Bi2Se3 and Bi2Te3 [21–23], and weak TIs were in β-Bi4I4

[24–26] and Bi14Rh3I9 [27–29]. Surprisingly, however, the
bulk topology of the elemental Bi itself has not yet been
identified and continues to be debated [30–36], even though
its properties, including spin-polarized surface states, have
been vigorously investigated for so many years [19,20,37–40].
Recently, a possible higher-order topological state has been
suggested for the bulk Bi by extending the topological classi-
fication to Z4 [41,42], accumulating huge attention. However,
this is on the basis that Bi is topologically trivial (Z2 = 0)
within the Z2 index. The bulk topology of the elemental Bi
is, therefore, not only a longstanding issue but also, right now
one of the central topics in condensed matter physics.

The bulk topology of Bi can be experimentally determined
by identifying how two surface bands (SS1 and SS2) are
connected into the bulk conduction and valence bands (BCB
and BVB) around M, as represented in Fig. 1. Despite these
simple criteria, there are several reasons for this issue remain-
ing controversial.

(1) High-quality Bi is commonly prepared as films. Bi
films get free standing around 15 BLs (6 nm) [43], and
stress from a substrate is totally removed when thicker than
∼25 BLs (∼10 nm) [44]. However, an interaction between
the front and back surface states even in relatively thick films
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FIG. 1. (a) Crystal structure of Bi in the (111) orientation.
(b) Brillouin zone for bulk and (111) surface. (c) Schematic band
structure along the � - M direction on the Bi(111) surface. Blue and
red lines show the surface bands (SS1 and SS2) with in-plane spin
polarization in opposite directions. (d)–(g) All possible relationships
between surface and bulk bands around M corresponding to different
bulk topologies. [31].

as 200 BLs may open a gap in the surface states and mislead
the bulk topology [33,35,45].

(2) The entire band structure should be determined by
experiments for a fair comparison with band calculations.
However, this cannot be accomplished by a standard ARPES
observing only the occupied states. One way of visualizing the
unoccupied band is to raise the sample temperature and detect
thermally excited electronic states above the Fermi level (EF).
However, the original bulk topology might be altered by lat-
tice expansion inevitable at high temperatures [46,47].

(3) The bulk band gap around M is so small (∼15 meV),
making it hard to clarify the connections of surface bands to
the bulk bands [48,49].

In this Letter, we overcome all these difficulties and clarify
the genuine topological state in the elemental Bi. Following
are our solutions (s1)–(s3) to (1)–(3).

(s1) We prepare a film of ∼1000 BLs (∼0.4 µm), which is,
according to theory [35], thick enough to make the overlap
of wavefunction between the front and back surface states
negligible.

(s2) We use a pump-probe spin-ARPES we recently de-
veloped [50], and unveil the band structure including the
unoccupied states near the Fermi level over the entire Bril-
louin zone (BZ). Importantly, this technique allows observing
unoccupied states without raising the lattice temperature by
taking data just after pumping.

(s3) We employ spin-resolved spectra, which can distin-
guish between the surface and bulk bands with and without
the spin polarization, respectively, to identify whether each of
the two surface bands is connected to the conduction band or
the valence band.

These experiments conclusively identify the bulk band
topology of the elemental Bi to be nontrivial (Z2 = 1).
Our state-of-the-art pump-probed spin-ARPES [50] further
reveals a unique feature in the unoccupied surface band: spin-
polarized saddle points that form a hexagonal helical spin
texture and generate the van Hove singularity (vHS) in the
density of states. This could be an iconic structure for the

future optospintronics application with Bi, which controls the
spin current by photoexcitation [16,51–54].

Single-crystal Bi(111) films of ∼1000 BL (∼0.4 µm) were
prepared in situ by depositing Bi on a Si(111) 7 × 7 surface
(see more details in the Supplemental Material [55]). All
ARPES measurements were performed with a 10.7 eV laser
generated by a home-built Yb: fiber pulse laser [56,57]. The
fundamental Yb: fiber laser (1.19 eV) was also used as a pump
light. The energy resolution was ∼20 meV and ∼25 meV
for pump-probe ARPES and pump-probe spin-SARPES, re-
spectively. The time resolution was 360 fs. We used a mild
pump (0.08 mJ/cm2) preventing a lattice vibration. The high
repetition rate of the laser (1MHz) and a high-efficiency spin-
detector (VLEED) enabled us to obtain a sufficient count rate
of spin signals. All experiments were performed around 70 K
using p-polarized light for both the pump and probe. De-
tails about our newly developed ARPES system are discussed
elsewhere [50].

First, we investigate the spin-integrated band structure of
Bi(111). Figures 2(a) and 2(b) plot the Fermi surface map and
the occupied band dispersion along �-M measured without
pumping. We confirm well-known surface bands: a hexagonal
electron pocket around �, petal-like hole pockets surrounding
it, and an elongated electron pocket around M [19,20]. These
are formed by two surface bands (SS1 and SS2) connecting to
bulk bands around � and M. We further perform the pump-
probe measurements and successfully visualize the bands up
to the unoccupied side [Fig. 2(c)], including the bulk conduc-
tion band (BCB) at �.

Figure 2(d) displays the contour energy maps at different
binding energies on the unoccupied side. Interestingly, we find
that separated hexagonal and petal-like pockets observed at
lower energy (see E − EF = 0.15 eV) get closer together with
increasing energy and touch with each other at around 0.2 eV.
Eventually, these two separated pockets turn to continuous
parallel segments of enlarged energy contours at E − EF =
0.25 eV (see the regions of dotted light blue rectangles). To
understand the detailed band structure around this momentum
region, we exhibit the energy dispersions along two momen-
tum cuts [marked by magenta lines of e and f in Fig. 2(d)]
in Figs. 2(e) and 2(f), respectively. We find that the cut along
kx [line e in Fig. 2(d)] shows that the touching point [arrow in
Fig. 2(e)] is located at the top of the upward energy dispersion,
while the cut along ky [line f in Fig. 2(d)] shows it [arrow
in Fig. 2(f)] to be located at the bottom of the downward
energy dispersion. Therefore, this energy state is a saddle
point, which forms the van Hove singularity in the density
of states [58,59]. It is further demonstrated in Fig. 2(g) by
three-dimensionally plotting the ARPES data along the kx, ky,
and energy. The same saddle point is placed at six locations in
the surface BZ [Fig. 2(f)], which forms a helical spin structure,
as revealed below.

The spin polarization is investigated by pump-probe spin-
ARPES. Figure 3(b) plots the in-plane Y component of spin
polarization (SY) for the orange rectangular region in Fig. 2(a).
Thanks to the pump-probe technique, the spin-polarized states
of surface bands (SS1 and SS2) are unveiled not only on the
occupied side but also on the unoccupied side. Notably, the
sign reversal of spin between SS1 and SS2 is clearly exhib-
ited. Importantly, our experiments demonstrate that the saddle
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FIG. 2. Band structures of Bi revealed by pump-probe ARPES.
(a) Fermi surface map. (b), (c) Band dispersion along � - M mea-
sured without and with pump. (d) Energy contour maps on the
unoccupied side from 0.10 to 0.25 eV. (e), (f) Band dispersions
crossing the saddle point along kx and ky [momentum cuts e and f
marked in (d)]. (g) Three-dimensionally plotted ARPES intensities
along kx , ky, and energy. (h) Schematic of spin-polarized saddle
points with a hexagonal structure. Magenta arrows in (c), (e), (f),
and (g) indicate the saddle point.

points yielding the vHS around 0.2 eV are spin polarized with
a helical spin structure, as illustrated in Fig. 2(f).

We estimate |SY | for the upper and lower surface bands
along � - M in Fig. 3(a) to examine how the spin-polarized
surface states are mixed with or absorbed into the bulk states
without spin polarization. The 100% spin polarization should
be observed for the surface states if the following two condi-
tions are fulfilled [60]. One is that the E -k points are far from
the time-reversal invariant momenta (� and M), at which the
up and down spin are inevitably degenerate. Second is that
they are free from hybridization with the bulk states which
reduces spin polarization. As expected, while S′

Y s of SS1 and
SS2 are close to 100% in the momentum range far from � and
M (0.2 Å−1 < kx < 0.6 Å−1), these decrease and eventually
become almost zero at � and M. Nevertheless, we find a clear
difference between SY (kx )′s of the upper and lower surface
bands: the latter decreases more rapidly than the former with
approaching � and M where the valence bands are situated,
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FIG. 3. Spin texture of surface states in Bi revealed by pump-
probe spin-ARPES. (a), (b) Spin polarization and spin-polarized
band along � - M, respectively. Red and blue represent up and down
spin in the Y direction for two surface bands (SS1 and SS2). The
painted areas in (a) represent errors (see more details in the Supple-
mental Material [55]). (c) High-resolution map of spin polarization
around M within the black frame in (b). (d) Spin-resolved EDCs at
k′s marked by arrows in (c). Energy positions of surface bands are
pointed by red and blue arrows. Black curves are the addition of
the up- and down-spin spectra. (e) Surface bands determined from
spin-resolved EDCs. Fitting curves to the data (solid and dotted lines)
are overlayed.

as represented by blue arrows in Fig. 3(a). This indicates that
the lower surface band is absorbed to (or hybridized with)
the bulk bands extensively around � and M. Note that the
other spin components, SX and SZ , are zero [60] due to the
mirror operation Mx changing the spin direction as SX →
−SX , SY → SY , SZ → −SZ [61].

Since the spin-polarization signals originate from the sur-
face states, the surface bands can be determined separately
from the bulk states by tracing the peak positions of the
spin-polarized spectra. In particular, we measured the spin-
polarization map with high precision for the bands around M
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[Fig. 3(c)], which is the key momentum region to determin-
ing the bulk topology of Bi. Figure 3(d) plots spin-resolved
energy distribution curves (EDCs) at k′s marked by arrows
in Fig. 3(c). The spin-integrated EDCs (black lines) are also
superposed. Although peaks are observed for the upper sur-
face band slightly below EF, only a hump structure, poorly
defined as a quasiparticle, is obtained for the lower surface
band around −0.1 eV. This agrees with our assertion that the
lower surface band is significantly hybridized with the bulk
valence band around M with a broad spectral continuum;
the bulk state is observed as a continuum projected onto the
surface due to the kz broadening typical for ARPES, which is
a surface-sensitive technique.

The spectral hump has a shoulder structure as a remnant
of the surface band. The lower surface band is determined by
tracing their energies, obtained as the crossing point of two
lines fitted to a spectrum, as demonstrated in Fig. 3(d). In
Fig. 3(e), we plot the results together with the upper surface
band. In both bands, plots are missing close to M, where
the spin-polarization is zero; those are, instead, estimated
by extrapolating a curve fitted to the data (dotted curves).
The upper surface band is almost flat, whereas the lower
surface band disperses upward. However, they stay off each
other, opening a band gap of ∼50 meV at M. These observa-
tions eliminate the case of Fig. 1(g) predicted by most band
calculations [34,35].

To pin down the relationship between the surface and bulk
bands further, we measure high statistics data of pump-probe
ARPES around M [Fig. 4(a)]. The obtained intensity map
[Fig. 4(a)] shows a parabola-shaped spectral continuum for
the bulk valence and conduction bands (BVB and BCB),
other than strong intensities for the surface bands with sharp
spectral peaks. To examine the bulk states in more detail, we
plot momentum distribution curves (MDCs) around the bulk
band gap in Fig. 4(b), where the intensities for the bulk signals
are painted by colors (green and orange for BCB and BVB,
respectively). Their intensities reduce the momentum width
by approaching each other and eventually disappear with-
out merging together. This indicates that a gap (<0.02 eV)
much smaller than that of the surface bands (∼0.05 eV) opens
around E − EF = −0.025 eV. The value of the bulk band gap
we observed is consistent with those (11 ∼ 15 meV) that have
been determined by electromagnetic experiments over the past
half-century [48,49,62–64]. The bulk states are expressed in
Fig. 4(c) with color bars. In the same panel, we overlay the
upper and lower surface bands (dashed lines) determined from
spin-polarized spectra in Fig. 3(e). The result shows that a
small portion of the upper surface is absorbed into the bot-
tom of BCB, whereas a large portion of the lower surface
band is into BCB around M, as depicted in Fig. 4(d). The
relation between surface and bulk bands corresponds to the
case of Fig. 1(a). Hence, the bulk topology of the elemental
Bi is nontrivial (Z2=1; strong topological insulator phase),
against most theoretical predictions [34,35] except for some
exceptions [36].

In previous studies, the comparison between experiments
and calculations on the bands of Bi has been limited to the
occupied states [37,65]. In addition, a standard ARPES is out
of reach for decisively distinguishing surface and bulk bands.
These factors have prevented one from fairly evaluating the
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FIG. 4. Bulk bands and their relationship with surface bands.
(a) Pump-probe ARPES map around M. Here, the original spectra are
symmetrized across M to remove the matrix element effect. They are
also divided by the Fermi-Dirac distribution function at the electron
temperature (250 K) estimated from the spectral edge broadening
due to the pumping. (b) MDCs of (a). Thick black lines represent
energies of two surface bands. Intensities of BCB and BVB are
each painted green and orange. (c) Bulk bands (color bars) obtained
from (b) and surface bands (dashed lines) determined in Fig. 3(e)
are superimposed. (d) Schematic band structure and characteristic
energies obtained in our experiments.

reliability of band calculations for the elemental Bi. Among
modern experimental techniques, a pump-probe spin-ARPES
is the only means allowing a full comparison between the
experiments and calculations, and it was first employed for
Bi in this work.

The characteristic values of the unoccupied bands we ob-
tained using this experimental technique are described in
Fig. 4(d). In the table of Fig. 5(a), we compare our results
with previous theoretical studies with different calculation
methods, generalized gradient approximation (GGA), and
quasiparticle self-consistent GW (QSGW) [34,35], both ex-
pecting the bulk topology to be trivial (Z2 = 0). The GGA
calculations show good agreement with the experiments for
the energies of BCB bottoms and vHS; however, the bulk band
gap at M, �B(M), is over estimated by ∼0.1 eV. In contrast,
�B(M) shows good agreement in the QSGW calculations,
in which, however, the bottom energy of BCB at � and the
energy of vHS have large discrepancies by about 0.15 eV. We
also conducted calculations with the modified Becke-Johnson
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FIG. 5. (a) Comparison of characteristic energies in band struc-
tures obtained: bottoms of BCB at � and M, energy of vHS, and
energy gaps at M between BCB and BVB (�B) and between SS1
and SS2 (�S). Bulk topology is also listed. α is a parameter of the
modified Becke-Johnson potential used in our calculations. (b) First-
principles band calculations of semi-infinite layer Bi(111) along �-
M for different α values. α=1.0 corresponds to the original band,
whereas the states with α less than 1.0 are assigned as trivial (Z2 =
0), and those with larger αs are as nontrivial (Z2 = 1).

potential (see details in the Supplemental Material [55]), and
listed the obtained parameters in the table of Fig. 5(a). Again,
a mismatch with experiments by more than 0.1 eV is in-
evitable in the original result (α=1.0); however, we find that
tuning the parameter α can make the calculations match our
data. As demonstrated in Fig. 5(b), overall band positions

in experiments are reproduced around α=1.2 relatively well.
The bulk topology of this calculation is a strong TI state
(Z2 = 1), supporting our conclusion.

In conclusion, we revealed the entire band structure of Bi
around the Fermi level including the unoccupied side for the
first time, which became available owing to our recent devel-
opment of a pump-probe spin-ARPES. These data unveiled
two key features. One is that Bi is in the strong topological
insulator phase (Z2 = 1), which was obtained by solving all
the previous difficulties. The spin-split surface bands are,
therefore, not due to the trivial Rashba state but to the topo-
logical state. This result disagrees with the prediction that Bi
is a trivial semimetal or a higher-order topological insulator;
see more detailed arguments in the Supplemental Material
[55]. Second, we unveiled that the topologically protected
surface bands possess the spin-polarized saddle points yield-
ing van Hove singularity in the unoccupied density of states.
Interestingly, they form a spin helical structure, indicating the
availability of controlling massive spin currents by direct exci-
tation with circularly polarized light. The pinpoint tunability
of the spin current generation with specific light is a major
advantage of utilizing unoccupied states of matter. Follow-
ing this concept, the elemental Bi with a topological nature
provides an excellent platform for developing optospintronics
expected as future technology.
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