
PHYSICAL REVIEW B 110, L041122 (2024)
Letter

Efficient simulation of low-temperature physics in one-dimensional gapless systems
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We discuss the computational efficiency of the finite-temperature simulation with minimally entangled typical
thermal states (METTS). To argue that METTS can be efficiently represented as matrix product states, we present
an analytic upper bound for the average entanglement Rényi entropy of METTS for a Rényi index 0 < q � 1.
In particular, for one-dimensional (1D) gapless systems described by conformal field theories, the upper bound
scales as O(cN0 log β ) where c is the central charge and N is the system size. Furthermore, we numerically find
that the average Rényi entropy exhibits a universal behavior characterized by the central charge and is roughly
given by half of the analytic upper bound. Based on these results, we show that METTS can provide a speedup
compared to employing the purification method to analyze thermal equilibrium states at low temperatures in 1D
gapless systems.
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Introduction. Simulating quantum many-body systems at
finite temperature is an everlasting topic in statistical physics
and computational physics. While thermal equilibrium states
at inverse temperature β of a quantum system with Hamilto-
nian H can be described by the canonical Gibbs state

ρ
(can)
β ≡ e−βH

Tr(e−βH )
, (1)

the computational cost to construct it directly diverges ex-
ponentially with system size, which makes it unrealistic in
practice to be accurately prepared.

The minimally entangled typical thermal states (METTS)
algorithm [1,2] is one of the methods developed to efficiently
simulate finite-temperature quantum systems. Considering a
spin-1/2 chain of length N , the orthogonal 2N classical prod-
uct states |Pi〉 = ⊗sites n |in〉 form a complete basis of the
whole Hilbert space, where {|in〉} is an orthogonal basis of
each site. METTS are a class of states defined as

|μi〉 = e−βH/2 |Pi〉√
〈Pi|e−βH |Pi〉

. (2)

By construction, ρ
(can)
β can be decomposed as a classical mix-

ture of METTS,

ρ
(can)
β =

∑
i

pi|μi〉〈μi|, pi ≡ 〈Pi|e−βH |Pi〉∑
j 〈Pj |e−βH |Pj〉 . (3)

To recover ρ
(can)
β accurately, one may sum over 2N METTS

with weight pi, but performing such a calculation is usually
intractable. However, the METTS algorithm [1,2] enables one

*Contact author: zixiawei@fas.harvard.edu

to generate a Markov chain of METTS and sample METTS
according to the probability distribution pi. Thus, there is
no need to calculate pi, and one can automatically sample
only METTS with large pi. Empirically, it is known that one
only needs to sample roughly 10–100 METTS to get accurate
enough thermal expectation values of local observables. As a
result, the most computationally costly part of this algorithm
is to prepare each METTS by the imaginary-time evolution of
the product state. As evaluated in Refs. [1,2], the computation
time to prepare a METTS with a matrix product state (MPS)
ansatz [3] scales as ND3β, where D is the bond dimension of
the MPS.

The METTS algorithm is indeed very efficient for simulat-
ing low-temperature physics in one-dimensional (1D) gapped
systems because it is expected that D can be upper bounded
by the bond dimension necessary to approximate the ground
state [1,2], which does not scale with N or β [4,5].

On the other hand, how well METTS behaves in 1D gap-
less systems is not clear at low temperature, while at high
enough temperature it is expected to be similarly efficient to
gapped systems. There are many reasons for this. First, the
arguments presented for gapped systems do not apply to gap-
less systems. At the low-temperature limit, METTS converge
to the ground state, whose entanglement scales as O(log N )
for a half of the whole 1D gapless system. This implies that D
can be upper bounded by a polynomial of N , which does not
manifest the efficiency of METTS when N is large. There-
fore, one needs to understand how entanglement grows under
imaginary-time evolution for a generic METTS [6].

Can we give a bound of entanglement growth under
imaginary-time evolution for generic METTS? Is METTS
efficient for simulating low-temperature physics of 1D gapless
systems? To answer these questions, we focus on 1D gapless
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systems whose low-energy sectors are well described by 2D
conformal field theories (CFTs). After presenting some hints
from CFT analyses, we prove that for the Rényi index 0 <

q � 1, the average entanglement Rényi entropy of a METTS
decomposition is upper bounded by that of the thermofield
double (TFD) state. Furthermore, we numerically show that
the average entanglement Rényi entropy is about half of the
analytic upper bound. Based on these results, we evaluate
the bond dimension required to approximate METTS and
the computation time for generating METTS. In the end, we
demonstrate the superiority of the METTS algorithm over the
TFD algorithm [7,8] (also called the ancilla method or purifi-
cation method) at low temperatures in 1D gapless systems.

Hints from CFT computation. While it is difficult to ana-
lytically compute Rényi entropies for all the METTS, we can
do it for a special class of METTS with a boundary conformal
field theory (BCFT) computation. A BCFT is a CFT defined
on a manifold with boundaries whose boundary conditions
maximally preserve the conformal symmetries. Such bound-
ary conditions, when regarded as quantum states, are called
boundary states. One crucial feature of boundary states is that
they are product states [9]. Therefore, for a boundary state |B〉,
e−βH/2 |B〉 turns out to be a METTS.

For simplicity, let us consider a 1D system defined on an
infinite line. The density matrix e−βH/2|B〉〈B|e−βH/2 is real-
ized by considering a path integral of an infinite strip with
width β. The qth entanglement Rényi entropy [10] of a half
line A can be computed by evaluating the expectation value
of a so-called twist operator inserted at the center of the strip
[11,12] and turns out to be

S(q)
A = c

12

(
1 + 1

q

)
log

(
2β

πε

)
+ const, (4)

where c is the CFT central charge, and ε is the UV cutoff.
The constant term does not depend on q but on the details
of |B〉. Note that, except for this constant part, the above
result is universal for any CFT and any |B〉. Also note that
c roughly counts the degrees of freedom included in the CFT.
For example, a free boson CFT has c = 1 and an n-copy of
free-boson CFTs has c = n.

From this result, one may expect that the average Rényi
entropy of METTS has a similar scaling. With these as hints,
let us move on to rigorous analyses.

Analytic upper bound. From now on, we will present a the-
orem which provides a rigorous upper bound for the average
Rényi entropy of a METTS decomposition.

We will utilize the TFD state. Consider two identical copies
L and R of the original system (H ∼= HL

∼= HR). Let T be an
antiunitary operator that commutes with the Hamiltonian H .
Then the TFD state |TFD〉 ∈ HL ⊗ HR is defined as

|TFD〉 =
∑

n

e−βEn/2 |n〉L ⊗ |n〉R , (5)

where |n〉 are eigenstates of H with energy En and |ψ〉R =
T |ψ〉L. Since classical product states {|Pi〉}i form a complete
orthonormal basis of H, we have

|TFD〉 = (e−βH/2 ⊗ IR)
∑

i

|Pi〉L ⊗ |Pi〉R . (6)

The TFD state is a (symmetric) purification of the canon-
ical Gibbs state, i.e., ρ

(can)
β ∝ TrR[|TFD〉 〈TFD|]. Therefore,

one can also simulate finite-temperature quantum systems
with TFD states. Dividing the original system into A and its
complement B, then each of the two copies L and R contains
a copy of A. We label them AL and AR, respectively.

We find that the average entanglement Rényi entropy of
A over METTS is upper bounded by the entanglement Rényi
entropy of ALAR in |TFD〉 associated with the same β, for a
Rényi index 0 < q � 1.

Theorem 1. For 0 < q � 1, there holds

S(q)
A ≡

∑
i

piS
(q)
A (|μi〉) � S(q)

ALAR
(|TFD〉), (7)

if |Pi〉R are product states for AR and BR.
For generic quantum many-body systems, it is plausible to

expect that |Pi〉 ≡ T |Pi〉 is also a product state. For the models
presented in this Letter, T is simply the complex conjugate
with respect to the spin basis, and this condition is satisfied.

A detailed proof is presented in the Supplemental Material
[13], which utilizes the concavity of S(q) for 0 < q � 1 since
we used the concavity of S(q). This also means our proof is not
valid for q > 1. However, we numerically find that the upper
bound (7) is valid even for q > 1 in all the examples we study
in this Letter. It will be interesting to answer whether the result
(7) is valid for q > 1 in general.

In fact, the q = 1 case of this theorem follows directly
from Theorem 7 of Ref. [14], which was considered in a
different context related to black hole physics. However, the
extension to 0 < q < 1 is necessary and sufficient to evaluate
the required bond dimensions for an MPS to approximate
METTS.

Let us then go back to 1D gapless systems defined on an
infinite line and take the subsystem A as a half of it. With CFT
computations (see, e.g., Ref. [15]), one finds

S(q)
A � S(q)

ALAR
(|TFD〉) = c

6

(
1 + 1

q

)
log

(
β

πε

)
, (8)

for any CFT. This rigorous upper bound turns out to be twice
the right-hand side of (4) at leading order.

Numerical study in spin systems. After obtaining the
rigorous bound (8), let us numerically study the average en-
tanglement Rényi entropy of METTS in specific models. Our
results show that it exhibits a universal behavior characterized
only by the central charge of the associated CFT, similar to (4)
for a regularized boundary state.

Numerical simulations are performed for two models with
different central charges, symmetries, and integrabilities. We
take the spin quantization axis along the ν direction (ν =
x, y, z) and choose eigenvectors of Sν

n as {|in〉} (which appears
in the definition of |Pi〉). Here, Sx,y,z

n are the spin operators
associated to the site n.

The first model is the transverse-field Ising chain (TFI)
with the open boundary condition,

H = −
N−1∑
n=1

Sz
nSz

n+1 − γ

N∑
n=1

Sx
n, (9)

which is integrable. We set γ = 1/2 so that the model is
critical [11,16]. This theory is well described by CFT with a
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FIG. 1. Average entanglement entropy of METTS between the
left part (sites n � NA) and the right part (sites n > NA) as a function
of the size NA of the subsystem A for the critical transverse-field
Ising chain with ν = z and β = 4. Imaginary-time evolution is car-
ried out using second-order Trotter decomposition with a time step
δτ = 0.04. The data are averaged over 10 000 samples.

central charge c = 1/2. Since this Hamiltonian does not have
SU(2) spin rotation symmetry, the entanglement properties
of METTS depend on the choice of the quantization axis ν.
However, as will be seen later, the behavior of entanglement
entropy at large β is independent of ν.

The second model is the spin-1/2 Heisenberg chain with
the next-nearest-neighbor interaction,

H =
N−1∑
n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1 + Sz

nSz
n+1

)

+ J
N−2∑
n=1

(
Sx

nSx
n+2 + Sy

nSy
n+2 + Sz

nSz
n+2

)
. (10)

Again, we take the open boundary condition. We set J =
0.241 167 so that the model is critical [17–19]. This theory
is well described by CFT with a central charge c = 1 [18].
This model is known to be not integrable [20].

As shown in Fig. 1, the entanglement profiles are insen-
sitive to the length of the whole spin chain N or length

of the interval subsystem. Therefore, it is sufficient to con-
sider the case where the interval A consists of the half chain
A = {1, 2, . . . , N/2} for sufficiently large N to investigate
the β dependence (see Supplemental Material [13] and also
Refs. [14,21] therein). Then, in Fig. 2, we show the average
entanglement Rényi entropy for the half chain as a function of
β. For β 	 1, we find

S(q)
A 
 c

12

(
1 + 1

q

)
log β + S(q)

0 , (11)

where S(q)
0 is a nonuniversal constant. Furthermore, the

standard deviation of the entanglement entropy of METTS
is bounded by a constant and is negligible in the low-
temperature limit as compared to the average. That is, at
low temperatures, the entanglement Rényi entropy of METTS
coincides with the entropy of the regularized boundary state
(4) and a half of our upper bound by the entropy of the
TFD state (8) at the leading order of β. This result is con-
sistent with the intuition obtained from the discussion in the
low-temperature limit pointed out in Ref. [8]. However, it is
not immediately evident that the entanglement of METTS is
half of the TFD state even in the finite-temperature region
since the entanglement of the imaginary-time evolved state
significantly depends on the choice of the initial state.

Computation time in the METTS algorithm. The area law
and the logarithmically slow growth of the entanglement
Rényi entropy (11) for 0 < q < 1 implies that METTS can
be efficiently represented by an MPS ansatz [4,5]. Hence it is
expected that the METTS algorithm can be used to reach con-
siderably low temperatures even for critical spin chains. With
the results obtained above, let us evaluate the computation
time in the METTS algorithm for simulating the canonical
Gibbs state.

Consider a Schmidt decomposition of the METTS
|μi〉 = ∑

k λk |k〉A |k〉B with respect to the bipartition A =
{1, 2, . . . , NA} and its complement B. Suppose that the
Schmidt coefficients λi’s are sorted in decreasing order, i.e.,
λ1 � λ2 � · · · . The truncation error for an MPS approxi-
mation of bond dimension D is defined as ε ≡ ∑

k>D λ2
k .

As shown in Ref. [4], ε measures an error in an MPS

FIG. 2. Growth of the average entanglement Rényi entropy of METTS for the half chain A = {1, 2, . . . , N/2} (a), (b) in the critical
transverse-field Ising model of length N = 640 and (c) in the critical Heisenberg model with the next-nearest-neighbor interaction of
length N = 1280. The insets show the standard deviation of the entanglement Rényi entropy. Imaginary-time evolution is carried out using
second-order Trotter decomposition with a time step δτ = 0.04 for the Ising model and δτ = 0.01 for the Heisenberg model. The data are
averaged over 10 000 samples for the Ising model and 5000 samples for the Heisenberg model.
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FIG. 3. Minimum bond dimension D necessary to approximate
the TFD state and METTS with a truncation error of less than 10−10

for the critical transverse-field Ising chain with N = 640 sites. The
data points for METTS are the average of D of 10 000 samples. The
error bars indicate the standard deviation. We set the quantization
axis ν to z. Imaginary-time evolution is carried out using second-
order Trotter decomposition with a time step δτ = 0.04.

approximation in the following sense: There exists an MPS
|ψD〉 of bond dimension D such that ‖ |μi〉 − |ψD〉 ‖2

2 �
2

∑N−1
NA=1 ε. Furthermore, ε can be bounded from above by

log ε � 1 − q

q

(
S(q)

A − log
D

1 − q

)
, (12)

for any 0 < q < 1 [4]. By inverting this inequality, we find an
upper bound on the bond dimension necessary to approximate
the METTS within the truncation error ε:

log D � S(q)
A − q

1 − q
log ε + log(1 − q). (13)

Substituting the numerical result (11), we get an upper bound
on D for generic METTS scales as

O
(
N0β

c
12 (1+q−1 )

)
, (14)

for fixed ε and q. Note that the constant factor depends on ε

and q, and hence it does not necessarily mean that the highest
efficiency is achieved at q = 1. On the other hand, also for the
TFD state, there is an upper bound on D that scales as [15]

O
(
N0β

c
6 (1+q−1 )

)
. (15)

Then we numerically check the bond dimension necessary
to approximate the TFD state and METTS. In Fig. 3, we show
the minimum bond dimension needed to achieve a truncation
error ε of less than 10−10 for the TFD state and METTS as a
function of β. We can confirm that the exponent on β for the
TFD state is just twice that for generic METTS in the low-
temperature limit. This is consistent with Eqs. (14) and (15).

According to Ref. [2], the computation time of the
imaginary-time evolution for β scales as ND3β. Therefore,
we can efficiently produce METTS at sufficiently low temper-
atures with the computation time that scales as a polynomial
in β with an exponent smaller than that of the TFD state.

We finally demonstrate the superiority of the METTS
algorithm over the TFD algorithm at low temperatures
by comparing the computation time in actual numerical

FIG. 4. Typical trajectory of the cumulative moving average of
the energy per site u = E/N in the Markov chain of the METTS sim-
ulation for the critical transverse-field Ising chain with N = 640 sites
at β = 128. We set the quantization axis ν to z for the odd-numbered
steps and x for the even-numbered steps to reduce correlations be-
tween successive samples [22]. To avoid initial transients, we discard
the first five samples when calculating the sample averages. The solid
line shows the result of the TFD approach, considered exact, and
the shaded region shows a range of 0.1 times the standard deviation
δu(can)

β of u in ρ
(can)
β from the exact value. The inset shows the total

computation time in the METTS simulation as a function of the
number of steps in the Markov chain. The solid line shows the
computation time in the TFD simulation.

simulations. To calculate expectation values in the canonical
Gibbs state ρ

(can)
β via the METTS algorithm, we generate

a Markov chain of METTS so that the long-time average
coincides with ρ

(can)
β and then calculate the average of the ex-

pectation values in METTS sampled from that chain. Figure 4
depicts a typical trajectory of the cumulative moving average
of the energy per site u = E/N in METTS and the compu-
tation time in the METTS simulation. It can be seen that it
only takes about 20 steps for sample averages to converge
within a range of 0.1 times the standard deviation δu(can)

β of

u in ρ
(can)
β from the exact value. In other words, with only

a few samples, we can correctly obtain the energy with an
accuracy sufficiently smaller than the uncertainty inherent in
the ensemble. Furthermore, we also observe that the total
computation time for reaching that step is only about 1/8
of that for the TFD algorithm. We therefore conclude that
the METTS algorithm can provide a speedup over the TFD
algorithm when analyzing low-temperature states in 1D gap-
less systems. However, in both algorithms, it is possible to
reduce the computation time by increasing the Trotter error or
truncation error within an allowable error range, and in such a
case the TFD algorithm outperform the METTS algorithm [8].
Nevertheless, these errors are difficult to control, compared to
statistical errors, which can be easily controlled by simply in-
creasing the number of samples. In addition, in the case of the
METTS algorithm, it is possible to parallelize the sampling to
reduce the computation time.

Conclusions. In this Letter, we focus on evaluating the
computational efficiency of the METTS algorithm for sim-
ulating low-temperature thermal equilibrium states in 1D
gapless systems. We find it is efficient in the sense that the
computation time scales as a polynomial function of β and has
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a significant superiority compared to the TFD method. These
are based on both the analytic upper bound and numerical
investigations on the average entanglement Rényi entropy of
METTS, which are motivated by a hint obtained in a BCFT
computation.

We would like to emphasize that, although it was well
known in the experience that a METTS usually requires fewer
bond dimensions than a TFD state and the METTS algorithm
takes less time than the TFD method in some cases, why and
to what extent this is true was not well understood so far, both
for gapped systems and gapless systems. More than justify-
ing this experimental rule, our results also demonstrated that
the speedup of METTS compared to TFD for simulating 1D
gapless systems at low temperatures is parametrically large,
i.e., the speedup gets larger as β gets larger, different from 1D
gapped systems.

From a theoretical point of view, the average entangle-
ment entropy of METTS is also capable of upper bounding
the entanglement of formation for the canonical Gibbs state,
which is defined as the minimum average entanglement over
all of its possible pure state decompositions. This further
bounds operational entanglement measures, such as distillable
entanglement and entanglement cost. It is expected that the
METTS decomposition is quite close to being optimal. Thus,

it is possible to obtain a tight bound on the entanglement of
formation with the average entanglement of METTS. There-
fore, by utilizing the results of this work, one can investigate
the amount of entanglement in canonical Gibbs states.

Last but not least, METTS are low-entanglement atypical
states mimicking thermal equilibrium. Translated to the lan-
guage of quantum gravity via the anti–de Sitter (AdS)/CFT
correspondence, this means METTS may be understood as
black hole microstates which have nontrivial structures near
the horizon [14]. Therefore, the statistical features of METTS
may play an important role in understanding the microstate
physics of black holes.
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