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Valley-driven orbital polarization induced by a magnetic impurity in monolayer NbSe2
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Due to the coupled spin-valley physics, monolayer 2D transition metal dichalcogenides (TMDs) show many
unusual electronic and transport properties. Here, we show that a magnetic impurity in the metallic TMDs such
as the 2H-NbSe2 induces a large orbital polarization in its neighborhood with a Friedel type oscillation, in
addition to the usual spin polarization. We study the orbital polarization, hitherto unexplored for any impurity
system, using the impurity Green’s function approach as well as tight-binding and density functional methods.
Concrete results are presented for the Mn substitutional impurity in NbSe2 from density-functional calculations.
The orbital polarization here is due to the orbital moment imbalance between the K/K ′ valleys, which is driven
by the impurity-induced spin imbalance. Our work demonstrates the Friedel oscillation for the first time in the
orbital channel. Our results should be readily accessible for experimental study using techniques such as the spin
polarized scanning tunneling microscopy.
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Introduction. It is well known that an impurity center in
a metal causes charge fluctuations in the electron gas, giving
rise to the characteristic Friedel oscillations [1]. Similarly, a
magnetic impurity causes spin polarization (SP) in its neigh-
borhood, which leads to the RKKY interaction between two
such magnetic impurities and a flurry of other magnetic phe-
nomena including the Kondo effect. Lesser known is the
orbital polarization (OP) that may be produced near the im-
purity in addition to the SP. For a complete description of
magnetism, the OP must also be considered [2]. However, or-
bital moments in the solid are often quenched or they are small
compared to the spin moments [3] and are usually neglected,
though in certain solids, especially the f -electron systems,
they can be large [4]. When the spin-orbit coupling (SOC)
term λ �L · �S is present, electrons in the vicinity of a magnetic
impurity acquire both a spin moment and an orbital moment.

Figure 1 illustrates the Friedel oscillations in the orbital
channel in the vicinity of a magnetic impurity in NbSe2,
which we have obtained from our tight-binding calculations
described below. The two-dimensional (2D) monolayer tran-
sition metal dichalcogenides (TMDs), of which the 2H-NbSe2

is a member, are of great current interest due to the cou-
pled spin-valley physics. This physics also makes them an
excellent system for a potentially large OP near an impurity.
This is because there already exists in the pristine system
a robust valley-specific orbital moment at the K/K′ valleys
as illustrated in Fig. 2. Unequal electron occupation of the
two valleys due to the exchange coupling with the impurity
spin moment can drive a large OP, if conditions are right as
discussed below.
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Note that in the pristine crystal, while the broken inversion
symmetry allows for a nonzero orbital moment at individual
k points in the Brillouin zone, the simultaneous presence of
the time-reversal symmetry enforces the net orbital moment
to be zero, when summed over the Brillouin zone. Addition of
a magnetic impurity breaks the time-reversal symmetry, and
as a result neither the spin nor the orbital moment is required
to be zero anymore.

In this Letter, we show that a magnetic impurity in the
TMDs such as 2H-NbSe2 induces a robust OP in its vicin-
ity due to the coupled spin-valley physics. The OP induced
by a magnetic impurity should exist to a varying degree in
any material with spin-orbit coupling, but could be especially
prominent in noncentrosymmetric systems, where orbital mo-
ments can exist at individual points in the Brillouin zone in
the pristine crystal. The TMDs are particularly well known
to have large orbital moments at the valley points K/K′,
which lead to a robust “valley-driven” OP. Taking the case of
2H-NbSe2 in this family of crystals, as an example, we study
the orbital moment formation around a Mn impurity. Based on
our results, we suggest the metallic TMDs to be ideal mate-
rials to observe the Friedel oscillations in the orbital channel.
Our work has added significance in view of the fact that large
orbital Hall effects have been predicted in the TMDs [5,6] and
other materials [7], and have been observed in several systems
recently [8,9].

In order to gain insight into the effect, we first make a
back-of-the-envelope estimate of the magnitude of the OP
produced at the central site by a magnetic impurity in NbSe2.
The band structure, Fig. 2, of the pristine NbSe2 shows hole
pockets at K and K′, with orbital moments originating from
the L± ≡ x2 − y2 ± ixy orbitals, while the � pocket with z2

orbital character has no orbital moment and can be ignored.
The exchange interaction with the impurity center, Hex =
−JŜ · ŝ, adds a spin-dependent perturbation at the central site.
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FIG. 1. Computed orbital polarization (OP) in the vicinity of a
magnetic impurity in NbSe2 showing the Friedel oscillations.

However, to simplify the estimate, we add this perturbation
to every site, which does not change the central site results
substantially.

In this approximation, the bands are uniformly shifted. Our
theory is valid for both ferromagnetic and antiferromagnetic J .
Assuming the former (J > 0) for concreteness, the exchange
interaction lowers the energy of the spin-up states, so that
the L+ ↑ (↓) states gain (lose) electrons at the K valley with

FIG. 2. Top: DFT band structure of the monolayer 2H-NbSe2

with color-coded orbital characters (L± blue/red, z2 green, xz + iyz
purple, and xz − iyz light blue), where L± ≡ x2 − y2 ± ixy and εF

is the Fermi energy. Bottom: Schematic bands with the hole pockets
at the valley points K and K ′. The valley-dependent spin splitting
is intrinsic to the material without any reference to the impurity. The
Mn impurity alters the spin populations differently at the two valleys,
causing a net spin and orbital polarization.

the increase given by the integral near the Fermi energy εF ,
viz., ρ+↑ = ∫ εF +J

εF
ρ(ε) dε and ρ+↓ = − ∫ εF

εF −J ρ(ε + 2λ) dε,
where ρ(ε) is the density-of-states (DOS) per valley per spin
and λ is the strength of the SOC. Note that, in the above
integrals, the DOS for the two spin bands are identical, but
shifted by the energy splitting 2λ. Similar expressions can be
written for ρ−↑ and ρ−↓ coming from the K ′ valley for the L−
states, and the net SP/OP due to both valleys can be readily
calculated with a Taylor series expansion of the DOS around
εF . The result is

�L0 = −λJρ ′
F and �S0 = JρF , (1)

where �L0 (�S0) is the OP (SP) at the central site in contact
with the magnetic impurity, ρF is the total Fermi energy DOS,
including both spins and both valleys, and ρ ′

F is its energy
derivative.

Though only valid for the central site, Eq. (1) contains
the essential points regarding the magnitude of the effect: (i)
There is no OP if λ is zero, which is expected; (ii) The OP
is much weaker as compared to the SP; and (iii) it disappears
if the DOS is flat at the Fermi energy (ρ ′

F = 0). The ratio is
given by �L0/�S0 = −λρ ′

F /ρF . Detailed results [10] show
that this ratio computed as a function of λ and J follows
Eq. (1) remarkably well and that this ratio is as large as ∼25%
for the present compounds.

We note that the valley-driven physics of how the impurity-
induced OP develops in the TMDs is different from the
mechanism of orbital polarization in usual solids. Usually,
the magnetic impurity spin polarizes the electron gas, which
then due to the SOC leads to OP. However, in the TMDs, in-
trinsic valley-contrasting orbital moments are already present
at the valley points, even without the impurity, due to the
inversion symmetry breaking [5]. The SOC then leads in turn
to a valley-contrasting spin moment (spin-orbital locking).
Time-reversal (TR) symmetry, however, ensures that the net
orbital moment is zero, as the opposite orbital moments at
the two valleys cancel. When the impurity is introduced, the
two valleys are not TR connected anymore, and a net spin
imbalance is produced due to the exchange interaction. Since
the valley states are spin-orbital locked, the spin imbalance
leads to an orbital imbalance, resulting in a net OP.

We have studied the OP quantitatively using three com-
plementary methods: (i) A realistic tight-binding Hamilto-
nian to study the effects of various interaction parameters,
(ii) density functional theory (DFT) calculations taking Mn
doped NbSe2 as an example, and (iii) the impurity Green’s
function approach using the low-energy Hamiltonian, which
yields the long-distance behavior.

Tight binding model. We consider the tight-binding (TB)
Hamiltonian for the Nb d electrons with a large NbSe2 super-
cell (up to 21 × 21 f.u.). An exchange interaction J is added
to the central Nb site to model the magnetic impurity, so that
the Hamiltonian is

H =
∑
nsσ

εsnnsσ +
∑

〈nn′〉ss′σ

tns,n′s′ (c†
nsσ cn′s′σ + H.c.)

+ λ �L · �S − J
∑

s

(n0s↑ − n0s↓), (2)
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FIG. 3. Orbital and spin polarization along the zigzag direction
in NbSe2 from the TB Hamiltonian Eq. (2) with the impurity po-
tential J = 1 eV and J ′ = 0.5 eV. Both OP and SP show oscillatory
behavior, with the amplitudes falling off roughly as r−2. Insets show
the OP/SP, which are multiplied by r2 except for the impurity site
(r = 0).

where c†
nsσ creates an electron, with n, s, σ being the site,

orbital, and spin indices, nnsσ is the number operator, εs is
the on-site orbital energy, λ is the strength of the SOC, and
the last term describes the exchange interaction with the mag-
netic atom. We also considered an additional 1NN exchange
interaction, −J ′ ∑

pm(npm↑ − npm↓), where p is summed over
the 1NN of the central site, and m is the orbital index, to model
the DFT results better. The typical exchange interaction is J ≈
1 eV, while J ′ is a few tenths of an eV. We kept the minimal
number of basis set, viz., |z2〉, |xy〉, and |x2 − y2〉 orbitals, and
followed a symmetry-based approach [17,18] to construct the
TB Hamiltonian in the momentum space, keeping up to the
3NN hopping. The advantage of this approach is that the full
symmetry of the structure is incorporated, though the ligand
orbitals are not explicitly included in the Hamiltonian. The
TB parameters were obtained by fitting to the DFT results for
the monolayer NbSe2 (see the Supplemental Material [10] for
details).

We diagonalized the TB Hamiltonian Eq. (2) and obtained
the site-specific spin/orbital occupancies ρ lσ

n by summing
over the occupied eigenstates ψkν : ρ lσ

n = ∑occ
kν |〈nlσ |ψkν〉|2,

where k is the Bloch momentum, ν is the band index, n is the
site index, l = L+, L−, or z2, and σ =↑ or ↓. The site-specific
SP/OP are then given by

�Sn = (
ρL+↑

n + ρL−↑
n + ρz2↑

n

) − (
ρL+↓

n + ρL−↓
n + ρz2↓

n

)
,

�Ln = (
ρL+↑

n + ρL+↓
n

) − (
ρL−↑

n + ρL−↓
n

)
. (3)

The computed values of �Sn and �Ln from the TB model
are shown in Figs. 1 and 3, which show a robust OP including
the Friedel oscillations, with the amplitude falling off as ∼r−2.

FIG. 4. OP/SP near a Mn impurity in 2H-NbSe2 from DFT. The
SP is shown by the color-coded spin density contours, blue/green
for spin up/down, while the OP is indicated by the colored circles
(L+ counter-clockwise and L− clockwise), with the circle size pro-
portional to the magnitude of the OP. In this figure and in Fig. 5, the
sign of the impurity Mn moment (black dot at the center) is negative
or spin down.

The polarizations are entirely due to the magnetic impurity, as
symmetry dictates that for the pristine crystal, both OP and SP
are zero, though nonzero polarizations can exist in different
parts of the BZ.

Density functional results. As a concrete example, using
DFT and supercell geometry, we studied the orbital polar-
ization in the neighborhood of a Mn impurity in NbSe2. A
large supercell, (NbSe2)17×17/Mn, where a single Mn atom
replaced the central Nb atom was used. The DFT calculations
were performed with the projector augmented wave (PAW)
[19] method as implemented in the Vienna ab initio simulation
package (VASP) [20], using the generalized gradient approx-
imation (GGA) for the exchange-correlation functional. The
computed band structure (see the Supplemental Material [10]
for details) shows that the Mn atom has Mn(d3↑) configura-
tion, with its energy deep below εF , occurring in the Se (p)
manifold of bands. Its role, therefore, is to simply provide an
exchange energy term to the partially filled Nb(d2) valence
states, as captured in the TB model, Eq. (2).

The computed OP/SP near the impurity site is shown in
Figs. 4 and 5. The SP/OP in the immediate proximity of the
impurity is opposite to the impurity Mn moment due to the an-
tiferromagnetic exchange interaction. From Fig. 5, we see that
for the various sites, OP is roughly proportional to the SP, as
suggested from Eq. (1), and the ratio between them �Ln/�Sn

is as large as 25%, which is remarkably high as compared
to the typical 3–5% in the bulk 3d crystals such as Fe, Co,
and Ni [2,3]. The predicted large value makes these systems
ideal candidates for the experimental observation of the OP.
We note that because of system size limitations, explicit DFT
results for the Friedel oscillations have been obtained so far
only in quasi-1D systems to our knowledge, viz., near metal
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FIG. 5. DFT results for the orbital and spin polarization com-
puted for the NbSe2/Mn along the zigzag chain using a 17 × 17
supercell, showing Friedel oscillations and a robust OP which is
about 25% of the SP.

surfaces along the normal direction [21]. Our results presented
here are the first DFT results of Friedel oscillations in dimen-
sions higher than 1D. This is also the first study of the Friedel
oscillation in the orbital channel.

Impurity Green’s function. Although the DFT results in
Fig. 5 already show the oscillatory behavior close to the im-
purity, one can not go to larger distances due to the system
size limitations as mentioned above. In order to study the
long-range behavior of the OP, we have used the impurity
Green’s function approach for the well known valley orbital
model [22]. This low energy Hamiltonian model describes the
band structure at the valley points quite well, but it is not
designed for the � point bands. However, the � point is not
important for the OP, because the hole pocket at � has largely
z2 character with zero orbital momentum. The valley orbital
model Hamiltonian reads

H0(�q) = �d · �σ + τλ

2
(σz + 1)sz, (4)

where �s is the electron spin and �σ is the orbital pseudospin
with |u〉 = Lτ ≡ (

√
2)−1(|x2 − y2〉 + iτ |xy〉) and |d〉 = |z2〉,

τ = ±1 is the valley index for K and K ′ valleys, λ is the
SOC constant, dx = τ tqxa, dy = −tqya, and dz = −�/2,
where a is the lattice constant, � is the energy gap,
t is an effective hopping integral, and momentum �q is
measured with respect to the valley point K or K ′. For NbSe2,
parameters are [23] a = 3.45 Å, t = −0.8 eV, � = 1.3 eV,
and λ = 0.075 eV. We add a magnetic perturbation at
the central site Vns,n′s′ = Vs δn0δn′0, δss′ , where n/s are the
site/orbital indices. With Hex = −JŜ · ŝ added to the central
site, the perturbing potential is

V0s,0s′ =

⎡
⎢⎢⎣

−J 0 0 0
0 −J 0 0
0 0 J 0
0 0 0 J

⎤
⎥⎥⎦, (5)

where the basis s = |u ↑〉, |d ↑〉, |u ↓〉, and |d ↓〉, and u/d
denotes the orbital pseudospin states.

We are interested in the site and orbital projected DOS,
which can be obtained from the imaginary part of the Green’s
function: ρs

n(E ) = −π−1Im Gns,ns(E ), where G(E ) = (E +
iη − H)−1 and H = H0 + V . From the Dyson’s equation, we
have G = G0 + G0V G, where G0 is the unperturbed Green’s
function. In the real-space basis, its matrix elements can be
computed from the eigenstates (ε�kν

, φs
�kν

):

G0
ns,n′s′ (E ) = 1

N

∑
�kν

φs′∗
�kν

φs
�kν

ei�k·( �Rn− �Rn′ )

E − ε�kν
+ iη

, (6)

where �Rn denote the lattice vectors. Since the perturbation V
is diagonal and on a single site, the diagonal elements of G
needed for the calculation of ρs

n(E ), assume a simple form:

Gns,ns = G0
ns,ns + [

V1G0
ns,01 V2G0

ns,02 V3G0
ns,03 V4G0

ns,04

]

⎡
⎢⎢⎢⎢⎢⎣

1 − g11 g12 g13 g14

g21 1 − g22 g23 g24

g31 g32 1 − g33 g34

g41 g42 g43 1 − g44

⎤
⎥⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎣

G0
01,ns

G0
02,ns

G0
03,ns

G0
04,ns

⎤
⎥⎥⎥⎥⎦

, (7)

where gss′ ≡ Vs′G0
0s,0s′ , V1 = V2 = −J, and V3 = V4 = J . If

the crystal has no virtual or localized states, in the weak-
coupling limit, the 4 × 4 matrix above can be replaced by
unity, so that Gns,ns = G0

ns,ns + ∑
s′ Vs′ G0

ns,0s′ G0
0s′,ns. How-

ever, in 1D or 2D, bound states occur even with the smallest
perturbation, so that one must use the full equation Eq. (7).
With our central-site potential, which is attractive for the
spin up channel and repulsive for the spin down channel, a
resonant state occurs in the spin up channel (see the SM [10]
for more details). The site-orbital occupation is simply the
imaginary part of the full GF, integrated to the Fermi energy,
ρs

n = ∫ εF

−∞ ρs
n(E ) dE , from which the OP is computed using

Eq. (3). Results are shown in Fig. 6, which indicates a robust
OP with the Friedel oscillations with an oscillation period of
π/kF , similar to the well-known Friedel oscillations in the
charge and spin channels.

In conclusion, we have studied the orbital polarization in
the vicinity of a magnetic impurity in the metallic TMDs
and predicted a robust orbital polarization together with char-
acteristic Friedel oscillations, which fall off as ∼r−2 with
distance. The effect is large because in this noncentrosym-
metric system, large orbital moments are already present at the
valley points of the Brillouin zone in the pristine material. The
magnetic impurity induces spin polarization in its vicinity due
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FIG. 6. Friedel oscillations of the OP along the zigzag direction,
computed from the impurity Green’s function for the valley orbital
model, Eq. (4), with the exchange parameter J = 5 eV.

to exchange coupling via spin imbalance at the two valleys,
which in turn leads to the orbital polarization due to the spin-
orbit coupling term. The effect was modeled by considering
the electronic structure at the K/K ′ valley points using the
low-energy valley-orbital model. A concrete example of a Mn
substitutional impurity in the NbSe2 TMD was studied from
a supercell density functional calculation, which yielded a
large (�Ln/�Sn ∼ 25%) orbital polarization in the vicinity of
the impurity. Experimental measurement of the effect using
spin polarized scanning tunneling microscopy and magnetic
exchange force microscopy [24,25] or other techniques would
be important to advance the field.
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