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Measure of an ultranarrow topological gap via quantum noise
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Advent of new-generation materials, with flat topological bands and ultranarrow band gaps (in the order
of 1 meV), poses challenges on their precise characterization. We uncover a useful connection between the
integrated current noise S(ω) and the topological band gap in dispersionless quantum states,

∫
dω[Sflat

xx + Sflat
yy ] =

Ce2�2 (in units h̄ = 1), where C is the Chern number, e is electric charge, and � is the topological band gap.
This relationship may serve as a working principle for experimental probe of topological band gaps in flat band
materials. Possible applications include moiré systems, such as twisted bilayer graphene and twisted transition
metal dichalcogenides, where a band gap measurement in meV regime presents an experimental challenge.

DOI: 10.1103/PhysRevB.110.L041118

Introduction. The noise is the signal: Shot noise, arising
from the graininess of electric charge, has proven to be a
useful experimental observable, enabling direct probing of
underlying properties of quantum systems [1]. As an exam-
ple, quantum shot noise has been used as a direct probe of
the fractional electric charge in the fractional quantum Hall
effect (FQHE) [2–5], an observation that validated the exis-
tence of anyonic statistics relevant to quantum computing [6].
While noise in quantum systems can have different origins,
entanglement is one of them [7]. Upon measurement with
time-resolved external tools the quantum state of entangled
entities responds in uncertain (noisy) manner. Such noise orig-
inates not from the external source, but rather from the internal
source, entanglement between the particles constituting the
interacting system. This mechanism, in particular relevant to
the topological systems, remains relatively little explored.

As it became clear from the early days of solid-state
physics, the notion of the band gap in the electronic spec-
trum is crucial for understanding the material properties. At
the same time, precise experimental determination of the gap
magnitude still remains a challenge, even more so when one
needs to measure at the millielectron-Volt (meV) scale. For
example, classical x-ray photoelectron spectroscopy (XPS)
has typical resolution of hundreds of meV [8], with similar
values for the inverse photoelectron spectroscopy (IPES) [9],
putting these methods clearly aside from the gap studies in
materials with flat bands, such as twisted graphene multilayers
and transition metal dichalcogenides [10–17]. More advanced
techniques, like angle-resolved photoemission spectroscopy
(ARPES) and scanning tunneling spectroscopy (STS) can po-
tentially offer energy resolution of the order of meV and even
better, but are rather sensitive to the sample quality and require
additional care in terms of the surface preparation [18–20].
Additionally, data interpretation for every given experimental
technique can hold some intrinsic ambiguities, often leading
to the apparent disagreement of the results across different
measurements of the same system. Such challenges instigate

novel proposals for the band gap measurement in quantum
materials with flat bands and narrow band gaps.

In this paper, we propose a method for probing topolog-
ical band gaps in quantum materials with narrow bands by
using frequency-resolved current noise measurements at low
temperatures, a standard technique in modern solid-state labs
[21]. Our approach takes advantage of the nontrivial quan-
tum geometry (Fubini-Study metric) of electrons, indicating
that the probe of the topological band gaps is a consequence
of the entanglement of electronic orbitals. While we highlight
the case with two flat Chern bands for clarity, our derivations,
implemented using Kubo linear response theory at finite tem-
perature, are applicable to an arbitrary number of electronic
orbitals, and extend to Bloch topology of various nature, e.g.,
Euler Bloch bands. Therefore, our proposal could be useful
for more accurate measurements of narrow band gaps, which
are characteristic of flat-band materials such as magic-angle
twisted bilayer graphene.

Approach and methodology. Within the scope of this paper,
we use the field-theoretical electric transport formalism of
Kubo [22], implemented with Matsubara technique [23] to
address the finite-temperature measurements. Our focus is the
current noise S , defined as the current-current correlator in the
real frequencies ω, in the symmetrized form [2,24]

Si j (ω) =
∫

dt eiωt 〈 {Ji(t ), Jj (0)}〉, (1)

where J is the current operator, and i, j = x, y are spatial co-
ordinates; below we work with two-dimensional (2D) systems
(we use h̄ = kB = 1 for subsequent calculations). We define
the current operator in the conventional way,

J = e
∑

k

c†
k

∂H
∂k

ck. (2)

In this equation, H represents the Hamiltonian of the system,
and c†

k and ck are the creation and annihilation operators of
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quasiparticles with momentum k, and the summation extends
over the entire Brillouin zone (BZ). We here consider weakly
interacting scenario, where the Fermi level is in the gap, and
the vertex corrections to polarization bubble can be neglected
[25]. Starting from definitions, (1) and (2), we use the Kubo
formalism in Matsubara representation. Upon implementation
of Wick’s theorem, the quantum noise in imaginary time τ

reads

S±
i j (τ ) = ie2

∑
k

Tr Gk(±τ )Vi Gk(τ )V j, (3)

where Vi ≡ ∂H/∂ki, Gk(τ ) is the quasiparticle propagator,
and prefactor i comes from Wick’s rotation to imaginary
time. To evaluate S(ω) we need to consider both contribu-
tions S+

i j (τ ) and S−
i j (τ ). We first focus on S−

i j (τ ). Proceeding

to Matsubara transform, G(τ ) = 1
β

∑
iω′

n
e−iω′

nτ G(iω′
n), we

obtain

S−
i j (iω0) = ie2

β

∑
k

∑
iω′

n

Tr Gk(iω′
n − iω0)ViGk(iω′

n)V j, (4)

where β is inverse temperature (β = 1/T ), and ωn are Mat-
subara frequencies [26]. Here iω′

n are fermionic Matsubara
frequencies, and iω0 are bosonic. In what follows below,
we operate with dimensionless quantities defined as S (ω) =
ie2S̃ (ω), and restore dimensional units at the end of cal-
culation. Proceeding to the analytical continuation of the
quasiparticle propagators, we find

S̃−
i j (iω0) = 1

β

∑
k,iω′

n

∫∫ +∞

−∞
dω1dω2

× Tr [Aω1Vi Aω2V j]

(iω′
n − iω0 − ω1)(iω′

n − ω2)
, (5)

where ω1,2 are real frequencies and A(ω) ≡ Aω is the
spectral function, related to the Green’s functions A(ω) =
− 1

π
ImGR(ω). All quantities under the trace operator assume

the k dependence; the trace is taken in the band basis.
Frequency-resolved current noise in topological materials.

To apply expression (5) to real frequencies, we take advan-
tage of the residue theorem, replacing the summation over
discrete Matsubara frequencies with a contour integral. This
method brings the benefit of isolating the contributions from
the residues within the contour, which leads to

1

β

∑
iω′

n

1

(iω′
n − iω0 − ω1)(iω′

n − ω2)
= f (ω1) − f (ω2)

ω1 − ω2 + iω0
, (6)

where f (ω) is Fermi-Dirac distribution function, and we have
taken into account that ω0 is bosonic frequency. As a result,
the equation for the current noise at the imaginary axis iω0

simplifies to

S̃−
i j (iω0) =

∑
k

∫∫ +∞

−∞
dω1dω2[ f (ω1) − f (ω2)]

× Tr [Aω1Vi Aω2V j]

ω1 − ω2 + iω0
. (7)

We proceed by computing the two integrals individually,
designating them as S− = S (1) + S (2). Upon performing an

analytic continuation to the real axis iω0 → ω + iδ, the first
contribution to the current noise becomes

S̃ (1)
i j (ω) =

∑
k

∫∫ +∞

−∞
dω1dω2 f (ω1)

Tr [Aω1Vi Aω2V j]

ω1 − ω2 + ω + iδ
.

(8)

This expression can be further simplified upon integrating
over ω2, and using Kramers-Kronig relationships,

S̃ (1)
i j (ω) =

∑
k

∫ +∞

−∞
dω1 f (ω1) Tr

[
Aω1Vi GR

ω1+ωV j
]
. (9)

In a similar way, one arrives to

S̃ (2)
i j (ω) =

∑
k

∫ +∞

−∞
dω2 f (ω2) Tr

[
GA

ω2−ωVi Aω2V j
]
. (10)

Hence, in the real-frequency representation, the total expres-
sion for the current noise at finite temperatures is given by (see
Supplemental Material [27])

Si j (ω) = ie2
∑

k

∫ +∞

−∞
dω′ f (ω′)Li j (ω,ω′). (11)

The noise kernel Li j (ω,ω′), defined through propagators, is
given in the symmetric representation (see Supplemental Ma-
terial [27])

Li j (ω,ω′) ≡ Tr
[
Aω′ViG

R
ω′+ωV j + GA

ω′−ωVi Aω′V j

+ Aω′ViG
R
ω′−ωV j + GA

ω′+ωVi Aω′V j
]
. (12)

Here GR,A(ω) ≡ GR,A
ω represent the retarded (R) and ad-

vanced (A) propagators at frequency ω.
Formula (11) for the frequency-resolved current noise, to-

gether with the definition of the noise kernel (12), is the key
result of our paper. This formula (11) is applicable to topolog-
ical systems assuming the trace can be taken in the band basis,
and operators Vi are written in Haldane’s prescription [28,29],

Vnm = vnkδnm + �nm(k) 〈unk|∂kumk〉. (13)

In this context, vnk = ∂kεnk designates the conventional quasi-
particle velocity within the electronic band unk. �nm(k) =
εnk − εmk provides the momentum-dependent gap function,
reflecting the energy difference between the nth and mth
bands of a multiorbital system. The second element on the
right-hand side (RHS) in formula (13) corresponds to the
Berry-induced velocity [28]; see also Ref. [30]. Notably, in
an ideal flat band, the Fermi velocity nullifies at all points of
the Brillouin zone (BZ), vnk ≡ 0. Therefore, for the ideal flat
bands, our attention centers on the interband contributions,

Vflat
nm ≡ �nm(k) 〈unk|∂kumk〉, (14)

which can be used for evaluating current noise in the limit
of perfectly flat bands. Thereafter, our result (11) extends
the research of Neupert-Chamon-Mudry [31] to the case of
finite temperatures, arbitrary band dispersion (including per-
fectly flat bands), and moderate interactions, which sustain the
quasiparticle poles. Formula (11) serves as the cornerstone of
our subsequent analysis pertaining to topological flat bands
and associated band gaps.
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Topological flat bands. Our subsequent discussion concen-
trates on flat topological bands in a multiorbital electronic
system. We retain the ε(k) dependence to facilitate general-
ization to dispersive bands and account for approximations
related to real-world flat bands, if needed. The impact of mod-
erate electronic interactions preserving the quasiparticle poles
will be examined. Although the formula (11) accommodates
finite-temperature effects, the thermal noise is not a subject of
our discussion, and we now restrict our consideration to the
low-temperature limit T → 0,

Si j (ω) = ie2
∑

k

∫ εF

−∞
dω′ Li j (ω,ω′), (15)

where εF represents the Fermi energy positioned within the
band gap. We assume the electronic bands to be well resolved
in the presence of moderate interactions (quasiparticle poles
are well defined), and thereafter the trace in noise kernel Li j

can be evaluated in the band basis. Following formula (15),
the frequency-dependent current noise for a system with at
least one flat band at low temperature T → 0 is given by

Sflat
i j (ω) = e2

∑
k

∑
n

∑
m �=n

�2
nm(k)λnm

k (ω, εF )Gnm
i j (k), (16)

where k dependence in �2
nm(k) takes into account that other

m �= n bands may or may not be flat, and noise function is
defined as λnm

k (ω, εF ) = i
∫ εF

−∞ dω′αnm
k (ω,ω′), with

αnm
k (ω,ω′) = An(ω′, k)

[
GR

m(ω′ + ω, k) + GR
m(ω′ − ω, k)

]
+ [

GA
n (ω′ − ω, k) + GA

n (ω′ + ω, k)
]
Am(ω′, k).

(17)

Further, the term Gnm
i j (k) represents the multiorbital quantum-

geometric tensor [29,32], defined as

Gnm
i j (k) ≡ 〈

∂ki unk
∣∣umk

〉〈
umk

∣∣∂k j unk
〉
. (18)

Note that summing over all other bands
∑

m �=n G
nm
i j = G

(n)
i j ,

is setting the quantum-geometric tensor G(n)
i j of the nth band,

defined by formula

G
(n)
i j (k) = 〈

∂ki unk
∣∣[1 − |unk〉〈unk|]

∣∣∂k j unk
〉
. (19)

The real part of quantum metric tensor G
(n)
i j (k) = Gi j (k) −

i
2εi jFxy is Fubini-Study metric Gi j [33–35] is responsible for
geometry of the manifold, while the imaginary part is related
to Berry curvature Fxy, responsible for topology. In ideal flat
bands, the quantum geometric tensor’s imaginary and real
parts are intrinsically connected [36,37], see also [38] and
[39],

TrGi j (k) = |Fxy(k)|. (20)

We further use this formula with convention for the positively-
defined Berry curvature. In our definition, ideal flat Chern
bands satisfy criterion (20). This is asymptotically fulfilled
with high accuracy in realistic materials, such as twisted bi-
layer graphene [40].

Equation (16) offers a universal expression for quantum
noise in dispersionless quantum states with nontrivial Wannier
orbitals. The size and overlaps of electronic orbitals is set
by the trace of the quantum metric

∑
k TrGi j (k) [41]. As a

consequence, in topological insulators the Wannier orbitals
cannot be exponentially localized in 2D [42,43], hence their
quantum geometric tensor shall significantly contribute to the
quantum noise via Eqs. (16)–(18). Furthermore, the quantum
noise (16) serves as a probe for the bandgap �. To illustrate
this link, we examine a minimal model involving two flat
Chern bands.

Two-band dispersionless Chern insulator. We now specif-
ically focus on a two-band model characterized by nearly
dispersionless flat topological bands. For instance, such sys-
tem can be engineered starting from the Haldane model [44]
by introducing long-range hopping elements that further flat-
ten the bands. By fine-tuning the hopping parameters within
the extended hopping range �, the Chern bands of Haldane
model can be rendered flat with an exceptional degree of
precision [36,45]. Each band in this system is characterized
by the (first) Chern number C, a topological invariant, which
can take any integer values by virtue of expression

C = 1

2π

∫
BZ

d2kFxy(k). (21)

Specifically, in the context of the Haldane model, C acquires
values of ±1. Moreover, our framework allows usage of other
flat topological bands with arbitrary high Chern numbers, and
Bloch topologies characterized by other topological invari-
ants, such as Euler numbers. These straightforward models
bear relevance to real-world materials, including twisted bi-
layer graphene and twisted transition metal dichalcogenides,
known to feature nearly-flat topological bands [46–48].

In the case of two flat topological bands, separated by a gap
�, the expression for quantum noise (16) simplifies,

Sflat
i j (ω) = e2�2

∑
k

λk(ω, εF )Gi j (k). (22)

In this context, Gi j (k) corresponds to the quantum-geometric
tensor (19) of the filled band (band index is omitted), and the
Fermi level is positioned in the gap.

The key takeaway of formula (22) is that the current noise
in this case probes the topological band gap �, irrespective
of the structure of quasiparticle propagators. Such prob-
ing, however, relies on complicated frequency dependence in
λk(ω, εF ), and requires in-depth knowledge of interactions
in the system and knowledge of exact behavior of the quan-
tum metric within the Brillouin zone Gi j (k). To avoid these
complications, we implement the integrated across frequen-
cies current noise, a quantity, which serves as an unequivocal
probe for the topological band gap.

Integrated current noise. Although the noise function
λk(ω; εF ), defined above Eq. (17), demonstrates a nonuniver-
sal frequency dependence, its integrated structure can yield
a concise analytical result. Such approach is motivated by
experimental methods involving interpretations of quantum
noise, where the noise characteristics are often averaged. We
proceed with considering noise function λk(ω) for the case
with the Fermi level in the gap. We assume that the Dyson
equation for the interacting system

Gn(k, ω) = 1

ω − εnk − n(k, ω)
, (23)
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can be self-consistently resolved in terms of quasiparticles

Gn(k, ω) 	 Znk

ω − εnk + iγnk
+ Regular part, (24)

where the renormalized band dispersion is given by equation
εnk = εnk + Re n(k, εnk ). The well-resolved quasiparticles
are characterized by the quasiparticle weight Znk ∼ 1, with

Znk =
[

1 − ∂n(ω, k)

∂ω

]−1

ω=εnk

, (25)

and the quasiparticle (inverse) lifetime is accounted by

γnk = Im(εnk, k). (26)

While manifestations of interactions can be rich and diverse in
their nature, we presume that interactions in our case preserve
the order of quasiparticle poles, and keep the bands flat (i.e.,
εnk ≈ const), leading to an interacting band gap of �nm(k) =
εm(k) − εn(k). Our derivation below shows that interaction-
induced renormalization of the preexisting band gap does not
affect the integrated noise. Moreover, mathematical derivation
below does not require γnk to be small, in contrast to Ref. [31];
however, for physical consistency, small values are implicitly
assumed, in line with smallness of vertex corrections [25].
Thereafter the noise function from bands n and m is given by

λnm
k (ω, εF ) = i

∫ εF

−∞

dω′

π

ZnkZmkγnk

(ω′ − εnk + iγnk )(ω′ − εnk − iγnk )(ω′ − ω − εmk + iγmk )

+ ZnkZmkγmk

(ω′ − εmk + iγmk )(ω′ − εmk − iγmk )(ω′ + ω − εnk − iγnk )
+ (ω ↔ −ω). (27)

In the expression above we keep the band indices n, m for
straightforward generalization to the multiband case.

The frequency dependence can be estimated through the
residue theorem. For the two-band model with the Fermi level
in the gap, we obtain

λ12
k (ω) = 2π i

∑
ω′∗

Res
[
αnm

k (ω,ω′)
] + Regular, (28)

where αnm
k (ω,ω′) is the integrand of Eq. (27), see also def-

inition (17). The relevant poles are given by ω′
∗ = {εnk +

iγnk, εnk + ω + iγnk, εnk − ω + iγnk}. The direct evaluation
of residues yields

λ12
k (ω) = 2i[�12 + iγ12]Z1kZ2k

ω2 − [�12 + iγ12]2
+ Regular, (29)

where γnm = γmk − γnk. Note that the main contribution to
λ12

k (ω) spikes at frequencies in order of band gaps, |ω| ≈ �mn.
The contribution of the regular term can be neglected when the
lower band is fully filled, and upper band is empty.

In the two-band model, the integrated current noise is
linked to the noise function λk(ω) via Eq. (22). Subsequently,
the integrated noise for this model becomes∫ +∞

−∞
dω Sflat

i j (ω) = e2�2
∑

k

χkGi j (k), (30)

where

χk =
∫ +∞

−∞
dω λk(ω) = 2π Z1kZ2k. (31)

For many systems with Fermi level in the gap, the quasipar-
ticle weight, is close to unity, Zk 	 1[26,49]. Therefore, for
systems with well-defined quasiparticle, we have

χk 	 2π. (32)

This asymptotic, yet rather precise statement saturates in the
clean limit.

Using formulas (30) and (32), we can express the in-
tegrated quantum noise in ideal flat bands through their
topological invariants. In the context of the two-band topolog-
ical insulator discussed above, we invoke the trace condition
linking the Fubini-Study metric with the Berry curvature for
ideal flat bands (20). In the leading approximation, the inte-
grated current noise is∫ +∞

−∞
dω

[
Sflat

xx (ω) + Sflat
yy (ω)

] 	 Ce2�2. (33)

This uses the definition of Chern number C provided in
Eq. (21).

Equation (33) is the main result of our paper: It unequivo-
cally links the integrated current noise to the topological band
gap �. Interaction effects that preserve quasiparticle poles
manifest themselves through reduction of quasiparticle weight
Zk � 1. These effects are counterbalanced by the augmenta-
tion of quantum metrics deviating from the ideal (20) when the
condition for perfect band flatness is relaxed. Nevertheless,
such corrections remain secondary to the right-hand side of
formula (33). Hence, Eq. (33) stands as a robust observable
for flat band systems, applicable when the Fermi level is in
the gap and the quasiparticle description is meaningful.

Discussion. Our study revisits the current noise as a use-
ful signal in dispersionless quantum states with nontrivial
Wannier orbitals. The main findings of our paper are three-
fold: (i) A comprehensive formula for quantum noise at finite
temperature for a system with nontrivial Wannier orbitals
and moderate interactions, as presented in Eq. (11). (ii) A
low-temperature formula for quantum noise in a system with
nontrivial Wannier orbitals and at least one dispersionless
quantum state, as given by Eq. (16). (iii) A direct illustration,
using a two-orbital system, that the integrated current noise
probes the topological band gap, as captured in Eq. (33).

We propose a method for topological band gap probe:
(i) Carry out a low-temperature measurement of current
noise in two channels: Sflat

xx (t ) and Sflat
yy (t ). (ii) Perform

L041118-4
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Fourier analysis on the measured data to obtain Sflat
xx (ω) and

Sflat
yy (ω). (iii) Determine the integrated current noise S ≡∫
dω[Sflat

xx + Sflat
yy ]. (iv) Evaluate the topological band gap

using formula � ≈ 1
e

√
S

C . Estimates suggest accuracy of
such method around 10%–15%. Strong deviations from these
values presume the quasiparticle notion is broken [50]. Fur-
thermore, thermal effects can be estimated from the exact
finite-temperature expression (11). Analysis of the integrand
in Eq. (11) reveals that thermal effects become significant at
temperatures near T∗ ∼ �. In systems with a topological band
gap of approximately � ≈ 1 meV, this suggests temperatures
T∗ ∼ 0.1 meV(∼1 K) for accurate measurements. Modern
solid-state laboratories, equipped with cryostatic devices, rou-
tinely conduct transport measurements in the milliKelvin to
subKelvin range [51], facilitating such precision.

Twisted transition metal dichalcogenides (TMDs) are good
examples of materials with flat topological bands. Recent
experimental study has detected signatures of (anomalous)
fractional Chern insulators in the flat bands of twisted TMDs
[14–17,52]. In this context, a natural extension of such ex-
periments would be application of quantum noise for direct
probing of fractional electric charge in these materials [2–5].
This makes twisted TMDs a promising platform for noise
probing of topological band gaps in dispersionless quantum
states. Take, for example, a twisted MoTe2 homobilayer. At

twist angle 3.7◦, the single-particle topological band gap is
approximately 5 meV [14], and integrated quantum metric
corresponds to |C| = 1. Restoring h̄ yields integrated current
noise S1 ∼ 10−12 A2. Considering characteristic frequency
ν0 = �/h ∼ 1012 Hz, this estimate falls well within the typ-
ical resolution range of modern current noise measurements
10−28 − 10−30 A2/Hz [3].

Topological phases demonstrate resilience to moderate dis-
order. Yet stronger disorder in the topological systems may
result into emergent phases, ranging from topological Ander-
son insulators [53,54] to Sachdev-Ye-Kitaev matter without
quasiparticles [55,56]. Quantum transport in such phases is
highly nontrivial, requiring a case-specific deciphering of the
noise signal. Our work suggests future research directions.
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