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Low-frequency divergence of circular photomagnetic effect in topological semimetals
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Novel fermions with relativistic linear dispersion can emerge as low-energy excitations in topological
semimetal materials. Here, we show that the orbital moment contribution in the circular photomagnetic effect
for these topological semimetals exhibit an unconventional ω−1 frequency scaling, leading to significantly
enhanced response in the infrared window, which can be orders of magnitude larger than previous observations
on conventional materials. Furthermore, the response tensor is directly connected to the Chern numbers of the
emergent fermions, manifesting their topological character. Our work reveals a new signature of topological
semimetals and suggests them as promising platforms for optoelectronics and spintronics applications.
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Topological semimetals, which host unconventional emer-
gent fermion modes around band nodal points at the Fermi
level, have been a focus of research in recent years [1–4].
For example, in a Weyl semimetal, the electrons around the
so-called Weyl nodal points acquire a relativistic linear dis-
persion and are described by the Weyl Hamiltonian with
an emergent pseudospin-1/2 structure [5,6]. Recent studies
showed that generalizations of Weyl fermions with higher
pseudospins of the form ∼k · S also exist in crystalline ma-
terials and can be engineered in artificial structures [7–11].
The unusual linear dispersion, the pseudospin structure, and
the possible topological charge of these emergent fermions
should exhibit unique signatures in many physical phenomena
[12–24], and this constitutes a main topic of current research
on topological semimetals.

Circularly polarized light is a powerful probe of band
topology [25–27]. As shown by de Juan et al. [28], it generates
in Weyl semimetals a quantized injection current contribution
to the circular photogalvanic effect, and the result can be
extended to higher pseudospin cases [29,30]. Since circu-
larly polarized light carries an intrinsic angular momentum,
its absorption in a material can generate a magnetization.
This circular photomagnetic effect (CPME), also known as
the inverse Faraday effect [31–39] or nonlinear Edelstein ef-
fect [40], has recently been considered in Weyl semimetals
[41–43]. Notably, Gao et al. found that the spin contribution
to CPME in Weyl semimetals is frequency independent (∼ω0)
and manifests the topological structure of Weyl fermions [43].
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In this work, we show that the orbital moment contri-
bution to CPME, while vanishing for Weyl fermions, can
generate a significant magnetization in topological semimetals
with higher pseudospin fermions. Importantly, the result has
a universal ω−1 scaling, which makes it dominant at low
frequencies as shown in Fig. 1. Moreover, we reveal that
the response tensor can be expressed in termed of the Chern
numbers of bands involved in the optical transitions, exhibit-
ing the topological character of the system. The corrections
due to lattice effect and the spin contribution are discussed
and found to be subdominant in the infrared window. Based
on realistic parameters, the resulting magnetization can reach
0.1 μB/nm3 under an infrared light with intensity 1013 W/m2,
which can be readily detected in experiment. Our work dis-
covers a nonlinear optical signature of topological semimetals

FIG. 1. Sketch of CPME in topological semimetals with emer-
gent relativistic fermion. Under a circular polarized light, a static
magnetization can be generated. In this case, the product of fre-
quency ω with response tensor β(ω) shows a flat plateau at low
energies.
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and suggests these materials as promising platforms for op-
tospintronics.

General formula. We consider a three-dimensional (3D)
nonmagnetic solid under the irradiation of a circularly po-
larized light with frequency ω. The induced magnetization
corresponding to CPME should flip its sign under the reversal
of circular polarization. It can be generally expressed as

Ma = βab(ω)[iE(ω) × E(−ω)]b, (1)

where E is the electric field of light, β is the CPME response
tensor, and the subscripts a and b label the Cartesian com-
ponents. The expression of β can be derived by using the
second-order perturbation theory. In general, there are both
spin and orbital contributions to the induced magnetization. In
this work, our focus is on the contribution by orbital magnetic
moment, which within the single-particle approximation can
be put into the following form [40,44] (we set e = h̄ = 1):

βab(ω) = πτ

V

∑
mn,k

fnm,k�
a
mn,kRb

mn,kδ(εmn,k − ω). (2)

Here, τ is the electron relaxation time, V is the volume of
the system, fnm,k = fnk − fmk with fnk the Fermi-Dirac dis-
tribution function of state |unk〉, Rd

mn,k = iεdbcrb
mn,krc

nm,k with
rmn,k = i〈umk|∂kunk〉 (m �= n) the interband Berry connection,
εmn,k = εmk − εnk and �a

mn,k = μa
mk − μa

nk represent the en-
ergy and orbital magnetic moment differences between the
states involved in the optical transition, where εmk is the band
energy and μa

mk is given by [45–49]

μa
mk = −εabc i

2
〈∂kbumk|[H (k) − εmk]|∂kc umk〉, (3)

with H (k) the unperturbed Bloch Hamiltonian. In deriving
Eq. (2), we follow common practice to drop the off-diagonal
elements of orbital moment [44], which usually give negligi-
ble contribution compared to the diagonal ones [40,50], unless
the diagonal contribution is forbidden by symmetry (e.g., in
systems with both time reversal and inversion symmetries
[38]).

The formula (2) corresponds to a simple physical picture.
Under the light irradiation, the optical transition between
|unk〉 and |umk〉 would result in a change of orbital magnetic
moment if �a

mn,k is nonzero. For a nonmagnetic system, the
contributions from k and −k states would cancel each other if
they have the same transition rates. The circular polarization
of light breaks this symmetry and hence can result in a net
magnetization. Furthermore, the diagonal orbital moment μa

nk
is odd under time reversal and even under spatial inversion
[45]. Therefore, the inversion symmetry must be broken for
this contribution to be nonzero. This means that the target
system should belong to one of the 21 noncentrosymmetric
point groups. They covers the gyrotropic and piezoelectric
point groups, including C1, C2, Cs, D2, C2v , C4, S4, D4, C4v ,
D2d , C3, D3, C3v , C6, C3h, D6, C6v , D3h, T , O, and Td .

In addition, �a
mn,k vanishes for a strict two-band system.

Hence, the orbital moment contribution is expected to be small
in systems with only two isolated bands in the optical transi-
tion range, such as the case for Weyl fermions. Nevertheless,
as we will show below, the effect is significantly enhanced for
topological semimetals with higher pseudospin fermions.

Scaling relation for linear fermions. Before doing any de-
tailed calculations, we first argue that the response tensor in
Eq. (2) follows a ω−1 frequency scaling for higher pseudospin
fermions due to their relativistic linear dispersion.

Consider a generic effective Hamiltonian for emergent
fermions with linear dispersion:

H = k · �, (4)

where k is the momentum measured from the nodal point,
and � is a vector of k-independent matrices with dimension
corresponding to the degeneracy of the nodal point. A crucial
feature here is that the eigenstate |unk〉 only depends on direc-
tion of k vector, i.e., k̂, but not its magnitude k.

Let us consider the following scaling transformation in
momentum and frequency:

k → k′ = λk, ω → ω′ = λω, (5)

with λ a real number. For the linearly dispersing fermions in
Eq. (4), one has H (λk) = λH (k) and εm,λk = λεm,k. More-
over, due to the feature noted above, the eigenstates remain
invariant under this rescaling, i.e., |un,λk〉 = |unk〉. It follows
that in Eq. (2), Ra

mn,λk = λ−2Ra
mn,k and μa

n,λk = λ−1μa
nk. Con-

sider the low-temperature regime, where fnk ≈ �(EF − εnk)
with � the step function and EF the Fermi energy. Then
the 3D integral in Eq. (2) will be reduced to a 2D integral
performed over the optical transition surface SOT consisting all
the points in the momentum space where the optical transition
occurs, i.e., where the quantity fmn,kδ(εmn,k − ω) is nonzero
for some m and n. Then one can show that as long as S remains
a closed surface enclosing the nodal point under rescaling,
the orbital moment CPME tensor follows the simple scaling
relation:

βab(λω) = λ−1βab(ω). (6)

In other words, βab scales as ω−1. If one plots the quantity
ωβab versus frequency, then it should exhibit a flat plateau
for linear fermions. There are two remarks about the scaling
relation (6). First, the analysis shows that the relation is solely
due to the linear dispersion of the emergent fermion. The
result is general in that it does not depend on the specific form
of the model (the  matrices), the degree of degeneracy of
the nodal point, nor the possible anisotropy in the dispersion.
Second, the scaling shows that the response can be divergently
large at low frequencies. (Of course, when Fermi energy
deviates from the nodal point, the effect has a lower cutoff
frequency due to Pauli blocking.) Since spin and other contri-
butions at most have a ω0 scaling at low frequencies [43], the
orbital contribution should dominate in this regime. In the fol-
lowing, we perform concrete model calculations to illustrate
these points.

Result for pseudospin- j fermions. For a concrete study,
we take pseudospin- j fermions described by the Hamiltonian
[7,8,44,51]

H (k) = χvF k · S. (7)

As mentioned above, the anisotropy does not affect the scaling
relation, so here we just take an isotropic Fermi velocity vF .
χ = ±1 represents a kind of chirality, and S is a vector of the
spin- j matrices, satisfying [Sa, Sb] = iεabcSc.
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We will show that the βab is closely connected to the
topological charge (the Chern number) of the fermions. For
the nth band (counted from bottom to top) of the pseudospin- j
particle, the Chern number is given by

Cn = −2χ ( j + 1 − n). (8)

Here, the Chern number is defined on a closed surface sur-
rounding the nodal point. The orbital moment for the nth band
is obtained as μnk = eχvF

k̂
8k [4 j( j + 1) − C2

n ]. Interestingly,
μnk depends on the absolute value of Cn but not its sign.
Hence, bands with opposite Chern numbers would have the
same orbital moment.

The pseudospin-1/2 case corresponds to the Weyl
fermions, which, as we discussed before, have a vanishing
orbital moment contribution. In the following, we will focus
on pseudospin-1 and 3/2 fermions. For j > 3/2, the qualita-
tive feature of the result remains but the expression gets more
complicated, and such nodal points are not directly stabilized
by crystalline symmetry [8].

Considering optical transitions for pseudospin-1 and 3/2
fermions, we find that for both cases, the transition is allowed
only between the nearest two bands [44]. Moreover, let us
focus on the trace of the CPME tensor in Eq. (2), because
it can be put into a compact form

Tr[β(ω)] = τ

8π2

∮
SOT

dS̃mn,k�mn,k · Rmn,k, (9)

where m = n + 1, dS̃mn,k = dSmn,k/|∂kεmn,k| is a reduced
area element over the optical transition surface. Meanwhile,
the off-diagonal elements of β(ω) vanish for the isotropic
model.

By straightforward calculation, we find that the results for
spin-1 and -3/2 fermions can be put into the following unified
form. For EF < 0, we have

Tr[β] = �0

ω
|C1|

(
C2

1 − C2
2

)
, (10)

and for EF > 0,

Tr[β] = −�0

ω
|C2 j+1|

(
C2

2 j+1 − C2
2 j

)
, (11)

where �0 = τvF /(32π ). This result explicitly demonstrates
the ω−1 scaling of the β tensor. Although the result is given
for the trace, it is clear that the scaling holds for each tensor
element. In Fig. 2, we plot the result from numerical calcula-
tion. The clear exhibition of a flat plateau in ωTr[β] confirms
the scaling behavior. In the figure, one also observes there are
cutoffs of the plateau due to Pauli blocking of optical transi-
tions. For the pseudospin-1 (-3/2) model, we have ωc

1 = |EF |
(= 2|EF |/3). For the pseudospin-3/2 model, there is also an
upper cutoff at ωc

2 = 2|EF |.
Besides the ω−1 scaling, a salient feature in the result

Eqs. (10) and (11) is that the orbital moment CPME is closely
connected to the topological charges. Furthermore, only the
absolute value of the charge comes in, not its sign. Thus, for
a pair of such nodal points with same or opposite chirality
χ = ± (e.g., related by time reversal or mirror), the net result
should double rather than canceling each other. This is distinct

(a) (c)

(b) (d)

FIG. 2. CPME for pseudospin- j fermions. (a) The band structure
and (c) the CPME at a fixed Fermi energy [horizontal dashed line
in panel (a)] for spin-1 fermions. Similar results are also shown in
panels (b) and (d) for spin-3/2 fermions. The color map in panels
(a) and (b) indicates the orbital moment of the states. The frequencies
where the CPME plateau starts and ends are marked by the black
arrows. Here we set EF = −0.2 eV, χ = 1, vF = 2 eV Å, and τ = 1
ps, and Tr[β] is in the unit of μB/(V2 Å) with μB the Bohr magneton.

from the injection current contribution to the circular photo-
galvanic effect, where points with opposite chirality would
cancel the net effect [28,30,52], so that effect can only happen
for chiral point groups which eliminates all possible mirrors.
In this sense, the constraint for the effect here is less stringent.

To guide the realization of spin-1 and 3/2 fermions, we
list the space groups that can stabilize these fermions in 3D

(a) (b)

(c) (d)

FIG. 3. Result from lattice model calculation. (a) Brillouin zone
of SG 195. (b) The band structure of a lattice model with spin-1
fermions. (c), (d) Numerical result (in blue) of the response tensor
from the lattice model. The red dash line denotes the analytical
result from the effective k · p model. We set EF = 0 eV here and the
parameters of the lattice model are presented in the Supplemental
Material [44].

L041114-3



CAO, ZENG, LI, WANG, YANG, YU, AND YAO PHYSICAL REVIEW B 110, L041114 (2024)

TABLE I. Space groups that can host the linearly dispersing emergent fermions. Here C-2 TP and C-4 DP stand for the charge-2 triple point
and charge-4 Dirac point, respectively. Spin-1 (Spin-3/2) particle is a special case of C-2 TP (C-4 DP). The form of the effective Hamiltonian
Heff are explicitly presented in the Supplemental Material [44]. The column “With SOC” indicates whether the system contains spin-orbit
coupling.

Notation SG and Location Heff With SOC

C-2 TP (spin-1 particle) 195, , R; 196, ; 197, , H; 198, ; 199, , H; 207, , R; v1k · S N
208, , R; 209, ; 210, ; 211, , H; 212, ; 213, ; 214, , H;

C-2 TP 197, P; 211, P v1k · S + v2k · S′ N
C-2 TP 199, P; 214, P v1k · S + v2k · S′ Y
C-4 DP Same as spin-1 particle v1k · S + v2k · S′ Y

nonmagnetic crystals. Meanwhile, such fermions may also
appear without symmetry protection at a critical state.
In that case, one would expect a significant enhance-
ment of the CPME response when the critical state is
approached.

Lattice model calculation. Our analysis so far is based
on the effective model around a nodal point in a topological
semimetal. In a real system, the effective model is valid in
a limited range in the energy momentum space. The lattice
effect will introduce higher order (in k) corrections to the
effective model.

For example, let us consider adding a quadratic correc-
tion term H ′ ∼ k2 to the effective Hamiltonian Eq. (4). In
the low-frequency regime, this term can be treated as a per-
turbation. The original eigenstate |u0〉 would be perturbed
into |u〉 = |u0〉 + |u′〉 with |u′〉 ∼ k. Then the correction for β

scales as β ′
ab ∝ ω0 for small ω. Therefore, similar to the spin

contribution, the correction from lattice effect is subdominant
in the low-frequency regime.

To confirm this point, we consider a lattice model of
pseudospin-1 fermions and numerically assess the correction
from lattice effect. The model belongs to the space group
No. 195 and is presented in the Supplemental Material [44].
Its band structure is plotted in Fig. 3(b). There are two
pseudospin-1 nodal points at  and R points in the Brillouin
zone (see Table I). The two points have opposite chirality.
The Chern number for the point at  (R) point is calculated
as C = 2 (C = −2) for the lowest band. From our result in
Eq. (10), one expects that the contributions from the two
points would add up and a plateau should appear in ωTr[β]
at low frequencies. This is indeed verified in Fig. 3(c), where
for reference we also plot the result from the effective linear
model (the red dashed line).

Discussions. The CPME studied here is from interband op-
tical transitions. The signature plateau occurs in the frequency
range above a lower cutoff ∼|EF |. There exists intraband
contribution to CPME [41]. However, it occurs for ω 
 |EF |
and has a distinct scaling relation with ω.

Here, the excitation is by circularly polarized light. The
response may also result from linearly polarized light. How-
ever, the required symmetry condition is more stringent. For
example, with O point group symmetry, the response may
arise from circularly polarized light, but not from linearly
polarized light.

Pseudospin-1 fermions have been reported in RhSi family
materials [29], such as RhSi, RhGe, CoSi, and CoGe. Suit-
able materials hosting pseudospin-3/2 fermions are still under
investigation. Experimentally, our prediction can be probed
by the magneto-optical Kerr microscopy [53,54]. As an esti-
mation, the induced magnetization can be related to the light
intensity as M = GI , with I the intensity of the incident light.
At timescale t � τ , the photoinduced M saturates to a con-
stant value. For a topological semimetal with spin-1 fermions
at the Fermi level, we have G = 16�0

ε0cω , where ε0 is the vacuum
permittivity and c is the speed of light. Taking typical values
of τ = 10 fs, vF = 4 × 105 m/s (e.g., as in the topological
semimetal RhSi [29,52,55–57]), and an infrared pump light
with ω = 0.5 eV, G is estimated as G ∼ 1.3 × 103 μBÅ−1/W.
Under a moderate light intensity of 1013 W/m2, the induced
magnetization can reach ∼0.1 μB/nm3. This large induced
magnetization is at least an order of magnitude larger than that
observed in DyFeO3 [34] or gold nanoparticles [39], hence it
is readily detectable in experiment.
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