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Entanglement signatures of a percolating quantum system
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Entanglement measures have emerged as one of the versatile probes to diagnose quantum phases and their
transitions. Universal features in them expand their applicability to a range of systems, including those with
quenched disorder. In this Letter, we show that when the underlying lattice has percolation disorder, free fermions
at a finite density show interesting entanglement properties due to massively degenerate ground states. We define
and calculate appropriate entanglement measures such as typical, annealed, and quenched entanglement entropy
in both one and two dimensions, showing they can capture both geometrical aspects and electronic correlations
of the percolated quantum system. In particular, while typical and annealed entanglements show a volume law
character directly dependent on the number of zero modes in the system, quenched entanglement is generally
an area law albeit showing characteristic signatures of the classical percolation transition. Our work presents
an exotic interplay between the geometrical properties of a lattice and quantum entanglement in a many-body
quantum system.
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Introduction. Quantum entanglement [1,2] and their mea-
sures [3–5] have established themselves as necessary tools
to diagnose quantum phases and their transitions [6–16].
Moreover, the generalizations and extensions of bipartite en-
tanglement entropy (EE) [3] including topological EE [17,18],
entanglement negativity [19–24], witnesses [25–28], and
corner contributions [29–33] provide an encompassing frame-
work to study quantum phases in and out of equilibrium. Their
universal features at times make them indispensable to de-
fine unconventional quantum phases [34–38], particularly in
the presence of disorder [39,40]. Among disordered systems,
percolation problems [41–43], where a lattice is probabilis-
tically diluted either on the sites or bonds, are known to
exhibit second-order phase transitions, namely geometrical
phase transitions, with universal critical exponents [43–47].
For instance, in the case of bond percolation, if p is the
probability of having a bond in the system such that p = 1
is a translationally invariant lattice, then there exists a critical
value of p known as the classical percolation threshold pc,
immediately below which the lattice gets geometrically dis-
connected [43]. Such geometrical phase transitions and their
critical phenomena have been long studied in both classical
and quantum systems [48–53] and recently in the context of
topological phases [54–56]. However, the interplay of per-
colation disorder and entanglement properties has been little
explored [57]. We visit entanglement measures in light of
percolation disorder in the simplest of fermionic quantum
systems: free fermions hopping on a lattice. In particular,
we address if entanglement measures show signatures of a
geometrical phase transition. Do they still follow the usual
area/volume law [58,59] diagnostics?
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In this Letter, we investigate the above questions to show
that in percolating quantum systems, the conventional mea-
sures of bipartite entanglement entropy [60,61] have quite a
few subtleties. The nonintuitive aspect of the results arises
from massive exact degeneracy due to lattice percolation. In
particular, we show that one needs to investigate different
quantities: typical (Styp), annealed (Sann), and quenched EE
(Squen), each of which captures distinctive signatures. Interest-
ingly, they often depend on the number of exact zero modes
(N0) in the system, which is, in turn, related to the geometrical
aspects of the lattice. We finally show that even the classical
percolation threshold has footprints in quantum entanglement,
where entanglement scaling depends on the emergent fractal
nature of the largest cluster.

Measures of entanglement and free fermions. Given a wave
function |ψ〉, or the density matrix (ρ̂ = |ψ〉〈ψ |) of a system
composed of two subsystems A and B, the EE of region A
with B (or vice versa) is given by SA = −Tr(ρ̂A ln ρ̂A), where
ρ̂A = TrB ρ̂ is the reduced density matrix of the subsystem A.
However, this definition assumes that the system is described
by a unique wave function |ψ〉. But in the presence of degen-
eracies, it is more appropriate to study typical entanglement

Styp = 〈SA(ρ̂A)〉, (1)

where the averaging is done over pure state ensembles made
of degenerate wave functions [62,63]. The wave-function co-
efficients are complex and drawn from normal probability
distributions implementing a uniform Haar measure over the
unitary transformations about any reference state [64–67]. Styp

is, however, different from

Sann = SA(〈ρ̂A〉), (2)

where the averaging is done on the density matrix before
evaluating its entanglement content. Such a measure we call
annealed EE. In general, Styp < Sann, since the latter reflects
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FIG. 1. Zero-dimensional model: (a) Squen (averaged over NC ≡
103 configurations) grows linearly with the number of sites, N . Inset:
Schematic of the model and subsystems A and B. (b) Behavior of Styp

and Sann with N . The number of zero modes, N0 = N − 1. Both are
calculated using NR ≡ 104 ensembles of random pure states.

the maximum information content possible in a given Hilbert
space consistent with Page’s result [62]. For instance, in a de-
coupled two-spin system while SA may seem to be zero, Styp ∼
0.33, Sann = ln 2 [see Supplemental Material (SM) [68]].

In a many-body free-fermionic system defined on N sites
such that c†

i and ci are the fermionic creation and annihilation
operators, the ground state is often a unique Slater determinant
and the bipartite entanglement is evaluated using the Peschel
formulation of the correlator matrix C where its elements
ci j = 〈c†

i c j〉 [60,61]. However, the measure of typical and
annealed entanglement becomes important for a system with
ground state degeneracy. Thus, while for any single Slater
determinant, the EE can be given by the corresponding corre-
lator matrix S(CA), when averaged over all choices of random
wave-function coefficients over the degenerate manifold, one
gets Styp = 〈S(CA)〉 and similarly Sann = S(〈CA〉) (for an illus-
trative example of these quantities in a four-site toy model,
see SM [68]). A simple way to break such exact degenera-
cies would be to add a small perturbative Anderson disorder
η ∼ 10−12, which will choose a unique ground state. Then
we define quenched entanglement, to capture the fermionic
correlations in the system,

Squen = 〈S(CA)〉η, (3)

where the average is over disordered configurations. Before
delving into percolation problems, we illustrate the role of
these measures in a zero-dimensional system.

Zero-dimensional system. Consider an N site Hamiltonian
where the fermions can hop from a site to any other site
with strength t = −1 [see Fig. 1(a) inset] such that H =
−∑

i, j c†
i c j . The single-particle spectrum has one eigenvalue

with energy −N , while N − 1 eigenvalues are exactly zero.

A half-filled system here is thus
(

N − 1
N
2 − 1

)
-fold degenerate.

An infinitesimal η disorder of strength η = 10−12 can be
added in the form of a term

∑
i εic

†
i ci where ε ∈ [−η, η] to

break this exact degeneracy. Given the long-range character
of hopping, the entanglement content for equal bipartition
of the system such that NA = N/2 is still volume law where
Squen = svN + s0 with a coefficient sv ∼ 0.004 is shown in
Fig. 1(a). However, when such massive degeneracy is intact,

it reflects in

Styp = Squen + (
ln 2 − 1

2

)
(N0 − 1), (4)

where the second term arises from the effective geometrical
component because of N0 = N − 1 number of zero modes of
the system [see Fig. 1(b)]. The factor of (ln 2 − 1

2 ) arises from
the effective random pure states made out of N0 zero modes
[69]. In general, when the number of occupied zero modes
is f N0 (0 < f < 1), the geometrical volume law is empiri-
cally proportional to f (1 − f ) representing the effective phase
space volume (see SM [68]). Another alternate measure of
the entanglement in this system is to average the correlator
matrix first. For such a system at half filling, while cii = 1

2

and ci j = 1
2N [70], it leads to Sann ∼ N0

2 ln 2.
While it may appear that all three entanglement measures

are volume law and therefore similar, it is pertinent to em-
phasize that they all have a different physical content. While
Squen captures the fermionic correlations, which are inherently
volume law since the network is zero dimensional, the char-
acters of Styp and Sann capture the massive degeneracy of the
system—where Styp measures the average bipartite EE for any
choice of a typical pure state, Sann measures the maximal
subsystem entanglement when the complete system itself be-
comes mixed due to averaging of the correlator matrix. For
instance, the entanglement measure of the full system has
Sann �= 0 but Styp = 0. In general, when a complete system of
interest takes a mixed character, various other entanglement
measures have been found to isolate quantum correlations
between its partitions such as mutual information [71–73],
entanglement negativity [19–24], and witnesses [25–28]. Hav-
ing discussed the subtleties and the different measures of
entanglement, we now discuss quantum percolation problems,
where studying these various measures of entanglement be-
comes indispensable given spectral degeneracies.

One-dimensional percolation. We first discuss percolation
in a one-dimensional lattice, where spinless fermions hop with
the following tight-binding Hamiltonian,

H = −t
L∑

i=1

(c†
i ci+1 + H.c.), (5)

where L is the system size and t = 1. The probability of
having a bond is given by p such that at p = 0, the system
contains a completely decoupled set of sites, while at p = 1
it is a translationally invariant fermionic chain [see Fig. 2(a)].
The percolation transition, where one end of the lattice gets
connected to the other end, happens at p = pc = 1 [45,74].
The fermion filling is kept fixed at =1/2. Given the Hamil-
tonian is real and has a sublattice symmetry, it belongs to
the BDI symmetry class [75,76], which is retained under the
percolation protocol.

The fermionic ground state describes a Fermi sea at p = 1;
however, at any p < 1, given the fermions reside on dis-
connected clusters, the ground state should be interpreted
as an Anderson insulator state. This is consistent with the
effect of any uncorrelated disorder in one dimension [77,78].
The entanglement content, therefore, is generically expected
to be ∼ ln L at p = 1 and O(1) in the presence of disor-
der, as is known from Cardy-Calabrese result for critical
states [10,12,79] and area law entanglement for short-range
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FIG. 2. Bond diluted chain: (a) Subsystems A and B in an L-sized
chain, with bond occupation probability p. (b) S̃quen with p for differ-
ent values of L. (c) Scaling of S̃quen near p = pc = 1 with γ = ν = 1.
(d) Behavior of S̃typ and S̃ann with p. (e) Zero-mode density (≡Ño/L)
for L = 600 compared to the analytical result [80]. In (b), (c), and (e)
NC = 103, in (d) NC = 40, and for each configuration, NR = 102.

correlated states [14,58]. At any p given the presence of
disconnected clusters, there are spectral degeneracies that can
be split using an infinitesimal disorder η to obtain Squen [see
Fig. 2(b)]. An analytical estimate can be obtained as follows.
Given Ps is the probability of having an s-sized cluster, in
general, its maximal entanglement content in equal bipartition
is [ c

6 ln( s
π

) + c0] [10] where c is the central charge (c = 1)
of the one-dimensional bosonic conformal field theory (CFT)
and c0 is an area law piece. Thus for a thermodynamic system,

S̃quen =
∞∑

s=2

Ps

[ c

6
ln

( s

π

)
+ c0

]
, (6)

where S̃quen represents a configuration-averaged value over
Squen. Here, Ps = sns = s(1 − p)2 ps−1 which, given any p,
is the probability that an arbitrary site of the diluted chain
belongs to a cluster of s number of sites [43]. ns is the
mean number of clusters of size s. This has a linear rise at
small p and a divergence near p = 1. This analytic behavior,
along with our numerical results, is shown in Fig. 2(b) (here,
c0 = 0.409 ± 0.002). Broadly, the behavior indeed remains
an area law (with a p-dependent coefficient) except at p = 1
where the logarithmic L dependence is restored. Interestingly,
the average cluster size 〈M〉 = ∑

s sPs, diverges near p →
pc as (pc − p)−γ with γ = 1 [43]. Thus S̃quen ∼ c

6 ln〈M〉 ∼
c
6 ln ξ

γ

ν , where the geometric correlation length ξ also di-
verges as (pc − p)−ν with ν = 1 [43]. Since at p = 1, ξ ∼ L,
one expects a scaling where e6S̃quen L− γ

ν ∼ 1, which is shown
in Fig. 2(c). Thus, the entanglement measure captures the
percolation exponents near the geometrical phase transition
here at pc = 1. However, as discussed before, these results

required us to put an infinitesimal degeneracy splitting disor-
der η, which also breaks the symmetry of the full Hamiltonian.
Without any such disorder, the massive degenerate manifold
of zero modes leads to geometrical components of EE, as we
discuss next.

As the one-dimensional lattice is percolated, various clus-
ters of different sizes appear on the chain. For any odd s the
cluster has one single-particle zero-energy mode. Thus, the
zero-mode density is

N0

L
=

∞∑
m=0

n2m+1 = 1 − p

1 + p
, (7)

for an L-sized chain at percolation probability p. This ana-
lytical behavior and the disorder-averaged numerical estimate
of zero-mode number Ñ0 are shown in Fig. 2(e). A half-filled
state in such a system again leads to highly degenerate many-
body eigenspace. A uniform Haar measure here leads to

S̃typ = S̃quen + (
ln 2 − 1

2

)
Ñ0, (8)

while S̃ann ∼ Ñ0
2 ln 2. All the behaviors match the numerical

results as shown in Fig. 2(d). Interestingly, the mutual in-
formation between the two subsystems removes this large
volume law contribution and shows a rise similar to S̃quen, only
near p = 1 when the lattice gets connected (see SM [68]).
Thus, geometrical disorder, as in one-dimensional percola-
tion, provides distinctive signatures in various entanglement
measures both from intracluster fermionic correlations and
from geometric components of the lattice itself.

Two-dimensional percolation. In two-dimensional perco-
lation the system has a finite pc; for instance, in square
lattice bond percolation it is known pc = 1

2 [81–83]. At p =
pc a spanning cluster develops with critical exponent γ =
43/18 [43]. We again pose the question of different entan-
glement measures for this system. As is known that for a
two-dimensional free-fermionic system, any infinitesimal dis-
order localizes all the wave functions [77,78], thus in terms of
electronic properties, we expect the system to be localized for
all values of p [84–87] even though there have been studies
finding numerical evidence otherwise [88–94]. Given any p
the mean number of clusters containing k bonds, nk is given
by nk = ∑

t g(k, t )pk (1 − p)t where t is the perimeter of the
cluster and g(k, t ) is the geometrical factor associated with the
number of lattice animals given (k, t ) [95]. Since any square
lattice is a bipartite graph with a symmetric spectrum, the EF

remains pinned to zero at half filling even under percolation.
We find that Squen follows an area law behavior [see Fig. 3(a)],
i.e., ∝L for p < 1. While at p = 1, the complete square lattice
is restored, leading to a finite Fermi sea, the entanglement is
∼L ln L given by the Widom conjecture [12,96]. At p < 1,
however, such a momentum space description is no longer
applicable. At small p, one can enumerate the lattice animals
exactly and count their entanglement contribution, as shown
by the analytical curve in Fig. 3(a) (for details, see SM [68]).
This is in contrast to Styp and Sann, which again depend on
the extensive number of zero modes present in the system
[see Fig. 3(b)]. The density of zero modes can be estimated
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FIG. 3. Bond diluted square lattice: (a) S̃quen with p for different
system sizes. (NC = 102.) Inset: Schematic of a configuration with A
and B partitions. (b) S̃typ and S̃ann with p. NC = 10, NR = 102. (c) Ñ0

with p (NC = 102), compared to lattice animal results (see text). In
(b) and (c), L = 48.

analytically from lattice animals, given by

N0

L2
=

∑
k,t

n0(k, t )g(k, t )pk (1 − p)t , (9)

where n0(k, t ) is the number of zero modes in a cluster of
bond size k and perimeter t . A lower bound on N0, calculated
using lattice animals up to k = 4, is shown in Fig. 3(c), and
it matches well with disorder-averaged zero-mode number Ñ0

for small p values (details in SM [68]). Given the zero modes
really appear from the geometrical aspects of the clusters, it
is thus imperative that they also determine the entanglement
content.

To distill any signature of percolation transition at p = pc,
we calculate the configuration-averaged quenched bipartite
EE of the largest cluster (≡Slc

quen) as a function of p and show
this in Fig. 4(a). Interestingly, while for p < pc, Slc

quen ∝ L0,
for p > pc, Slc

quen ∝ L, where L is the linear dimension of the
lattice. Given it is known that the largest cluster follows a
scaling Ld f [43] where d f is the fractal dimension of the sys-
tem, for a typical area law behavior, we expect Slc

quen ∝ Ld f /2

near pc. A scaling collapse using this form shows a crossing
[see Fig. 4(b)] at p = pc = 0.5 with d f = 91/48 as known for
a two-dimensional percolation transition. Since this physics
should be independent of the microscopic lattice, we apply the
same analysis to a tight-binding triangular lattice [Fig. 4(c)].
Again, the same collapse shows a crossing [Fig. 4(d)] near
p = pc = 2 sin( π

18 ) [82], illustrating that the entanglement
scaling indeed follows the universal features of geometrical
phase transitions even though the exact value of pc is itself
not universal.

Outlook. Quantum entanglement and its measures have
taken a defining role in deciphering the nature of quantum
phases. In particular, the nature of low-energy excitations

FIG. 4. Largest cluster: (a) Disorder-averaged Slc
quen with p, for a

square lattice of different size L (Nc = 102). Insets: Typical config-
urations for two values of p where dark-blue sites form the largest
cluster. (b) Scaling of Slc

quen with the fractal dimension df = 91/48
shows crossing at a percolation threshold pc = 0.5. In (c) and (d),
similar to (a) and (b) but for a triangular lattice with pc ∼ 0.35 (see
text).

is often equated with whether the bipartite EE follows area
law or has logarithmic corrections. In this Letter, we revisit
various measures of quantum entanglement in the context of
percolation disorder in free-fermionic lattice Hamiltonians.
We find that percolation disorder inherently generates exten-
sive degeneracies, which gives rise to subtleties in standard
bipartite EE. It is then important to either break the massive
degeneracies by putting infinitesimal disorder which leads to
the Squen, or otherwise investigate quantities such as Styp and
Sann which includes the physics of the degenerate manifold.
We uncover that such measures have contributions from both
fermionic correlations and geometrical aspects. While Squen

generically follows area law, Styp and Sann are volume law in
character. These quantities can, in turn, be estimated from the
properties of the clusters, which either cut the entanglement
bipartition or contribute to the zero-mode degeneracies. In-
terestingly, the entanglement measure of the largest cluster
can capture even the classical percolation threshold in two
dimensions. While we have restricted our investigation to
three quantities Styp, Sann, and Squen, it would be worthwhile
to quantify the amount of classical and quantum correlations
in these systems. In physical systems where a perturbative
quenched disorder is inherent, it is expected that Squen rep-
resents a more meaningfully observable quantity than Styp.
Similarly, given in the estimation of Sann a complete density
matrix is averaged, the annealed EE contains both classical
and quantum correlations. In this context, quantities such as
mutual information and entanglement negativity may be of
interest.

While in this work we do not propose any experimen-
tal setups to measure such entanglement signatures, finding
realistic proposals [16,97–99] in this direction would be
interesting to pursue. Similarly, in this study we have fo-
cused exclusively on bipartite EE, given its relevance to
quantum condensed matter systems. Various other measures
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have been pursued in quantum information to investigate
phases and phase transitions [100,101]. A comprehensive
investigation of these, in regard to percolation disorder,
is another prospective study. Finally, investigating this
physics in both symmetry-protected topological systems and
topologically ordered systems will be an exciting future
direction.
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