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The newly discovered high-Tc nickelate superconductor La3Ni2O7 has generated significant research interest.
To uncover the pairing mechanism, it is essential to investigate the intriguing interplay between the two eg, i.e.,
dx2−y2 and dz2 orbitals. Here we conduct an infinite projected entangled-pair state (iPEPS) study of the bilayer
t-J model, directly in the thermodynamic limit and with orbitally selective parameters for dx2−y2 and dz2 orbitals,
respectively. The dx2−y2 electrons exhibit significant intralayer hopping t‖ (and spin couplings J‖) as well as strong
interlayer J⊥ passed from the dz2 electrons. However, the interlayer t⊥ is negligible in this case. In contrast, the
dz2 orbital demonstrates strong interlayer t⊥ and J⊥, while the inherent intralayer t‖ and J‖ are small. Based
on the iPEPS results, we find clear orbital-selective behaviors in La3Ni2O7. The dx2−y2 orbitals exhibit robust
superconductive (SC) order driven by the interlayer coupling J⊥, while the dz2 band shows relatively weak SC
order as a result of small t‖ (lack of coherence) but large t⊥ (strong Pauli blocking). Furthermore, by substituting
rare-earth element Pm or Sm with La, we find an enhanced SC order, which opens up a promising avenue for
discovering nickelate superconductors with even higher Tc.
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Introduction. The discovery of high-temperature supercon-
ductivity in the pressurized nickelate La3Ni2O7 [1] has raised
enthusiastic research interest both in experiment [2–7] and
theory [8–49]. From a theoretical standpoint, the bilayer struc-
ture and orbital selectivity are two defining characteristics
that set nickelate apart from cuprate superconductors. Despite
significant advancements in the studies of pairing mechanisms
using both weak- and strong-coupling approaches, there is
still a debate regarding which of the two eg orbitals [cf.,
Fig. 1(b)], dx2−y2 [21,23–25] or dz2 [26,30], is primarily re-
sponsible for the robust superconductivity in La3Ni2O7.

Specifically, the dz2 orbitals have strong interlayer hopping
t⊥ and negligible intralayer hopping t‖ [8,9,13]. With strong
renormalization due to Coulomb interactions [5,18], the dz2

orbitals are local and have strong interlayer couplings. Thus
a pair of electrons in the dz2 orbitals can form a localized
spin-singlet dimer. There are theoretical proposals that sug-
gest a pathway towards SC order, which involve introducing
holes into the rung singlets. Hybridization with neighboring
eg (dx2−y2 ) orbitals provides the dz2 holes with kinetic energy
[14,26]. As a result, the tightly bound dz2 hole pairs can move
coherently within the bilayer system, giving rise to long-range
SC order [30].

On the other hand, a contrasting viewpoint has been
put forth that suggests the dx2−y2 orbital is playing a
major role in the formation of SC order in La3Ni2O7

[21,23,25,32,36,37,39,43,47]. The Hund’s rule coupling with
a strength of about 1 eV in the system [15,18,31,45] plays a
crucial role, which transfers the interlayer coupling J⊥ from
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the dz2 orbital to the dx2−y2 orbital through the symmetrization
of spins on the two eg orbitals located on the same site. Thus
a bilayer t‖-J‖-J⊥ model well describes the correlated dx2−y2

electrons [21,23,25], which are found to host a robust and
high-Tc SC order [21,25] driven by the strong antiferromag-
netic (AFM) interlayer coupling J⊥.

In this work, we employ the fermionic infinite projected
entangled-pair state (iPEPS) approach, equipped with both
simple updates (SU) and fast full updates (FFU), to study
the bilayer t-J model, focusing on the SC orders in the two
eg orbitals. We compute the SC order parameters directly
in the thermodynamic limit, going beyond the quasi-one-
dimensional (quasi-1D) geometries in the previous density
matrix renormalization group (DMRG) studies [14,25,46],
where only quasi-long-range pairing correlations can be ob-
tained. Based on the accurate 2D iPEPS calculations, we find
that the dx2−y2 band can be the dominant contributor to the s-
wave SC order in La3Ni2O7, while the dz2 orbital has only very
weak SC pairings. Additionally, we explore the possibility of
substituting La with other rare-earth elements, and we find
that the transition temperature Tc can be enhanced with Pm
and Sm substitutions.

Bilayer t-J model for the dx2−y2 and dz2 orbitals. There are
two eg orbitals that we consider in the iPEPS calculations, the
nearly half-filled dz2 and quarter-filled dx2−y2 orbitals, each de-
scribed by a bilayer effective model [as depicted in Fig. 1(a)],

Hbilayer = −t‖
∑

〈i, j〉,μ,σ

(c†
i,μ,σ c j,μ,σ + H.c.)

+ J‖
∑

〈i, j〉,μ

(
Si,μ · S j,μ − 1

4
ni,μn j,μ

)
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FIG. 1. (a) The bilayer t-J model describing the behaviors of
dx2−y2 (left) and dz2 (right) orbitals with properly chosen parameters.
dx2−y2 orbital has nonzero intralayer hopping t‖, coupling J‖, and
effective interlayer coupling J⊥, but without interlayer hopping t⊥.
dz2 orbital has strong t⊥, J⊥ and effective t‖. The SC pairing order
parameters �x,y,z are on the NN bonds along the x, y, and z axes,
respectively (see definitions in the main text). Panel (b) illustrates
the energy levels for the two eg (dz2 and dx2−y2 ) orbitals of the two
Ni2.5+ (3d7.5) cations in one unit cell of the bilayer La3Ni2O7. Panel
(c) illustrates the unit cell with two different bulk tensors (A and
B) used in the fermionic iPEPS calculations shown in the main text.
Swap gate S is introduced to account for fermion statistics, which
equals −1 when two parity-odd indices cross, and 1 otherwise. D and
d are the bond dimensions of the geometric and physical indices.

− t⊥
∑
i,σ

(c†
i,μ=1,σ ci,μ=−1,σ + H.c.)

+ J⊥
∑

i

Si,μ=1 · Si,μ=−1, (1)

where c†
i,μ,σ (ci,μ,σ ) creates (annihilates) an electron of spin

σ = {↑,↓} at site i in layer μ = {1,−1}, and the vector
operator Si,μ = 1

2 c†
i,μ,σ (σσ,σ ′ ) ci,μ,σ ′ denotes the spin of the

electron with the Pauli matrices σ = {σx, σy, σz}. t‖ (t⊥) is the
intralayer (interlayer) hopping amplitude, and J‖ (J⊥) is the
intralayer (interlayer) AFM coupling. The double occupancy
is projected out in the bilayer t-J model as usual.

Based on the tight-binding model derived from density
functional theory (DFT) calculations [8,28], we choose t‖ =
1 and J‖ = 1/3 for the dx2−y2 orbital, together with inter-
layer J⊥ = 2/3 (while t⊥ = 0) passed from the dz2 orbital
[21,23,25]; on the other hand, for the dz2 orbital we set t⊥ = 1
and J⊥ = 2/3 reflecting the strong σ bonding of dz2 electrons,
with effective t‖ = 1/6 (while J‖ = 0) gained from hybridiza-
tion with dx2−y2 orbitals [14,46]. We believe that the so-chosen
parameters capture the essence of electron correlations in the
two eg orbitals of La3Ni2O7.

Fermionic iPEPS method. To simulate the bilayer t-J
model, we flatten the bilayer system into a single-layer system
with enlarged local Hilbert space [25], and we employ the
fermionic iPEPS method to simulate the ground state [50–59].
As illustrated in Fig. 1(c), we set a 2 × 2 unit cell with two
bulk tensors A and B arranged periodically in the iPEPS wave
function (larger unit cells produce consistent results; see the
Supplemental Material [60]), and swap gates are introduced
to encode the fermion statistics [53,54]. Each bulk tensor

FIG. 2. The SC order parameters �z for the interlayer pairing
and �x for the intralayer pairing, with varying electron density ne for
(a) dx2−y2 and (b) dz2 orbitals. �y is found to be equal to �x and thus
not shown here. We retain D up to 12, and for dx2−y2 we extrapolate
�z to the infinite-D limit [60]; for dz2 orbital a good convergence is
also reached, with SC order one order of magnitude smaller than that
of the dx2−y2 orbital. The green vertical lines mark different electron
densities in the dx2−y2 and dz2 orbitals, where nx2−y2 	 0.6 and nz2 	
0.9 in La3Ni2O7. The model parameters are t‖ = 1, J‖ = 1/3, t⊥ = 0,
J⊥ = 2/3 for dx2−y2 orbital, and t‖ = 1/6, J‖ = 0, t⊥ = 1, J⊥ = 2/3
for dz2 orbital.

has a physical bond with dimension d = 9 representing the
direct product of two eg orbitals with double occupancy pro-
jected out. The accuracy of our simulations is controlled by
the geometric bond dimension D. We optimize the iPEPS
wave function mainly using SU [54,61,62] with D retained
up to 12 and further extrapolated to infinity. The FFU [63] is
also exploited in the calculations, with bond dimension up to
D = 10, and the results are in great agreement with SU results
[60]. The expectation values are evaluated using the corner
transfer matrix renormalization group method [64,65] with an
environment bond dimension of χ = D2 that converges the
results very well.

Orbital-selective superconductivity. In Fig. 2, we present
the iPEPS results for the SC order parameters in the dx2−y2

and dz2 orbitals. The dx2−y2 results are shown in Fig. 2(a),
where we compute the interlayer SC order parameter �z =

1√
2
〈∑μ=±1 c†

i,μ,↑c†
i,−μ,↓〉 with SU and find a strong interlayer

pairing. By increasing the electron density ne, �z first in-
creases and then decreases, with a large �z = 0.13 at the
optimal density ne = 0.72. To confirm the results, in Fig. 2 we
also calculate �z with FFU and find that the results agree with
those of SU. These mutually corroborative results support a
robust SC order in the dx2−y2 orbital.

For electron density nx2−y2 = 0.6 relevant for the pristine
compound La3Ni2O7 [14,28,37,46,47], we find that the SC
order parameter is �z 	 0.12, much greater than that in a
plain 2D t-J model [64]. On the other hand, we find that
the intralayer pairings, both �x and �y [see Fig. 1(a)], are
negligible for all scanned electron densities. Here, �x(y) =

1√
2

∑
σ={↑,↓}〈sgn(σ ) c†

i,μ,σ c†
i+x̂(ŷ),μ,σ̄ 〉, with sgn(↑) = 1, sgn(↓

) = −1, σ̄ reverses the spin orientation of σ , and x̂(ŷ) is
the unit vector within the square-lattice plane (either μ = 1
or −1).

The results for the dz2 orbital are presented in Fig. 2(b). As
the electron density decreases from 1.0 to about 0.75 (i.e., hole
doped), the magnitudes of �z and �x (also �y, not shown)
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FIG. 3. The variation of interlayer SC order parameters �z of dx2−y2 orbital vs (a) t⊥ and (d) J⊥. The variations of maximal �z and the
corresponding optimal density ne are plotted vs t⊥ and J⊥ in panels (b) and (e), respectively. By increasing J⊥ for the dx2−y2 orbital, a BCS-BEC
crossover occurs in (e). Panels (c) and (f) show the evolution of interlayer hole correlations g(2)

h with ne for different tuning parameters, with
the same legends as those in (a) and (d), respectively. In panel (a), we increase t⊥ and find it changes from dx2−y2 orbital-like to a coherent dz2

(denoted as d∗
z2 ) behavior with weakened SC order. Besides J⊥ and t⊥, which are varying in the calculations, other model parameters are fixed

as t‖ = 1, J‖ = 1/3, and all the results are extrapolated to infinity D [60]. As a comparison, we also plot the results for the dz2 orbital taken
from Fig. 1(b) with a dashed line, where the SC order is further reduced due to the smaller intralayer hopping t‖ = 1/6. The vertical dashed
line in panel (d) indicates the quarter filling (i.e., n = 0.5), and the shaded bar in (e) represents the BCS-BEC crossover.

increase and then level off for ne � 0.85 (cf., the D = 10, 12
data). The typical magnitude of �z is about 0.01, one order
smaller than that of the dx2−y2 orbital shown in Fig. 2(a). These
results indicate that the dx2−y2 orbital contributes significantly
more to the superconducting order in La3Ni2O7, consistent
with recent two-orbital model calculations [14,31,46,47].

Interlayer hopping and Pauli blocking. To understand the
essential differences between the two eg orbitals in La3Ni2O7,
we investigate the effects of the interlayer hopping t⊥ and
coupling J⊥ on the SC order in Fig. 3.

To study the effect of t⊥, we fix t‖ = 1, J‖ = 1/3, and J⊥ =
2/3, and we tune t⊥ from 0 to 2. The results are presented
in Figs. 3(a) and 3(b), where �z reduces and the SC dome
moves towards larger density ne gradually with increasing
t⊥. We denote such a coherent dz2 orbital as d∗

z2 , where we
have artificially set a large t‖ = 1. One possible way to gain
such kinetic energy is through the intersite hybridization with
dx2−y2 orbital. Nevertheless, even for d∗

z2 , the obtained values
of �z are still significantly weakened due to the large t⊥,
which lead to a reduction in the interlayer pairing, even under
the presence of strong interlayer coupling J⊥.

Moreover, we find that the SC order characterized by �z

is further reduced for the realistic dz2 orbital with smaller,
but also more realistic, intralayer hopping t‖ = 1/6. The
above two factors well explain the orbital-selective super-
conductivity observed in recent numerical calculations of the
two-orbital model [14,31,46].

To gain further insight into the effect of interlayer hopping
t⊥ on the SC pairing, we study the hole-hole correlation g(2)

h≡ 〈hi,μ=1hi,μ=−1〉/(〈hi,μ=1〉〈hi,μ=−1〉) − 1, where hi,μ = 1 −
ni,μ counts the hole number. The positive (negative) values of
g(2)

h indicate bunching (antibunching) of the holes. In Fig. 3(c),

we observe that g(2)
h is always positive for t⊥ = 0, indicating

the occurrence of hole bunching between two layers. How-
ever, as t⊥ increases, g(2)

h decreases and may even cross the
g(2)

h = 0 line. This is because the interlayer hopping t⊥ can
introduce statistical repulsion between holes and is detrimen-
tal to interlayer pairing [66]. The electron density at the point
where g(2)

h crosses zero gradually increases with increasing t⊥
in Fig. 3(c), consistent with the observation that the SC dome
moves towards larger ne values as t⊥ increases in Fig. 3(a).

Interlayer coupling driven BCS-BEC crossover. In the
dx2−y2 orbital scenario, the interlayer J⊥ plays an essential role
in driving the SC pairing. To reveal the advantage and explore
the limit of the SC order in the dx2−y2 orbital, in Figs. 3(d)–3(f)
we present the results computed with model parameters t‖ =
1, J‖ = 1/3, and t⊥ = 0, similar to those used in Fig. 2(a),
but with an increased AFM coupling J⊥. In Fig. 3(d) we find
that as J⊥ increases, the interlayer SC order �z increases and
the SC dome shifts towards smaller ne. To show the effect of
J⊥ more clearly, we collect the data and plot �z versus J⊥
in Fig. 3(e), and we observe that the maximum �z increases
drastically from about 0.13 to 0.41. The optimal ne decreases
from 0.72 to 0.5 (i.e., quarter-filling), in agreement with recent
analytical results on the t‖-J‖-J⊥ model [32,36].

The strong interlayer pairing in dx2−y2 orbital can also be
witnessed by the positive g(2)

h shown in Fig. 3(f), which rep-
resents a strong bunching between the two holes on the same
interlayer vertical bond. We find that g(2)

h is always positive,
and the hole bunching becomes greater as J⊥ increases. For
sufficiently large J⊥, the hole pair changes from a loosely
bounded Cooper pair, as in the Bardeen-Cooper-Schrieffer
(BCS) theory, to a tightly bounded pair like a boson in the

L041111-3



JIALIN CHEN, FAN YANG, AND WEI LI PHYSICAL REVIEW B 110, L041111 (2024)

FIG. 4. (a) Hopping amplitudes and AFM couplings for the ele-
ment substituted R3Ni2O7 with R from La to Sm, and the superscript
x (z) represents the dx2−y2 (dz2 ) orbital. In the strong Hund’s coupling
limit, the interlayer AFM coupling can be fully passed from the dz2

orbital to the dx2−y2 one, namely, Jx
⊥ ≡ Jz

⊥ [21,25]. (b) The computed
SC order parameter �z vs density ne for the dx2−y2 orbital, with
R = La, Pm, and Sm. The green vertical line marks the estimated
electron densities ne = 0.6 for R3Ni2O7. All SU results shown have
been extrapolating to infinite D [60].

Bose-Einstein condensation (BEC). The maximal �z appears
at electron density n = 0.5, where the bosons gain the high-
est mobility. Therefore, the evolution of optimal density ne

from 0.72 to 0.5 indicates that a BCS-BEC crossover occurs
by increasing J⊥ [32], and the realistic value J⊥/t‖ ≈ 2/3
places the compound La3Ni2O7 in the BCS side. These results
highlight the potential of compounds with a similar bilayer
structure to La3Ni2O7 as a highly promising family of super-
conductors, with the possibility of achieving even higher Tc.

Mixed-dimensional bilayer pairing in La3Ni2O7. In ad-
dition to the absence of coherent behavior and small hole
densities that are essential in preventing the dz2 orbital from
achieving robust high-Tc superconductivity [21,47], we em-
phasize that the mixD bilayer structure is another critical
factor that distinguishes the two eg orbitals.

Specifically, for the dz2 orbital the optimal electron density
is close to half-filling, i.e., �0.8, similar to a conventional
single-layer Hubbard or t-J system [64]. On the other hand,
the dx2−y2 orbital can be regarded to realize a mixD bilayer
system [66,67], which has inter- and intralayer spin couplings
(J⊥, J‖) as well as intralayer hopping t‖ but no interlayer
hopping t⊥. Such a mixD bilayer system benefits from a strong
pairing force arising from the large AFM coupling J⊥ and
avoids the Pauli blocking due to the absence of interlayer t⊥.
As a result, the dx2−y2 orbital with the mixD bilayer structure
dominates in forming the SC order, which becomes progres-
sively weakened as one approaches the more conventional
bilayer structure of d∗

z2 orbitals by increasing t⊥ [see Fig. 3(a)].
Enhanced SC in R3Ni2O7 with element substitution. Re-

cently, DFT calculations showed that the Fmmm crystal
structure is retained under pressure for rare-earth (RE) el-
ement substitution [28], where the hopping amplitudes and
also exchange interactions can be enhanced [cf., Fig. 4(a)].
The authors in Ref. [28] further predicted that the pairing
and Tc would decrease with such RE substitution from La
to Sm, and that La3Ni2O7 is already “optimal.” On the other
hand, in Ref. [37], a strong-coupling analysis based on slave

boson mean-field theory predicted that the RE substitution can
significantly enhance the pairing strength and thus Tc, in sharp
contrast to the weak-coupling analysis [28].

To settle this debate, we carry out iPEPS calculations with
realistic parameters obtained from the DFT calculations [28]
shown in Fig. 4(a). With properly chosen Coulomb interaction
U = 4 eV [5,28,37], we estimate the AFM exchange inter-
actions Jz

⊥ and Jz
‖ for the dz2 orbital and Jx

‖ for the dx2−y2

orbital according to the superexchange J = 4t2/U . As shown
in Fig. 4(b), the obtained SC order parameter �z of the dx2−y2

orbital increases when substituting La from Pm to Sm, at den-
sity ne = 0.6 relevant for the nickelates. These results support
that the SC pairing can be strengthened by element substi-
tution, in agreement with the conclusion in Ref. [37] from
the strong-coupling approach. By inspecting the hopping and
coupling parameters in Fig. 4(a), we find that the enhancement
of SC order mainly originates from the increased interlayer
AFM interactions after the element substitution.

Discussion and outlook. In this work, we perform iPEPS
simulations of the single-orbital bilayer t-J model for dx2−y2 or
dz2 orbitals in La3Ni2O7, directly in the thermodynamic limit,
with corroborative simple and full update optimizations. Our
results indicate that the interlayer superconducting order in the
dx2−y2 orbital is significantly stronger compared to that in the
dz2 orbital, due to the mixD bilayer structure that facilitates the
SC order. The orbital selectivity originates from the different
values of t⊥ and t‖ in the two orbitals, which have distinct
effects on the SC order. t⊥ can introduce Pauli blocking that is
destructive for interlayer pairing, while a sufficiently large t‖
is needed to render phase coherence for long-range SC order.

Our findings provide valuable insights for achieving higher
critical temperatures Tc in superconductors with a mixD
structure. Given the crucial role of inner-apical oxygen in
modulating J⊥ and the presence of oxygen vacancies in cur-
rent La3Ni2O7 samples [68], improving the sample quality
and minimizing oxygen vacancies is a viable approach to
enhancing the interlayer exchange J⊥, and thereby increasing
Tc. Moreover, our research encourages the exploration of more
materials with a mixD structure, offering a promising avenue
for discovering novel high-Tc superconductors.

We highlight the intriguing connections between two
seemingly separate fields: the high-Tc nickelate superconduc-
tors and the optical lattice quantum simulations. In the latter,
the mixD ladder system has been realized [66] and intensively
discussed [39,41,43] recently. One possible extension of the
present study is to include the T > 0 tensor-network calcu-
lations [69–75] relevant for the nickelate and quantum gas
experiments.

Lastly, while our comparative study of the dx2−y2 and dz2

orbitals provides insights into the orbital-selective behaviors,
a comprehensive two-orbital bilayer t-J model that includes
both eg orbitals is necessary to fully address their roles in
La3Ni2O7. There were attempts to study this interplay with
DMRG calculations in ladder systems [14,46]. However, the
study of two coupled infinite layers still poses significant
challenges and is left for future studies.
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