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We show the appearance of an unconventional Majorana zero mode whose wave function splits into multiple
parts located at different ends of different one-dimensional topological superconductors, hereafter referred to as
a multilocational Majorana zero mode. Specifically, we discuss the multilocational Majorana zero modes in a
three-terminal Josephson junction consisting of topological superconductors, which forms an elemental qubit of
fault-tolerant topological quantum computers. We also demonstrate anomalously long-ranged nonlocal resonant
transport phenomena caused by the multilocational Majorana zero mode.
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Introduction. Majorana zero modes (MZMs) of topolog-
ical superconductors (TSs) have been a central issue in
condensed-matter physics [1–10]. This research field has
made remarkable progress in finding various forms of the
MZMs, such as Majorana end modes in one-dimensional TSs
[11], chiral MZMs in TSs with broken time-reversal sym-
metry [12–14], helical MZMs in time-reversal invariant TSs
[15–18], dispersionless MZMs in nodal TSs [19–23], and
Majorana hinge/corner modes in higher-order TSs [24–32].

On the basis of the bulk-boundary correspondence, which
is an essential concept in the physics of topological condensed
matter, a MZM is usually localized at one end/surface of one
TS [2–4,33–35]. In this Letter, we predict the appearance of
an unconventional MZM whose wave function splits into mul-
tiple parts located at different ends of different TSs, where the
distance between the ends hosting the MZM can exceed the
decay length of the MZM substantially (see Fig. 1). Hereafter,
we refer to this particular zero mode, which exhibits simul-
taneously the Majorana nature and the nonlocal nature, as
a multilocational Majorana zero mode (MMM). Specifically,
we discuss the appearance of the MMM in a three-terminal
Josephson junction (TJJ) consisting of one-dimensional TSs
(hereafter referred to as a topological TJJ).

Another important topic in the field of MZMs is the
transport anomalies in junctions consisting of topological
superconductors. So far, the following transport signatures
originating from MZMs have been investigated: zero-bias
conductance quantization in normal-metal–superconductor
junctions [36–43], the fractional current-phase relationship in
Josephson junctions [44–47], anomalous transport in multiter-
minal devices [48–66], and quantum teleportation in devices
including capacitors [67–69]. In this Letter, we demonstrate
that the MMM causes striking nonlocal transport phenomena,
which manifest clearly the coexistence of the Majorana nature
and the nonlocal nature.

*These authors contributed equally to this work.

The topological TJJ forms an elemental qubit of fault-
tolerant topological quantum computers [60,70–78]. At
present, topological TJJs have not yet been realized exper-
imentally. However, on the way to realizing the topological
quantum computations, which is a central goal of topological
condensed-matter physics, future experiments will certainly
build the topological TJJs. The observations of the character-
istic transport phenomena due to the MMM provide definitive
evidence for the realizations of fully functional topological
TJJs.

Multilocational Majorana zero modes. First, we consider
a low-energy effective Hamiltonian describing the couplings
between MZMs in a topological TJJ. As illustrated in
Fig. 1(a), in the absence of any couplings, one MZM appears
at each end of the three TSs, where we denote the Majo-
rana operator for the outer (inner) MZM of the αth TS as
γo(i),α = γ

†
o(i),α . In the TJJ, the couplings among these MZMs

are described by

H = 1

2
γTHγ, H =

(
03×3 iHT

−iHT HJ

)
,

HT = diag[ET,1, ET,2, ET,3],

HJ =
⎛
⎝ 0 iEJ,12 iEJ,13

−iEJ,12 0 iEJ,23

−iEJ,13 −iEJ,23 0

⎞
⎠, (1)

where γ = [γo,1, γo,2, γo,3, γi,1, γi,2, γi,3]T. The 3 × 3 null ma-
trix is represented by 03×3. The couplings between the outer
and inner MZMs of the αth TS are characterized by ET,α ∝
exp(−2Lα/ξ ) [72,79], where Lα and ξ represent the length of
the αth TS and the decay length of the MZM, respectively.
The couplings among the inner MZMs at the Josephson junc-
tion are described by HJ [11], where EJ,αβ = Cαβ sin[(φα −
φβ )/2], with Cαβ = Cβα and φα representing the supercon-
ducting phase of the αth TS. For simplicity, we ignore
long-range couplings, i.e., γo,α couples only with γi,α .
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FIG. 1. (a) Schematic image of the topological TJJ. (b) Energy
eigenvalues of the topological TJJ, where all TSs have the same
length, L = 800 ≈ 4ξ . (c) Amplitudes of the MMM in each TS.
(d) Inverse participation ratio of the MMM in α = 1.

Since originally there were three MZMs at the Joseph-
son junction, HJ becomes a 3 × 3 skew-symmetric matrix,
which always has an unpaired zero-energy eigenvalue. The
two remaining finite eigenvalues are given by ±EJ with

EJ =
√

E2
J,12 + E2

J,23 + E2
J,31 [60,77]. By applying a unitary

transformation to diagonalize HJ , as also discussed in the
Supplemental Material (SM) [80], we rewrite the Hamiltonian
as

H = 1

2
γ̃†

(
Heff V
V† EJ

)
γ̃,

Heff =

⎛
⎜⎜⎝

0 0 0 iv1

0 0 0 iv2

0 0 0 iv3

−iv1 −iv2 −iv3 0

⎞
⎟⎟⎠,

V =

⎛
⎜⎜⎝

iv1,+ iv1,−
iv2,+ iv2,−
iv3,+ iv3,−

0 0

⎞
⎟⎟⎠, EJ =

(
EJ 0
0 −EJ

)
, (2)

where γ̃ = [γo,1, γo,2, γo,3, γ0,J , γ+,J , γ−,J ]T , with γ0,J and
γ±,J corresponding to the zero-energy and the finite-energy
eigenstates of HJ , respectively. Specifically, we obtain vα =
(ET,α/2)

∑
β,γ εαβγ (EJ,βγ /EJ ), where εαβγ is the Levi-Civita

symbol. The components in V are also of the order of
ET,α [80]. Thus, in the limit of ET � EJ with ET =√

E2
T,1 + E2

T,2 + E2
T,3, the low-energy excitation of |E | � EJ

is approximately described by [81,82]

Heff = 1
2γT

effHeffγeff ,

γeff = [γo,1, γo,2, γo,3, γ0,J ]T , (3)

where the contributions from the finite-energy eigenstates at
the Josephson junction (i.e., γ±,J ) are ignored. The detailed
derivation of Heff is presented in the SM [80]. The effec-
tive low-energy Hamiltonian Heff has doubly degenerate zero
modes:

γn =
∑

α=1-3

cn
αγo,α (n = 1, 2), (4)

where the coefficients cn
α are real numbers satisfying∑

α

vαcn
α = 0,

∑
α

cn
αcm

α = δm,n. (5)

Importantly, since the coefficients cn
α are real numbers, the

Majorana relation holds, i.e., γn = γ †
n . Moreover, γn is de-

scribed by the superposition of the outer end MZMs (i.e.,
γo,α). Namely, the wave function of γn has large amplitudes
at the outer edges of different TSs. This unconventional zero
mode exhibiting both Majorana nature and nonlocal nature is
what we refer to as the MMM. Due to the degeneracy at zero
energy, there is ambiguity in the coefficients cn

α . However, the
quantity of

Pα =
∑

n=1,2

∣∣cn
α

∣∣2 =
∑
β �=α

v2
β

E2
v

,

Ev =
√

v2
1 + v2

2 + v3
3, (6)

which characterizes the amplitudes of the MZMs in the αth
TS, is independent of the choice of cn

α . As long as vα=1,2,3 �= 0,
we obtain Pα < 1 for all TSs. Namely, two MMMs are dis-
tributed over the ends of three different TSs. For instance, we
obtain P1 = P2 = P3 = 2/3 with v1 = v2 = v3, which means
that the two MMMs are equality distributed over the ends of
three different TSs. When one of vα is zero, e.g., v1 = v2 �= 0
and v3 = 0, we obtain P1 = P2 = 1/2 and P3 = 1. In this case,
one MMM is distributed over the outer edges of two TSs,
namely the first and second one, while the third TS hosts a
conventional MZM at its outer edge.

Here we numerically reproduce the appearance of the
MMM by using the tight-binding Bogoliubov–de Gennes
(BdG) Hamiltonian of a spinless p-wave superconductor (i.e.,
a Kitaev chain [11]). We note that the low-energy physics of
various one-dimensional TSs [83,84], such as superconduct-
ing semiconductor nanowires [85–88], magnetic atom chains
deposited on superconductors [89–92], and planar topological
Josephson junctions [93–101], are described effectively by
the Kitaev chain [41,89,101]. The BdG Hamiltonian reads
HBdG = ∑

α=1-3 Hα + Hd , with

Hα =
Lα−1∑
xα=1

(−tc†
xα+1cxα

+ H.c.) −
Lα∑

xα=−∞
μc†

xα
cxα

+ 1

2

Lα−1∑
xα=1

(i	eiφα c†
xα+1c†

xα
+ H.c.),

Hd =
∑

α=1-3

(−td,αc†
d cLα

+ H.c.) − μd c†
d cd , (7)

where cxα
(c†

xα
) is the annihilation (creation) operator of

an electron at a site xα of the αth branch, t is the
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nearest-neighbor hopping integral, μ denotes the chemical
potential, and 	 represents the pair potential in the super-
conducting segment. The three TSs are connected through
a single normal site, where the coupling is described by
Hd . In the following calculations, we fix the parameters as
μ = μd = −0.8t , td,α = t , and 	 = 0.01t , where the de-
cay length of MZMs is evaluated by ξ = 1/artanh(	/2t ) ≈
200. For simplicity, we assume that all TSs have the same
length L1 = L2 = L3 = L. In Fig. 1(b), we show the en-
ergy eigenvalues obtained by diagonalizing HBdG, where
L = 800 ≈ 4ξ . The superconducting phases are chosen as
(φ1, φ2, φ3) = (0, 2π/3, 4π/3), which corresponds to v1 =
v2 = v3 for the effective Hamiltonian Heff . We observe two
zero-energy states, marked by the arrows, corresponding to
two MMMs. The first excited states are approximately located
at E = ±Ev , which characterizes the necessary energy resolu-
tion to observe the MMMs. The energy Ev is proportional to
ET,α ≈ 	 cos(kF L)e−2Lα/ξ with kF = arccos(μ/2t ) and thus
oscillates and decays by increasing L [79]. We note that these
conditions might be achievable in experiments with artificial
TSs [85–101], where the coupling strength ET,α as well as the
decay length of the MZM can be controlled, for example, by
changing the applied Zeeman fields [79]. In Fig. 1(c), we show
the amplitude of the wave function of the zero-energy states in
each TS, i.e.,

∑
n=1,2 |ψn(xα )|2, with ψn(xα ) representing the

wave function of the nth zero-energy states. The amplitude of
the wave function increases at the outer edge of each TS and is
equivalent for all TSs, which agrees with P1 = P2 = P3 = 2/3
obtained by the effective theory based on Heff . In Fig. 1(d), we
show the inverse participation ratio [102] for each TS, defined
by IPRα = ∑

n=1,2

∑Lα

xα=1 |ψn(xα )|4. By increasing the length
of TS (i.e., L), IPRα becomes a constant, which means that
the wave function of the zero-energy states is well localized
at the outer edges of the TS and is not distribute in the entire
system. As a result, we numerically verified the appearance of
the MMM in the tight-binding model.

Transport anomalies. We study transport anomalies due
to the MMM. At first, we capture the essence of transport
properties of MMM by an analytical calculation using the
coupling Hamiltonian in Eq. (1). Then, we numerically re-
produce the analytical results by employing recursive Green’s
function techniques [103,104], where the TSs are described
by the Kitaev chains [11]. To study the transport properties of
the MMM, we attach a normal-metal lead to the outer end of
each TS. We refer to the lead attached to the αth TS as the αth
lead. In general, for the wide-bandwidth normal-metal leads,
the scattering matrix at energy E is represented by [48,52]

S(E ) =
(

see seh

she shh

)
= 1 − 2π iW †[E − H + iπWW †]−1W,

(8)

where (sηζ )αβ = sηζ

αβ , with see
αβ and she

αβ (seh
αβ and shh

αβ) being the
scattering coefficients from the electron (hole) in the βth lead
to the electron and hole in the αth lead, respectively. In our
case, the coupling matrix W is given by [48]

W =
(

w −w

03×3 03×3

)
, w =

⎛
⎝w1 0 0

0 w2 0
0 0 w3

⎞
⎠, (9)

FIG. 2. (a) Nonlocal Andreev reflection probability |she
12|2 and

local Andreev reflection probability |she
11|2 at zero energy as a func-

tion of the superconductor length. (b) Differential conductance as a
function of the bias voltage.

where the basis for the normal-metal leads is chosen as
c = [ce,1, ce,2, ce,3, ch,1, ch,2, ch,3]T, with ce(h),α representing a
propagating electron (hole) in the αth lead. wα characterizes
the couplings between the electron/hole in the αth lead and
the MZM at the outer end of the αth TS. Without loss of gen-
erality, we set wα to be real numbers [48]. When w2

α � ET �
EJ , the scattering coefficients at zero energy are obtained by

see
αα = v2

αw2
βw2

γ

A
, she

αα = −w2
α

(
v2

βw2
γ + w2

βv2
γ

)
A

,

see
αβ = −she

αβ = vαvβwαwβw2
γ

A
,

A = v2
1w

2
2w

2
3 + v2

2w
2
3w

2
1 + v2

3w
2
1w

2
2, (10)

where α �= β, β �= γ , and γ �= α. The detailed derivations
for the scattering coefficients are shown in the SM [80]. The
scattering coefficients show highly intertwined properties: the
local Andreev reflection probability in the αth lead is re-
lated with the normal reflection probabilities in the different
leads as |she

αα| = |see
ββ | + |see

γ γ |; moreover, all nonlocal scatter-
ing probabilities between the αth and βth leads are equivalent
(i.e., |see

αβ | = |she
αβ | = |see

βα| = |she
βα|). When v1 = v2 = v3 and

w1 = w2 = w3, for instance, we obtain |she
αα|2 = 4/9 and

|see
αα|2 = |see

αβ |2 = |she
βα|2 = 1/9 for α �= β. When v1 = v2 and

v3 = 0 with w1 = w2 = w3, we obtain |see
αβ |2 = |she

αβ |2 = 1/4
for α, β = 1, 2. Such highly intertwined scatterings with re-
spect to the multiple leads are obviously due to the MMM.

We numerically reproduce the anomalous transport of the
MMM by using the tight-binding BdG Hamiltonian. We de-
scribe the normal leads located at xα < 1 by setting 	 = 0
in Hα , and we denote the hopping integral at the interface
of the αth lead and the αth TS (i.e., the hopping integral
between xα = 0 and 1) by t ′

α . We numerically compute the
scattering coefficients using the recursive Green’s function
techniques [103,104]. In Fig. 2(a), we show the local Andreev
reflection probability of |she

11|2 and the nonlocal Andreev re-
flection probability of |she

12|2 at zero energy as a function of
the superconductor length L. We consider a low-transparency
junction with t ′

α = 0.1t , which corresponds to w1 = w2 =
w3. The superconducting phases are chosen as (φ1, φ2, φ3) =
(0, 2π/3, 4π/3), which corresponds to v1 = v2 = v3. We
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clearly find the plateau at |she
11|2 = 4/9 and |she

12|2 = 1/9 in a
broad range of L, which agrees with Eq. (10). We also con-
firm that other scattering amplitudes also exhibit the plateaus
consistent with Eq. (10). For longer L exceeding 7ξ , the ideal
plateau is affected by the finite energy states at E = ±Ev ∝
e−2Lα/ξ . For L shorter than 5ξ , we see the deviation from
the ideal plateau due to more complex couplings neglected
in Heff . Nevertheless, it has been shown that typical nonlocal
scatterings through superconductors decay exponentially with
the distance between the leads on a scale fixed by ξ [48–53].
On the other hand, in the topological TJJ, the plateau at
|she

12|2 = 1/9 is maintained even when the distance between
the two leads (i.e., 2L) exceeds 10ξ (the leads are separated
by two TSs). As a result, the robust plateau in Fig. 2(a) proves
the anomalously long-ranged nonlocal transport mediated
by the MMM. We describe how the characteristic scatterings
of the MMM affect the charge transport. For this purpose, we
apply the same bias voltage V to all normal-metal leads, while
all TSs are grounded. We assume significantly low trans-
parency at the interfaces between the leads and TSs, such that
the bias voltages applied to the leads drop only at the inter-
faces. We also assume (φ1, φ2, φ3) = (0, 0, π ), such that the
Josephson currents between the TSs are absent; this assump-
tion yields v3 = 0, and thus the MMM is distributed in the
first and second TSs. Within the Blonder-Tinkham-Klapwijik
(BTK) formalism, the differential conductance Gα (eV ) =
dIα/dV at zero temperature is given by [105,106]

Gα (eV ) = e2

h

∑
β

[
δαβ − ∣∣see

αβ

∣∣2 + ∣∣she
αβ

∣∣2]
E=eV , (11)

where Iα is the time-averaged current in the αth lead. We
note that our calculations based on the BTK formalism are
qualitatively justified for bias voltages well below the su-
perconducting gap. The differential conductance at zero bias
voltages with low transparency interfaces (i.e., w2

α � Ev �
EJ ) is given by

G1(2)(0) = 2e2

h

v2
2(1)w

2
1(2)

v2
1w

2
2 + v2

2w
2
1

, G3(0) = 2e2

h
. (12)

The differential conductance of the third lead exhibits the
zero-bias conductance quantization [36–40]. On the other
hand, G1(0) and G2(0) depend on the transparency of the
interfaces and are not quantized. Nevertheless, a remarkable
relation holds:

G1(0) + G2(0) = 2e2

h
. (13)

Namely, the sum of zero-bias differential conductance in
the different leads is perfectly quantized. The observation
of the nonlocally quantized conductance can be definitive
evidence for the appearance of the MMM. In Fig. 2(c), we
show the differential conductance obtained numerically by
using the tight-binding model. We choose L = 800 ∼ 4ξ ,
(φ1, φ2, φ3) = (0, 0, π ), and (t ′

1, t ′
2, t ′

3) = (0.07t, 0.1t, 0.07t ).
While G1 �= G2 due to t ′

1 �= t ′
2, we see G1 + G2 at zero-bias

voltage is quantized to 2e2/h. Therefore, we numerically
demonstrate the sum quantization of the conductance due to
the MMM. We also find a second peak at the finite bias voltage
eV ≈ Ev . We remark that the energy Ev , which characterizes

the necessary resolutions in experiments, can be controlled,
for instance, by changing applied Zeeman fields of the artifi-
cial TSs [79].

Even though the current shot noise is more difficult to mea-
sure experimentally than the differential conductance, it also
manifests the profound nature of the intertwined scatterings of
the MMM. We specifically discuss the zero-frequency noise
power defined by

Pαβ =
∫ ∞

−∞
δIα (0)δIβ (t )dt, (14)

where δIα (t ) = Iα (t ) − Iα denotes the deviation of the current
at time t from the time-averaged current. Within the BTK for-
malism, the zero-frequency noise power at zero-temperature
is given by [107,108]

Pαβ = e2

h

∫ eV

0
Pαβ (E )dE ,

Pαβ (E ) = δαβ

∑
η=e,h

pηη
αα −

∑
η,ζ

σησζ pηζ

αβ pζη

βα,

pηζ

αβ =
∑

γ=1,2,3

sηe
αγ

(
sζe
βγ

)∗
, (15)

where ση = 1 (−1) for η = e (h). For significantly low bias
voltages with low-transparency interfaces, such as eV �
w2

α � Ev � EJ , the zero-frequency noise power is given by

P11 = P22 = −P12 = −P21 = 2h

eV
I1I2,

P33 = P3α = Pα3 = 0, (α �= 3), (16)

where we approximate Pαβ ≈ (e3V/h)Pαβ (0) and Iα ≈
Gαα (0)V , which is justified in the linear-response regime of
eV . We find that the particular relation

2|P12| = P11 + P22 (17)

is satisfied. The cross-correlator in any stochastic processes
is bounded by the autocorrelator as 2|P12| � P11 + P22. Thus,
the maximized cross-correlator of |P12| implies that the MMM
causes the perfect correlation between the first and second
leads. In addition, the total noise power satisfies

∑
α,β Pαβ =

0, which implies that the total charge current flowing into
the TSs is noiseless due to the resonant transmissions of the
conventional MZM at the third TS and the MMM splitting
into the first and second TSs. Especially, the relation of

P11 + P22 + P12 + P21 = 0 (18)

is closely connected with the nonlocally quantized conduc-
tance in Eq. (13); both are the physical consequence of the
highly intertwined resonant scatterings caused by the MMM.
In the SM [80], we also demonstrate the anomalous current
noise [i.e., Eqs. (17) and (18)] using the tight-binding model.

Discussion. In this paper, we discuss the charge currents
only when the Josephson currents are absent, i.e., the su-
perconducting phases are fixed at (φ1, φ2, φ3) = (0, 0, π ).
Studying other cases, such as the coexistence of charge cur-
rents due to the bias voltages and Josephson currents [57–59],
remains an important future task. Nevertheless, we still expect
drastic transport anomalies because, as shown in Eq. (4), the
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topological TJJ hosts the MMM insensitive to the supercon-
ducting phases.

We have shown that MMM in the TJJ is created when
an odd number of MZMs are brought into contact and cou-
pled to each other. Moreover, our analysis is based on an
effective Hamiltonian, which focuses only on the couplings
among the MZMs and is irrelevant to the details of the parent
TS. Thus, we expect that our strategy for creating a MMM
can be extended to other systems, such as higher-order TSs
exhibiting high controllability for the number and location of
MZMs [29–32]. Inspired by the various studies on the conven-
tional MZMs, studying the Cooper pair splittings due to the
nonlocal Andreev reflections [48–53], the nonlocal Joseph-
son effects forming Cooper quartets [61–63], the quantum
teleportation [67–69], and the full-counting statistics [64–66]
in the presence of MMMs would be intriguing topics for

future works. We hope that our work will stimulate further
investigations into the systems hosting MMMs.

In summary, we demonstrate the appearance of the MMM
whose wave function splits into the multiple parts localized at
different edges of different TSs. Thanks to the coexistence of
the Majorana property and the nonlocal property, the MMM
causes the drastic nonlocal resonant transport phenomena. We
expect that our proposal can be used to prove the realization of
the fully functional topological TJJ, which forms an elemental
qubit for fault-tolerant topological quantum computers.
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