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Principal deuterium Hugoniot via quantum Monte Carlo and A-learning
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We present a study of the principal deuterium Hugoniot for pressures up to 150 GPa, using machine learning
potentials (MLPs) trained with quantum Monte Carlo (QMC) energies, forces, and pressures. In particular,
we adopted a recently proposed workflow based on the combination of Gaussian kernel regression and A-
learning. By fully taking advantage of this method, we explicitly considered finite-temperature electrons in the
dynamics, whose effects are highly relevant for temperatures above 10 kK. The Hugoniot curve obtained by
our MLPs shows a good agreement with the most recent experiments, particularly in the region below 60 GPa.
At larger pressures, our Hugoniot curve is slightly more compressible than the one yielded by experiments,
whose uncertainties generally increase, however, with pressure. Our work demonstrates that QMC can be
successfully combined with A-learning to deploy reliable MLPs for complex extended systems across different
thermodynamic conditions, by keeping the QMC precision at the computational cost of a mean-field calculation.
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Introduction. The study of hydrogen under extreme condi-
tions has been a very active topic in condensed matter physics.
Hydrogen is the most abundant element in the universe and the
accurate knowledge of its phase diagram at pressures of the
order of hundreds of GPa is extremely important for a variety
of applications, such as modeling the interior of stars and giant
gas planets [1-3], the inertial-confinement fusion [4], and the
high-7. hydrogen-based superconductors [5,6]. Nevertheless,
several properties of this system are still highly debated, even
at the qualitative level [7-10].

One of the main reasons that hamper our full understanding
of high-pressure hydrogen is the difficulty of reproducing
extreme pressures in a laboratory. Typical shock-wave experi-
ments [11] make use of accelerated flyer plates to compress
a material sample in a very short time, thus allowing the
study of specimens at high temperatures and pressures. In
particular, the set of possible end states that the system can
reach from some given initial conditions, also named the
principal Hugoniot, must satisfy a set of equations, known as
the Rankine-Hugoniot (RH) relations [12], linking the ther-
modynamic properties of the final shocked state with those
of the starting one. During the years, the principal deuterium
Hugoniot has been measured for a wide range of pressures
and with a great degree of accuracy [13-20], particularly in
the lower pressure (<60 GPa) region, where the relative error
on the density is as small as 2% in recent experiments.

In this context, numerical approaches, in particular
ab initio molecular dynamics (AIMD) simulations, are ex-
tremely valuable, since they are not constrained by any
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experimental setup and can thus give further insight into this
part of the phase diagram [21]. The Hugoniot region is par-
ticularly important because of the availability of experimental
data that can be used to benchmark different theoretical meth-
ods. Among them, density functional theory (DFT) has been
extensively applied to compute the Hugoniot curve [22-28].
In this framework, the approximations behind the particular
exchange-correlation functional often produce discrepancies
across existing DFT schemes, whose accuracy varies accord-
ing to the thermodynamic conditions. Quantum Monte Carlo
(QMC) simulations, which depend on more controllable ap-
proximations, have also been performed [29,30]. Although
in principle more accurate and systematically improvable,
these calculations have a much larger computational cost than
DFT, and they are thus limited in system size and simulation
length. Moreover, previous QMC calculations [29] seem to
give results for the principal Hugoniot in disagreement with
the most recent experimental data, with the possible origin
of this discrepancy being recently debated [31]. However, the
most recent QMC results [30] are closer to the experimental
curve, particularly at low compression.

To overcome the large computational cost of ab initio sim-
ulations, machine learning techniques, aimed at constructing
accurate potential energy surfaces, have become increasingly
popular. Within this approach, one uses a dataset of config-
urations, i.e., the training set, to build a machine learning
potential (MLP) that is able to reproduce energies and forces
calculated with the given target method [32]. Unlike DFT
MLPs, the QMC ones are relatively less common, given the
larger computational cost and the consequent difficulty of
generating extended datasets, usually necessary to construct
accurate MLPs.

In this work, we have built an accurate MLP using
QMC energies, forces, and pressures in the region of the
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deuterium Hugoniot, using the so-called A-learning approach.
The Hugoniot curve computed by our QMC-MLP shows an
excellent agreement with the most recent experiments at low
density, while presenting a slightly larger compressibility for
temperatures above 10 kK, where the experimental points are
also affected by larger error bars.

Computational details. In order to build an MLP with QMC
references, we employed a combination of Gaussian kernel re-
gression (GKR), smooth overlap of atomic positions (SOAP)
descriptors [33], and A-learning. The same approach has been
recently proposed in Ref. [34], where it was applied to the
study of high-pressure hydrogen in similar thermodynamic
conditions. Following the A-learning approach, an MLP is
trained on the difference between the target method and a
usually much cheaper baseline potential. Here, we trained
several MLPs, using variational Monte Carlo (VMC) and
lattice regularized diffusion Monte Carlo (LRDMC) [35,36]
datapoints as targets, and two different DFT baselines, with
the Perdew-Zunger local density approximation (PZ-LDA)
[37] and the Perdew-Burke-Ernzerhof (PBE) [38] functionals.

To determine the principal Hugoniot, we made use of the
RH jump equation:

H(p,T)=e(p,T)—eo+ 3(p~" = py " )lp(p. T) + pol =0,
(1)

where p, T, e(p,T), p(p,T), and py, Ty, ep, po are the
density, temperature, energy per particle, and pressure of the
final and initial states, respectively. In particular, we ran a first
set of NVT simulations for a system of N = 128 atoms at
several temperatures in the [4 kK : 8 kK] range, and Wigner-
Seitz radii between 1.80 Bohr and 2.24 Bohr, corresponding
to the range where the zero of H(p, T') was expected. These
simulations were performed considering classical nuclei and
ground-state electrons, as quantum corrections and thermal
effects have been shown to be negligible for these tempera-
tures [30]. At each step, the energy, forces, and pressure were
calculated using the QUANTUM ESPRESSO package in its GPU
accelerated version [39—41] with the chosen functional (PBE
in most cases), and then corrected with our MLP trained on
the difference between QMC and DFT data. The resulting
dynamics has the same efficiency as a standard DFT AIMD
simulation, which is roughly 100 times faster than the original
QMC one. For the DFT simulations, we considered a 60 Ry
plane-wave cutoff with a projector augmented wave (PAW)
pseudopotential [42] and a4 x 4 x 4 Monkhorst-Pack k-point
grid, while for the dynamics we used a time step of 0.25 fs and
a Langevin thermostat [43,44] with damping y = 0.13fs~!.
For each temperature, the Hugoniot (p*, p*) coordinates are
determined by fitting the Hugoniot function H(p, T') and the
pressure p(p, T') with a spline function, and by numerically
finding p* and the corresponding p*.

The QMC calculations were performed using the
TURBORVB package [45,46]. When generating our QMC-
MLP model, we took particular care to the training set
construction, based on energies, forces, and pressures all com-
puted at the QMC (VMC or LRDMC) level. In general, QMC
forces and pressure are not guaranteed to be consistent with
the relative potential energy surface, due to the practical dif-
ficulty of optimizing all the parameters within a given ansatz

for the VMC wave function (WF). This is often called self-
consistency error [47—49]. Even if ML frameworks generally
satisfy the consistency property by construction, the presence
of biased forces and pressure in the training can spoil the
accuracy of the model and produce, in principle, unintended
results. Therefore, to avoid these issues, we mitigated the self-
consistency error by directly optimizing not only the Jastrow
factor but also the determinantal part of the VMC WF. The de-
tails of our QMC simulations are reported in the Supplemental
Material (SM) [50].

Within our approach, we can fully take advantage of the
A-learning method by estimating the effect of thermalized
electrons in our calculations. To do so, we ran simulations at
temperatures 7 = 10 kK, 15 kK, 20 kK, and 35 kK consider-
ing the effect of finite 7' in the underlying PBE energies and
forces. In this way, we can include the effects of thermally
excited electrons in our MLP without changing it, at least at
the DFT level of theory. Here, the effect of the explicit depen-
dence of the DFT functional on T was not considered, since
it has been shown to be negligible for hydrogen systems and
the temperature range analyzed here [28,51,52]. We remark
that this approach is also applicable when a DFT-MLP is used
as a baseline in place of an ab initio calculation, where finite
temperature effects can be estimated from the DFT density of
states [53].

Results and discussion. Figure 1(a) shows our results to-
gether with several experimental values for pressures below
150 GPa [16,19,20]. We also report the principal Hugoniot
obtained by directly using the PBE baseline and the coupled
electron ion Monte Carlo (CEIMC) results of Ref. [30] for
comparison. For temperatures larger than 7 = 10 kK the re-
sults refer to the MDs obtained using finite temperature DFT
as a baseline. Both the VMC and LRDMC models give a
very similar Hugoniot line, well reproducing the experimental
points in the low density—low pressure region. With respect
to the most accurate data of Ref. [19], our estimate of the rela-
tive density p/pp at the compressibility peak is ~3—4% larger,
still within the error bars. For larger pressures, we predict a
Hugoniot mostly compatible within the experiments but sys-
tematically more compressible. However, in this regime the
correspondingly larger uncertainties in the measures prevent
a clear-cut assessment of our outcome. Our results also agree
with the most recent low-temperature CEIMC ones reported
in Ref. [30] within the statistical accuracy.

Figure 1(b) displays the same points in the u, — U space,
where u,, is the particle velocity and U; is the shock velocity,
the two being calculated using the following RH relations:

up = \/(P'FPO)(,O&] —p7h,

- P+ Po
Uszpol T
Py — P

The difference AU, between these points and the linear fit on
the gas-gun data reanalyzed in Ref. [19] is also shown (bottom
panel of Fig. 1(b)). The drop in the slope of U relative to
u, coincides with the onset of the molecular-atomic (MA)
transition, while the magnitude of the AU; minimum relates
to the position of the relative compression peak. In particular,
the PBE Hugoniot curve manifests a premature start of the
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FIG. 1. (a) Principal Hugoniot in the density-pressure space. Red and yellow circles are the results obtained with our MLPs trained on
VMC and LRDMC datapoints, respectively, and a PBE baseline. Blue and pink triangles are the PBE result calculated in this work and the
VdW-DF1 result of Ref. [19], respectively. CEIMC results of Ref. [30] based on variational Monte Carlo (VMC) and reptation Monte Carlo
(RMC) are reported in green squares. Cyan diamonds are the experimental results of Refs. [16,19,20]. Dashed lines are guides for the eye.
(b) [top panel] Hugoniot in the u,~Uj, space. The black dashed line is the reanalyzed gas-gun fit reported in Ref. [19], i.e., the shock velocity
extrapolated from measures of molecular deuterium at low pressure [13]. (b) [Bottom panel] Relative shock velocity with respect to the gas-gun

fit. Only the experimental points of Ref. [19] are reported.

dissociation, while it predicts correctly the magnitude of the
compressibility maximum. Our QMC results correctly predict
the position of the peak and starting slope, while showing
some discrepancies for u, 2 15 km/s with respect to the data
of Ref. [19]. In this regime, DFT, and in particular the result
obtained with the VdW-DF1 functional [54,55], seems to be in
better agreement with experiments, thanks to a favorable error
cancellation in the Hugoniot [31]. We noticed how, in this
study, the discrepancy with the experiments is much milder
than the value reported by previous QMC calculations at
densities and pressures close to the compressibility peak [29].
This can be due to the explicit optimization of the WF nodal
surface provided by our WF ansatz, which reduces the fixed
node error mentioned in Ref. [31], the only approximation left
in any projective Monte Carlo calculation, such as LRDMC
and RMC. The difference between the various methods is also

apparent in their equations of state, reported in the SM [50].

The presence of an MA transition is investigated in Fig. 2,
where we report the radial distribution function, g(r), cal-
culated on trajectories obtained with the LRDMC model for
several temperatures at densities close to the Hugoniot curve.
The inset of Fig. 2 displays the value of the molecular frac-
tion m, defined as the percentage of atoms that stay within
a distance of 2 Bohr [roughly corresponding to the first g(r)
minimum after the molecular peak] from another particle for
longer than a characteristic time, here set to 6 fs. The results
indicate a distinct atomic character for 7 > 10 kK and a clear
molecular peak at lower temperatures. The LRDMC model
shows a larger molecular fraction than the PBE and VdW-DF1
ones, being compatible with the latter for temperatures above
10 kK.
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FIG. 2. g(r) for several temperatures and densities close to the
principal Hugoniot, obtained using the LRDMC model. The molec-
ular fraction value, m, is reported in the inset for each value of
temperature up to 15 kK. On the top axis the corresponding pressure
at the Hugoniot is also shown. The values obtained with an ab initio
DFT dynamics using the PBE and VdW-DF1 functionals are reported
for comparison at the same temperatures (notice that a pressure and
density mismatch between methods can be present in this case due to
different equations of state).
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Error analysis. To assess the quality of our principal Hugo-
niot determination, we analyzed the possible sources of errors
in relation to our machine learning scheme. There are three
main sources of errors: the uncertainties in the fit of H(p, T),
the prediction error of the MLP, and the uncertainties in the
reference state energy estimate, i.e., ¢ in Eq. (1). We verified
that, in our case, the error produced by the fit is negligible
compared to the other two sources, which we will discuss
next.

As mentioned before, we followed Ref. [34] to construct
our MLPs and used a GKR model based on a modified version
of the SOAP kernel [33]. Our final dataset, including both
training and test sets, comprises 561 configurations selected
through an iterative procedure with 128 hydrogen atoms each,
where we calculated energies, pressures, and forces at the
VMC and LRDMC levels. These configurations correspond
to temperatures from 4 kK up to 20 kK and Wigner-Seitz
radii from 1.80 Bohr to 2.12 Bohr. Finite size corrections
(FSC) have also been estimated using the KZK functional
[56]. Details on the training set construction and the QMC
calculations, together with the performances of all MLP mod-
els can be found in the SM [50]. In particular we found a final
root mean square error (RMSE), calculated on the test set, of
the order of 7 meV /atom for the energy, 250 meV/A for the
forces, and 0.75 GPa for the pressures.

At this point, it is worth to highlight some favorable
features of our machine learning approach, especially in ap-
plications where it is coupled with computationally expensive
methods such as QMC. They can be itemized as follows:

(i) Transferability: the total energy of the system is ex-
pressed as a sum of local terms [32], therefore our models
are capable of making accurate predictions on configurations
whose size has never been encountered in the training set. In
particular, our MLPs find their applicability to systems with
an arbitrary number of atoms N.

(ii) Efficiency and accuracy: within the A-learning frame-
work, the machine learning task becomes easier. Indeed, we
obtained very accurate QMC potentials, by training mod-
els on small datasets and, thus, by reducing the amount of
calculations needed. Moreover, since the computational cost
of the ML inference is negligible compared to the baseline
DFT calculation, we were able to perform QMC-driven MD
simulations at the cost of a DFT dynamics.

(iii) Overfitting prevention: using a local sparsification
technique based on the farthest point sampling (see the SM of
Ref. [34]), we discarded from each configuration a possibly
large fraction of the corresponding N local environments,
preventing overfitting and allowing for an increased predictive
power of the model on unseen data. Since the computational
cost of the predictions scales with the size of the training set,
this procedure drastically improves the efficiency of the final
model.

We further validated the accuracy of our MLPs by com-
paring the Hugoniot curve obtained using two potentials,
independently trained with the same target, e.g., VMC, but
with two different baselines. Taking into account these results
and the RMSE of the models, we can estimate an uncertainty
on the prediction of 0.06 on the relative density p/po and

1 GPa on pressure.

TABLE I. Estimated potential (epo) and total (ey) energies per
atom of the reference state at py = 0.167 g/cm?® and T = 22 K for
different methods, with and without finite size corrections (FSC).

epor (Ha/atom) eo (Ha/atom)

PBE —0.58217(2) —0.58055(2)
VMC —0.58622(2) —0.584 60(2)
LRDMC —0.586 60(2) —0.58498(2)
VMC + FSC —0.58503(2) —0.58342(2)
LRDMC + FSC —0.58542(2) —0.58380(2)

We now turn to the last source of error we identified, i.e.,
the one related to the calculation of ¢y and pg. To estimate the
reference state energy and pressure, we followed a procedure
similar to Ref. [30]. We performed a path integral molecular
dynamics (PIMD) simulation [57] on a system of N = 64
deuterium atoms at a temperature 7 = 22 K and density
po = 0.167 g/cm? (corresponding to the initial conditions
reported in Ref. [19]), using DFT-PBE energy and forces.
Details of this simulation are reported in the SM [50]. From
the PIMD trajectory, we extracted 170 configurations and we
calculated energies and pressures with both DFT-PBE and
QMC at VMC and LRDMC levels, adding the necessary
finite size corrections. The reference sample was generated
by extracting atomic positions from one of the 128 beads
taken at random, belonging to decorrelated snapshots of the
trajectory. Results for e( for the various methods are reported
in Table I. The reference state pressure py is not reported,
since it is two orders of magnitude smaller than the shocked
pressure, and thus irrelevant for the Hugoniot determination.
Also in this case, we studied the effect of varying ey within its
confidence interval on the Hugoniot density and pressure. In
doing so, we also took into account the possible uncertainty
on the energy difference e(p, T') — e originating by the finite
batch size we used for estimating energy gradients in the WF
optimization. We estimated this uncertainty by running opti-
mizations of increasing batch size on three different 128-atom
configurations. The results indicate an error <0.5 mHa/atom
on e(p, T) — ep. Taking everything into account, varying the
energy within standard deviation leads to shifts in the final
principal Hugoniot which still fall in the error bars of our
predictions estimated previously.

To summarize, we estimated the MLP prediction error to
be the most relevant source of uncertainty for the Hugoniot,
yielding, as discussed before, an absolute error of 0.06 and
1 GPa on the relative density and pressure, respectively, re-
flected on the error bars reported in Fig. 1.

Conclusions. In conclusion, using our recently proposed
workflow for the construction of MLPs, we have been able
to run reliable VMC- and LRDMC-based MD simulations
and study the principal deuterium Hugoniot, in a pressure
range relevant for experiments. The accuracy of the MLPs
employed here has been extensively tested, supporting the va-
lidity of our calculations and estimating their uncertainty. The
resulting Hugoniot curve shows generally good agreement
with the most recent experimental measures, especially in the
low temperature molecular regime. Exploiting the A-learning
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framework, we have also been able to treat FT electrons ef-
fects in a QMC-MLP, and we have thus managed to perform
accurate simulations at higher temperatures. For these temper-
atures, the results systematically show a more compressible
Hugoniot curve than experiments, although the experimental
error bars are large in this regime. The aforementioned dis-
crepancy is milder than previously reported QMC calculations
[29], and falls within the measures uncertainty. In particular,
this suggests that the use of optimized and more refined WFs
has a key role for obtaining good results in high-pressure hy-
drogen. We thus believe that our results will be useful for both
future experimental research and numerical investigations of
the Hugoniot. The efficiency of our computational approach
could be further improved, e.g., by using cheaper baseline
potentials than DFT. Longer simulations and larger systems
will then be at reach. Other many-body methods, even more
expensive than QMC, can also be used as targets for this
type of MLPs, since the required size of the dataset is at
least one order of magnitude smaller compared to other ML
approaches. Finally, our MLPs, and in particular those trained
on LRDMC data points, are promising for exploring the hy-
drogen phase diagram by keeping a high level of accuracy
across a wide range of thermodynamic conditions.

The machine learning code used in this work is available
upon request. Additional information, such as datasets, mod-
els, and detailed results of the simulations are available at [70].
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