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Magnetic field induced critical dynamics in magnetoelectric TbPO4
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We report on the magnetoelectric dynamics in the linear magnetoelectric antiferromagnet TbPO4 studied by
broadband dielectric spectroscopy. For the phase transition into the magnetoelectric antiferromagnetic phase at
TN ≈ 2.3 K, a finite magnetic field H induces critical behavior in the quasistatic permittivity ε′(T ). Plotting the
corresponding anomaly as a function of T/TN (H ), we observe the scaling behavior �ε′ ∝ H 2, a clear fingerprint
of linear magnetoelectric antiferromagnets. Above the phase transition, we find a critical slowing down of
the ferroic fluctuations in finite magnetic field. This behavior can be understood via a magnetic field induced
relaxational response that resembles the soft-mode behavior in canonical ferroelectrics and multiferroics.
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Magnetoelectric multiferroics exhibit coupled magnetic
and electric order, and the coupling manifests in the oc-
currence of a common order parameter [1–6]. Aside from
the question on coupling mechanisms leading to such com-
plex ordering phenomena, the dynamics of corresponding
fluctuations and the critical behavior of coupled ferroic or-
der parameters are interesting aspects of investigation [7].
One kind of elementary excitations within a magnetoelec-
tric multiferroic phase are electromagnons which combine
the spin-wave excitation of the magnetic structure with an
electric-dipole active contribution such as a polar lattice dis-
tortion [8]. Such electromagnons may be associated with
the symmetry-breaking Goldstone modes of magnetoelectric
multiferroic order [9,10]. This implies that such modes can be
expected to soften near a second-order phase transition, anal-
ogous to the case of canonical ferroelectric materials [11,12].
Therefore, these soft modes should influence the dynamical
response of fluctuations above the onset of static multiferroic
order [13].

A critical slowing down of magnetoelectric fluctuations
indeed has been reported near a multiferroic phase transition
[14] and even near a multiferroic quantum phase transition
[15]. The latter raises the question whether long-range mag-
netoelectric multiferroic order is required for magnetoelectric
fluctuations exhibiting a critical slowing down. We address
this question in the linear magnetoelectric antiferromagnet
TbPO4. This compound does not belong to the class of mul-
tiferroic materials since antiferromagnetic (AFM) order in
TbPO4 is not accompanied by a spontaneous electric polar-
ization P in zero magnetic field. Instead, the polarization P
exhibits a contribution proportional to the applied magnetic
field H according to the linear magnetoelectric effect. This
implies that the magnetic field alters the magnetic structure in
a way that breaks spatial inversion symmetry [16].

In this Letter, we examine the fluctuation dynamics of this
field-induced polarization in the vicinity of the AFM phase
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transition. In particular, we report on spectroscopic investiga-
tions of the complex permittivity ε∗(H, T, ν) in high-quality
single-crystalline TbPO4 for frequencies up to 3 GHz in order
to shed light on the dynamical dielectric response of the mag-
netoelectric fluctuations induced by external magnetic fields
in a linear magnetoelectric compound.

TbPO4 belongs to the above described class of linear
magnetoelectric antiferromagnets [16] in which electric po-
larization is absent for H = 0 but can be induced according to
P = α H within the antiferromagnetically ordered phase. In
fact, TbPO4 is the current record holder among single-phase
magnetoelectrics with a magnetoelectric coefficient |α| ≈
730 ps/m at 1.5 K [16,17], making it an excellent model
system for our study. The system crystallizes in the tetrag-
onal zircon-type structure with space group I41/amd and
point symmetry 4̄m2 for the Tb3+ sites [18] and can be
described as staggered chains of alternating Tb3+ ions and
tetrahedral PO4

3− entities along the c axis [see Fig. 1(a)].
The spin system undergoes a sequence of phase transitions,
and the corresponding (H, T ) phase diagram is sketched in
Fig. 1(c). Cooling down from the paramagnetic phase in
H = 0, antiferromagnetic order with the spin axis along c is
established at TN = 2.28 K. At TN ′ ≈ 2.13 K the spin axis
is tilted away from [001] and the system loses tetragonal
symmetry but still keeps its collinear AFM character [22].
Finite H leads to spin canting which via local exchange stric-
tion causes the onset of electric polarization [18]. Above a
direction-dependent critical field Hc the spins turn into the
field direction and a spin-polarized paramagnetic phase is
reached. Both AFM phases show the linear magnetoelectric
effect [16] revealing slightly different magnetoelectric coeffi-
cients depending on the field direction. In our measurements
of the complex dielectric constant ε∗(H, T ) or of P(H, T ) the
transition between the two phases is hardly visible. We will
focus on magnetoelectric fluctuations above the transition into
the AFM phase.

The single crystal of TbPO4 used for this study was flux
grown and has been characterized in Ref. [16]. Details of the
growth procedure are described elsewhere [23]. The sample
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FIG. 1. (a) Sketch of the tetragonal unit cell of TbPO4. (b) De-
sign of the sample capacitor attached to the microstrip (see main
text). All fields are aligned along the crystallographic a direction.
(c) (H, T ) phase diagram for the linear magnetoelectric antifer-
romagnetic phases in TbPO4. The symbols were derived from
measurements (not shown) of P(H, T ) (•), ε∗(H, T ) (�), and
ε∗(H, T, ν ) (∗). The lines visualize literature results gained by
neutron scattering, birefringence, magnetoelectric, and magnetic
susceptibility measurements [19–21]. (d) P(H ) data taken at T =
2.2 K using an electric poling voltage of 10 V. The slope of the
linear region around H = 0 yields the magnetoelectric coefficient
αaa ≈ 280 ps/m.

was prepared as a small platelet in capacitor geometry with
dimensions of thickness d ≈ 280 µm and cross section A ≈
1.45 mm2 oriented in the (100) plane. The dielectric mea-
surements were made in a commercial 4He flow cryomagnet
[Quantum Design physical properties measurement system
(PPMS)] employing a home-made 50 � coaxial-line inset
with a sample holder designed as an intermittent microstrip
perpendicular to the external magnetic field [see Fig. 1(b)].
We used a ceramic thermoset polymer composite (Rogers
TMM10) as the substrate. On the sample, we first formed
electrodes by evaporating gold. Then, the sample was glued
with silver paste to one end of the copper line. The con-
nection to the other end was made with a 50 µm gold wire.
For frequencies 100 kHz � ν � 3 GHz we used a vector net-
work analyzer (ZNB8, Rohde & Schwarz) and evaluated
the complex impedance Z∗(ν) via the scattering coefficients
S21 and S11. The complex, frequency-dependent permittivity
ε∗(ν) = ε′ + iε′′ is related to Z∗(ν) = 1/[i2πνC0ε

∗(ν)] with
the geometric capacitance C0 = ε0A/d given by the sample
geometry. The effectively applied ac voltage in this setup was
0.22 Vrms. For lower frequencies we used a high-impedance
frequency response analyzer (Novocontrol) together with re-
spective high-voltage amplifier modules in order to apply dc
bias voltages or higher ac stimuli up to 200 V. The electric
polarization measurements were performed employing a high
impedance electrometer (Keithley 6517B). In the tetragonal

(a) (b) (c)

FIG. 2. Critical behavior in the quasistatic permittivity ε′(T, H )
at ν = 113 Hz. (a) Data of ε′(T ) measured with zero electric bias
in H = 3 kOe (open red symbols) show diverging character. Curves
with a dc bias of 150 VDC equivalent to E ≈ 540 V/mm are plotted
for various H fields (solid symbols, the color marks the size of
H ). (b) ε′(H ) at T = 2.2 K with (•) and without (◦) electric bias.
(c) Scaling plot of the same data (with dc bias; after subtracting
ε∞ ≈ 10) normalized to H2, plotted as a function of T/TN (H ).

AFM phase, the nonvanishing elements of the magnetoelectric
tensor αi j in Pi = αi jHj are αaa = −αbb [18,24]. All mea-
surements were performed with electric and magnetic fields
along the crystallographic a axis. We found a value of αaa ≈
280 ps/m at T = 2.2 K [see Fig. 1(d)].

In ferroelectric or multiferroic compounds with spon-
taneous electric polarization one expects a “diverging”
quasistatic dielectric permittivity at the corresponding second-
order phase transition. Actually, even in ferroelectrics ε′(T )
will stay finite at Tc due to damping [25]. In type-II multi-
ferroics in which the ferroelectric component reflects only a
secondary order parameter, the anomaly at the critical tem-
perature often turns out to be smaller than the dielectric
background ε∞ [26,27]. In contrast, linear magnetoelectric
antiferromagnets such as TbPO4 do not exhibit a sponta-
neous electric polarization. Instead, electric and magnetic
fields are linearly coupled to the free energy F ∝ L · E H via
the primary antiferromagnetic order parameter L. This results
in P = ∂F/∂E ∝ L · H and M = ∂F/∂H ∝ L · E within the
magnetoelectric AFM phase. For H = 0, neither spontaneous
polarization nor a contribution to ε′ are expected, assuming
that no lattice distortion is involved in the AFM transition.
However, in finite magnetic field the onset of finite polariza-
tion at TN and thus a critical behavior of ε′ can be expected,
in analogy to the behavior observed in multiferroics already
in zero magnetic field [14,15]. Figure 2(a) shows quasistatic,
low-frequency data of ε′(T ) at ν = 113 Hz in different mag-
netic fields. The electrically unbiased data, measured in a
magnetic field of, e.g., H = 3 kOe (red ◦), exhibit a sharp
peak at the AFM transition, i.e., “divergent” behavior. Below
TN a small difference between cooling and heating is observed
which can be attributed to domains. Applying an additional
electric bias field stabilizes the magnetoelectric phase that
exhibits finite electric polarization. This stabilization shifts the
peak position – the onset of AFM order – in ε′(T ) to higher
T and in ε(H ) to larger H [see Fig. 2(b)]. Furthermore, the dc
bias voltage flattens this peak as polarization is finite already
above the AFM transition.
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FIG. 3. Contour plots of the complex permittivity ε∗(T, H )
around the AFM phase transition, measured at ν = 10 MHz
(left/right: real/imaginary part).

This critical behavior of ε′ is only observed in finite mag-
netic field, as expected for a linear magnetoelectric material.
More precisely, we find that the strength of the magneto-
electric anomaly in ε′ depends on the applied magnetic field,
scaling with H2 near the AFM transition. For the correspond-
ing scaling plot in Fig. 2(c), we employ �ε′ = ε′ − ε∞ as a
measure of critical fluctuations. In the GHz range, the con-
stant term ε∞ ≈ 10 denotes the polarizability of phonons and
of electronic excitations. Using the field-dependent transition
temperature TN (H ) and plotting �ε′/H2 vs T/TN (H ), the data
collapse onto a single curve [see Fig. 2(c)]. This behavior
has been explained by Mufti et al. [28] using a free-energy
expansion to describe the influence of spin fluctuations on the
quasistatic dielectric response in antiferromagnets showing
the linear magnetoelectric effect. In turn, the observed scaling
behavior is a clear fingerprint of linear magnetoelectric an-
tiferromagnets [28] and highlights the presence and strength
of critical spin fluctuations above the linear magnetoelectric
AFM phase.

We focus on the dynamics of these critical fluctuations
in the vicinity of the AFM phase boundary and therefore
turn to spectroscopic measurements at higher frequencies. We
address data of the complex dielectric permittivity ε∗(ν, H, T )
measured without an electric bias field. These data, mea-
sured in a three-dimensional parameter space, are illustrated
in Fig. 3 via two-dimensional plots of ε′(T, H ) and ε′′(T, H )
for fixed frequency ν. In these plots, the dielectric response
nicely retraces the (H, T ) phase diagram given in Fig. 1(c).
Along the phase boundary to the AFM phase, the strength of
the response ε′ increases with H , as discussed above for low
frequencies. To better demonstrate the quantitative behavior,
we plot one-dimensional cuts in Fig. 4, showing ε∗(T ) for
different H at ν = 10 MHz. The loss peaks in ε′′ are located
just above the phase transition where they meet the low-T
falling slope of the feature in the real part ε′.

The temperature dependence and field dependence of the
complex permittivity for different frequencies are addressed in
Fig. 5. For low frequencies such as 100 kHz, ε′(T ) shows the
critical, i.e., divergent behavior expected for a second-order
phase transition [see Fig. 5(a)]. This reflects the diverg-
ing spatial correlation length. To describe the dynamical,
frequency-dependent response, the behavior of the correlation
time of the fluctuations has to be considered as well. In the

FIG. 4. One-dimensional cuts ε′(T ) (top) and ε′′(T ) (bottom)
through ε′(ν, H, T ) and ε′′(ν, H, T ). The data have been measured
at ν = 10 MHz for various values of H , plotted here in steps of 1
kOe (compare Fig. 3). No electric bias field has been used.

loss ε′′, a relaxation peak appears above TN when the exper-
imental frequency of the stimulus meets the fluctuation rate
1/τc. With increasing temperature, the maximum loss occurs
for higher frequencies [see Fig. 5(a)], indicating the decrease
of the correlation time. The same behavior is observed with
increasing H in Fig. 5(b).

For a quantitative discussion of this dispersive behavior,
it is most appropriate to consider the frequency dependence
for constant T and H in order to separate, e.g., the field
dependence and temperature dependence of the strength of
the response. Such spectra of the complex permittivity ε∗(ν)
are shown in Figs. 6(a) and 6(b). The data in the left panels
[Fig. 6(a)] are taken at constant H = 6 kOe for different tem-
peratures. To focus on the magnetoelectric contribution, we
subtracted the data measured at T = 1.8 K and H = 6 kOe.
We observe a step in ε′(ν) that is accompanied by a loss peak
in ε′′. This behavior can be described as Debye relaxation, i.e.,

(a) (b)

FIG. 5. Constant-frequency cuts through ε′(ν, H, T ) (top) and
ε′′(ν, H, T ) (bottom). (a) ε∗(T ) for H = 6 kOe at different frequen-
cies. (b) ε∗(H ) at T = 2.2 K at different frequencies.

L041106-3



GRAMS, GRÜNINGER, AND HEMBERGER PHYSICAL REVIEW B 110, L041106 (2024)

(a)

(c)

(b)

(d)

FIG. 6. (a), (b) Spectra of the complex permittivity ε∗(ν ) for
constant T and H . Top/bottom panels: Real/imaginary part. (a) Re-
sult for H = 6 kOe for several temperatures. From each curve, the
data for H = 6 kOe and T = 1.8 K have been subtracted. (b) Result
for T = 2.2 K for several magnetic fields H . The data for 2.2 K
and H = 0 have been subtracted. (c), (d) Mean relaxation rate 1/τc

determined from the peak positions in ε′′ (green circles, left scales).
The red line in (c) depicts a power-law fit with the critical exponent
γ = 2.1 ± 0.4. The red dashed line in (d) uses γH = 2.8 which,
however, is affected by the demagnetization factor. For comparison,
we plot in (c) the T dependence of the inverse relaxation strength
1/�εs [see Eq. (1)] and in (d) the field dependence of the normalized
value (H/Hc )2/�εs (purple symbols, right scales). Gray vertical
lines mark the transition temperature TN (H = 6 kOe) and critical
field Hc (T = 2.2 K), respectively.

in terms of an overdamped harmonic oscillator [11,14],

ε′ = ε∞ + �εs

1 + ω2τ 2
c

, ε′′ = �εs ωτc

1 + ω2τ 2
c

, (1)

with ω = 2πν and the step height or relaxation strength �εs

with ε′(ω = 0) = ε∞ + �εs. The effective relaxation time
τc represents the fluctuation lifetime and increases on ap-
proaching the continuous, second-order phase transition. The
relaxation rate 1/τc can be read off directly from the peak in
ε′′ which is located at ω = 1/τc.

Upon cooling towards TN (H ) in a constant, finite magnetic
field H , the step height or relaxation strength �εs observed
in the spectra increases according to the divergent behavior
of the quasistatic permittivity. Below TN (H ) the step height
decreases again, but our focus is on the critical behavior above
the phase transition. We determine the temperature depen-
dence of 1/τc from the peaks in ε′′ [see the green symbols
in the lower panel of Fig. 6(a), and the result is shown in
Fig. 6(c)]. With decreasing temperature, the relaxation rate
1/τc continuously diminishes approaching the AFM transi-
tion. This result clearly establishes the critical slowing down
of magnetoelectric fluctuations in a linear magnetoelectric
antiferromagnet.

Obviously, this critical slowing down of the fluctuation
dynamics is related to the critical increase of the quasistatic
permittivity towards the phase transition. In fact, 1/τc and

1/�εs exhibit the same temperature dependence, as shown in
Fig. 6(c). This can be understood in analogy to the softening of
polar lattice modes in proper ferroelectrics, which is described
by the Lyddane-Sachs-Teller relation �εs ∝ ω−2

0 connecting
the angular eigenfrequency of the undamped mode ω0 with its
oscillator strength �εs [11]. In the overdamped case, where
the damping � is comparable to or larger than ω0, the resonant
character of the excitation turns into the relaxation behavior
described by Eq. (1) with the critical timescale τc ≈ �/ω2

0.
This overdamped scenario is appropriate when, e.g., ω0 is the
eigenfrequency of a mode that softens in the vicinity of a
phase transition. For relaxation behavior, the Lyddane-Sachs-
Teller relation transforms to �εs ∝ τc, which corresponds to
the mean-field result for dynamic critical scaling [29] and
agrees with our experimental result.

The critical slowing down is described by 1/τc ∝ (T −
TN )γ . In the present case the data for H = 6 kOe can be fitted
using a critical exponent of γ = 2.1 ± 0.4 [see the red line
in Fig. 6(c)]. The dominant contribution to the sizable error
bar stems from the uncertainty of the precise value of TN .
For smaller fields such as H = 4 or 2 kOe (not shown), we
find similar results, γ = 2.6 ± 0.6 and γ = 2.2 ± 0.6, respec-
tively. The larger error bars are due to the reduced strength of
the response. Despite the error bar it can be stated that this
value is larger than the canonical expectation of γ = 1 for
proper ferroelectrics [11]. This is not unusual for magnetic
materials where values larger than unity are expected. In chiral
multiferroics such as MnWO4 or LiCuVO4 values of γ ≈ 1.3
have been found [14,15]. In TbPO4, however, γ appears to
be even higher. This may point to a stronger influence of the
quantum nature of the critical fluctuations studied here, as the
critical temperatures realized in TbPO4 are considerably lower
than in the multiferroic examples mentioned above. A value
of γ ≈ 2 also was found near multiferroic quantum phase
transitions [7,15].

A critical slowing down of the magnetoelectric fluctu-
ation can also be observed in the permittivity spectra on
approaching the AFM phase boundary at constant tempera-
ture by decreasing the external magnetic field, as illustrated
in Fig. 6(b). The general picture is very similar to the
temperature-driven scenario just discussed. Starting around
9 kOe, i.e., above the critical field Hc(T = 2.2 K) = 3750 Oe,
a steplike contribution to ε′(ν) evolves on lowering the mag-
netic field, accompanied by a peak in the dielectric loss ε′′(ν)
[see the green circles in the lower panel of Fig. 6(b)]. The
peak position in ε′′(ν) shifts more and more towards lower
frequencies on approaching the AFM transition, denoting the
slowing down of the magnetoelectric fluctuations. Analogous
to the case of temperature as a control parameter, we extract
the critical fluctuation rate 1/τc(H ) from the loss maxima [see
the green symbols in Fig. 6(d)]. The dashed line in Fig. 6(d)
depicts the fit result that yields a critical exponent γH = 2.8.
Such a quantitative analysis of the field dependence, however,
has to cope with possible effects of the demagnetization fac-
tor, in particular for a platelike sample. The value γH = 2.8
hence contains a larger error bar. Note that this does not affect
the qualitative picture of critical slowing down.

To connect this critical behavior of the correlation time
τc to the quasistatic behavior, which is determined by the
correlation length of the magnetoelectric fluctuations, one has

L041106-4



MAGNETIC FIELD INDUCED CRITICAL DYNAMICS IN … PHYSICAL REVIEW B 110, L041106 (2024)

to consider the magnetic field dependence of the magneto-
electric contribution. As shown above, the relaxation strength
�εs(H ) is proportional to H2. Therefore, we normalized the
quasistatic contribution �εs by H2 as depicted by the purple
symbols that refer to the right scale of Fig. 6(d). This yields
reasonable but not perfect agreement with the result for 1/τc

[green symbols, referring to the left scale of Fig. 6(d)].
Summarizing, we revealed the critical dynamics of mag-

netoelectric fluctuations in a linear magnetoelectric antifer-
romagnet via broadband dielectric spectroscopy up to GHz
frequencies. Above the continuous phase transition into the
long-range antiferromagnetically ordered phase in TbPO4, a
slowing down of the magnetoelectric fluctuations can be mon-
itored in finite external magnetic field via the evaluation of
relaxational contributions to the complex permittivity. Above
TN , the corresponding loss spectra ε′′(ν) show characteristic
maxima from which the fluctuation rate 1/τc can be deter-
mined. Upon approaching TN (H ) by lowering the temperature
in finite magnetic field, the relaxation rate vanishes and the
fluctuation lifetime diverges. The data for, e.g., H = 6 kOe
can be described with a critical exponent γ = 2.1 ± 0.4,
which is larger than in multiferroic systems. Furthermore,
we have shown that slowing down of the magnetoelectric

fluctuations occurs both as a function of temperature and of
an external magnetic field.

The quasistatic relaxation strength �εs gives a “divergent”
contribution to the permittivity which scales with the fluctua-
tion lifetime τc. This scenario can be understood in analogy to
the softening of an overdamped polar mode in ferroelectrics,
in which the Lyddane-Sachs-Teller relation couples the di-
electric oscillator strength to the effective relaxation rate.
However, in the present case of a linear magnetoelectric anti-
ferromagnet the underlying fluctuations are of predominantly
magnetic origin and thus the relaxation strength scales with
the square of the magnetic field, �εs ∝ H2. It will be interest-
ing to compare these dynamical characteristics of the linear
magnetoelectric antiferromagnet TbPO4 to the corresponding
behavior of other magnetoelectrics possessing different cou-
pling mechanisms.
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