
PHYSICAL REVIEW B 110, L041105 (2024)
Letter Editors’ Suggestion

Intertwined magnetism and superconductivity in isolated correlated flat bands
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Multiorbital electronic models hosting a nontrivial band topology in the regime of strong electronic in-
teractions are an ideal playground for exploring a host of complex phenomenology. We consider here a
sign-problem-free and time-reversal symmetric model with isolated topological (Chern) bands involving both
spin and valley degrees of freedom in the presence of a class of repulsive electronic interactions. Using a combi-
nation of numerically exact quantum Monte Carlo computations and analytical field-theoretic considerations, we
analyze the phase diagram as a function of the flat-band filling, temperature, and relative interaction strength. The
low-energy physics is described in terms of a set of intertwined orders—a spin-valley Hall (SVH) insulator and a
spin-singlet superconductor (SC). Our low-temperature phase diagram can be understood in terms of an effective
SO(4) pseudospin nonlinear sigma model. Our work paves the way for building more refined and minimal models
of realistic materials, including moiré systems, to study the universal aspects of competing insulating phases and
superconductivity in the presence of nontrivial band topology.
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Introduction. Correlated quantum materials in the inter-
mediate to strong coupling regime often feature a panoply
of ordering tendencies leading to complex phase diagrams.
The most famous and extensively studied example is that of
the cuprate high-temperature superconductor—a doped Mott
insulator which exhibits numerous electronic phases with
spontaneously broken symmetries as a result of the frus-
tration between the tendency toward delocalization and the
interaction-induced localization [1]. While the detailed mi-
croscopic mechanisms responsible for the emergence of this
complexity are not fully understood, the landscape of compet-
ing and intertwined orders has been clarified to a large degree
using a variety of points of view [2–6].

The discovery of two-dimensional moiré materials [7,8]
has brought a fresh set of challenging theoretical questions to
the forefront, involving the physics of interactions projected
to a set of isolated nearly flat bands. The projected inter-
actions drive the tendency toward delocalization, as a result
of the nontrivial Bloch wave functions associated with the
flat bands, and localization in the vicinity of commensurate
fillings. The quantum geometric tensor associated with these
isolated bands is believed to play an important role in much
of the essential phenomenology [9–11]. In the absence of a
well-developed set of theoretical tools and a “small” param-
eter that can tackle the generic problem of partially filled,
interacting narrow bandwidth (topological) bands, studying
even simplified models with carefully designed interactions
using complementary techniques can offer new insights and
serve as a building block for understanding more realistic
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models. Specifically, the fate of nearly flat bands with multiple
spin and valley degrees of freedom and projected interactions
offers an interesting playground to study the interplay of var-
ious ordering tendencies, including superconductivity.

With this goal in mind, we will focus on a model of spinful
topological (Chern) bands that preserve time-reversal symme-
try (TRS) and carry a “valley” degree of freedom. We will
study the effect of competing exchange interactions derived,
in principle, from a repulsive interaction but designed such
that the model does not suffer from the infamous sign prob-
lem. This will allow us to obtain the phase diagram for the
repulsive model over a wide range of temperatures, fillings,
and other microscopic tuning parameters using determinant
quantum Monte Carlo (QMC), whereas most of the recent
QMC work tied to flat bands has focused on purely attrac-
tive interactions [12–16]. Interestingly, we will also be able
to obtain the form of the low-energy effective field theory
that governs the dynamics and fluctuations tied to the in-
tertwined order parameters in the projected Hilbert space,
offering complementary analytical insights into the same
problem.

Model. We consider a two-dimensional interacting model
of topological bands with Chern number, C = ±1, that
preserves TRS. The noninteracting bands are obtained mi-
croscopically in a model of electrons hopping on the sites
of a square lattice [12,17], where the degrees of freedom
consist of spin (σ =↑,↓), valley (τ = ±), and sublattice
(η = A, B), respectively. The noninteracting part of the
Hamiltonian per spin H (σ )

kin can be written in momentum space
as [12]

H (σ )
kin =

∑
k

ψ
†
k [B0,k,σ η0 + Bk,σ · η]τ0ψk, (1)
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where ψ
†
k = ( f †

k,A,+, f †
k,B,+, f †

k,A,−, f †
k,B,−) and f †

k,η,τ
denotes

the electron creation operator on sublattice η with valley τ .
Here, B0,k,σ and Bk,σ are matrices determined entirely by
the hopping parameters on the underlying lattice, which we
assume to include first (t) and staggered second (t2 = t/

√
2)

neighbor hoppings with a π flux per square plaquette [18].
Additionally, by including further (e.g., fifth t5) neighbor hop-
pings, the flatness ratio F = W/Egap (W ≡ bandwidth, Egap ≡
band gap) can be tuned to be small. By including two copies
of H (σ )

kin in a time-invariant fashion [18], under the operation
T = iσyK where K denotes complex conjugation, we arrive
at a model with a set of degenerate topological bands carrying
spin and valley with C = σ . Note that the noninteracting
part of the Hamiltonian has a SU(2)valley × U(1)spin × U(1)c

symmetry, which is broken explicitly down to U(1)valley ×
U(1)spin × U(1)c by the interaction we introduce below.

Our choice of interactions will be inspired by the physics of
quantum Hall-type ferromagnetism in spinful Landau levels
[19–22]. We will focus on the competing effects of an in-
travalley Hund’s-type ferromagnetic interaction with JH < 0,
and an intervalley antiferromagnetic interaction with JA > 0,
and study the competition between possible valley symmetry-
breaking phases and superconductivity in a model with two
time-reversed Chern sectors, as introduced above. The inter-
actions take the following form:

Hinteraction = Hintravalley + Hintervalley, (2a)

Hintravalley = JH

∑
r,τ=±

Sτ
r · Sτ

r , (2b)

Hintervalley = JA

∑
r

S+
r · S−

r , (2c)

where the “spin” operator is defined as

Sτ
r =

∑
α,β=↑,↓

f †
r,τ,ασαβ fr,τ,β . (3)

We have combined the two-dimensional spatial coordinate
and the sublattice index (η) into r. Note that we have
only included an on-site interaction in the full microscopic
Hamiltonian (which generates further-neighbor interactions
upon projection to the lower flat bands).

Quantum Monte Carlo. The model introduced above pos-
sesses an antiunitary TRS, T ′ = iτxσyK , which enables a
sign-problem-free quantum Monte Carlo computation at ar-
bitrary filling fraction ν [18,23] as long as JA � 2|JH|. The
partition function for the model defined by Eqs. (1) and
(2) is evaluated using a Trotter decomposition with 
τ =
β/NTrotter, where the interaction is factorized via a discrete
Hubbard-Stratonovich transformation and the auxiliary fields
are sampled stochastically using single spin-flip updates [18].
In the remainder of this manuscript, we will primarily fo-
cus on the problem with JA = 2|JH|; this parameter choice
corresponds to maximizing the contribution due to Hund’s
interaction relative to the antiferromagnetic exchange, where
Hund’s coupling is expected to be naturally induced from
an on-site intravalley Hubbard repulsion. To address the rel-
ative importance of the bare band dispersion vs (projected)
interactions, we will present results for a flatness ratio,
F = 0.009, 0.2, and JA/t = 2.5 − 5; the gap to the remote

FIG. 1. Superconducting phase diagrams for |JH| = JA/2 with
(a) JA/t = 2.5 and F = 0.2, showing a slight suppression of the
superconducting T SC

c near ν = 2; (b) JA/t = 5 and F = 0.009; and
(c) JA/t = 2.5 and F = 0.009, where the zoomed-in blue-shaded
region shows the competing SVH insulating state (red solid line)
near ν = 2. The lightly doped regions near ν = 2 exhibit a regime
with coexisting SC and SVH order for T < min(T SC

c , T SVH
c ); see

Fig. 2. (d) The top panel shows a schematic of the SVH insulator at
ν = 2 with the shaded regions denoting fully filled electronic bands.
The bottom panel is a schematic for the coexisting SVH and SC
phases for ν = 2 + δν, where the excess electrons (black circles)
form spin-singlet Cooper pairs (red dashed line).

bands, Egap � 4t . To obtain the phase diagram as a function of
temperature and band filling, we tune the chemical potential
μ(T ) such that

∑
r〈nr〉/L2 = ν, where ν denotes the filling

of the Chern bands and nr = ∑
τ,σ f †

r,τ,σ fr,τ,σ is the local
electron density (L2 ≡ system size).

Superconductivity and intertwined orders. Let us begin by
discussing the results for the model with F = 0.2 (t5 = 0) and
JA/t = 2.5; the bands have some dispersion but the interaction
scale is small compared to Egap. We find the ground state
to be a superconductor over the entire range of fillings, and
the transition temperature (T SC

c ) vanishes when ν → 0+, 4−
[see Fig. 1(a)]. We compute the temperature-dependent su-
perfluid stiffness Ds(T ) as the transverse electromagnetic
response at vanishing Matsubara frequency [24],

Ds = 1
4 〈[−Kxx − �xx(ωn = 0, qy = 0, qx → 0)]〉, (4)

where �xx(ωn, q) is paramagnetic current-current corre-
lation, and Kxx ≡ 〈∂2H[A]/∂A2

x |A→0〉 is the diamagnetic
contribution, with A the probe vector potential. The super-
conducting transition temperature T SC

c is then determined as
T SC

c = πDs(T → T SC−
c )/2 [25].

Interestingly, we notice a clear suppression of T SC
c near

ν = 2. To compute the tendencies toward pairing and other
orders, we introduce the thermodynamic susceptibilities for
an observable O,

χO = 1

L2

∫
dτ 〈O†(τ )O(τ = 0)〉. (5)
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The first observable of interest is associated with a spin-
singlet, on-site s-wave pairing operator,



†
SC ≡

∑
r

[c†
r,+↑c†

r,−↓ − c†
r,+↓c†

r,−↑], (6)

which also pairs across valleys. The other operator of interest
diagnoses the tendency toward an intravalley ferromag-
netic polarization (∝ [nτ↑ − nτ↓], τ = ±) and an intervalley
antiferromagnetic order (∝ [n+↑ + n−↓]). We define the asso-
ciated spin-valley Hall (SVH) order parameter as


SVH ≡
∑

r

[nr,+↑ + nr,−↓ − nr,+↓ − nr,−↑]. (7)

Note that if this observable develops an expectation value near
ν = 2, it preserves the global TRS. For the data in Fig. 1(a),
we have computed the spin-valley Hall susceptibility, and a
finite-size scaling suggests that the system fails to develop
this competing order even though T SC

c undergoes a downward
renormalization (presumably due to enhanced SVH fluctu-
ations) [18]. This is our first indication that SC and SVH
orders are intertwined in this model, but depending on values
of microscopic parameters, one of the two orders becomes
energetically favorable.

To investigate further the possibility of enhancing the ten-
dency to form an insulating ground state at the commensurate
filling of ν = 2, we focus next on a much flatter band with
F = 0.009 [t5 = (1 − √

2)t/4] and two different values of the
interaction. For JA/t = 5, the suppression of T SC

c near ν = 2
disappears, and the ground state remains a superconductor for
all fillings [Fig. 1(b)]. In spite of the bands being much flatter,
it is worth noting that JA = 5t � Egap, leading to a mixing with
the degrees of freedom from the dispersive remote bands. The
model is no longer in the “projection-only” limit, leading to a
reduction in the associated strong-coupling effect tied to just
the flat-band Hilbert space [18].

Finally, keeping F = 0.009 and decreasing the interaction
strength to JA = 2.5t < Egap, we find a complete suppression
of T SC

c → 0 at ν = 2 [Fig. 1(c)]. Using finite-size scaling for
χSC and χSVH, and by carrying out a T = 0 projective QMC
calculation, we provide unambiguous evidence for the ground
state being an interaction-induced SVH insulator [18]; see
vertical orange line in Fig. 1(c). This indicates that effectively
projecting to only the degrees of freedom in the lower “flatter”
bands enhances the commensuration effects at integer filling,
in contrast to the previous two cases. We turn next to studying
the effect of doping carriers away from the ν = 2 insulator on
the many-body phase diagram; see Fig. 1(d).

It is worth noting that while the ν = 2 insulator is in-
compressible, any doping away from this limit will lead to
a compressible phase. Moreover, given the prevalence of su-
perconductivity in the model in the absence of the insulating
regime, it is likely that the doped model displays supercon-
ducting correlations. Thus, the following scenarios for the
phase diagram are possible when ν = 2 ± δν: (1) a first-order
transition between the SVH insulator and superconductivity
at infinitesimal δν, (2) phase separation between the SVH
insulator and SC over a range of intermediate δν, and (3) a
phase with microscopically coexistent SVH order and SC. To
diagnose the competition between SVH and SC phases, we
focus on the renormalization group (RG)-invariant correlation

FIG. 2. (a) RG-invariant correlation lengths rSVH (solid line) and
rSC (dashed line) as a function of ν at βJA = 60 for JA/t = 2.5
and F = 0.009 with |JH| = JA/2. For both hole and electron doping
relative to ν = 2, there exists a regime where both SC and SVH
phases coexist for νSC

c < ν < νSVH
c . (b) Histogram of SVH order

parameter 〈
SVH〉 and equal-time correlation function SSC(q = 0)
measured per Monte Carlo snapshot for ν = 1.97 and βJA = 60
indicates their microscopic coexistence. (c) The same RG-invariant
correlation lengths as a function of JH/JA at ν = 2 and T = 0. There
exists a regime of microscopic coexistence of SC and SVH phases
for Jc1

H < JH < Jc2
H . (d) A schematic T -JH phase diagram expressed

using the pseudospin effective model [26].

length rO obtained from the equal-time correlation function
SO(q) as

rO ≡ ξO

L
= 1

2L sin(π/L)

√
SO(q = 0)

SO[q = (2π/L, 0)]
− 1, (8a)

SO(q) = 1

L2

∑
r,r′

e−i(r−r′ )·q〈O†(r′)O(r)
〉
. (8b)

By extracting T SVH
c (purple triangles) and T SC

c (black cir-
cles) in Fig. 1(c) at a fixed filling in the vicinity of ν = 2, we
find that both orders are present below T < min(T SVH

c , T SC
c ).

We note that the slight “bending” of T SVH
c with decreasing

temperature inside the superconducting phase is likely due to
the competition between the two orders.

We have analyzed the correlation length for SVH and SC
as a function of filling fraction ν at a fixed temperature βJA =
60.0, as shown in Fig. 2(a). Our finite size scaling analysis
suggests that there exists a range of δν on either side of ν = 2,
where SVH order survives and T SC

c ∝ |δν|.
To address the question of microscopic coexistence vs

phase separation, we analyze the histogram of SVH or-
der parameter 〈
SVH〉 and equal-time correlation function
SSC(q=0) measured per Monte Carlo snapshot, instead of
ensemble-averaged observables. The histogram for ν = 1.97
and βJA = 60 is shown in Fig. 2(b). If the system had a
tendency to phase separate, the Monte Carlo snapshots would
show either SVH or SC order, appearing as “blobs” along the
axes in the histogram. One the other hand, an off-diagonal
peak of the histogram in Fig. 2(b) suggests that within each
Monte Carlo snapshot, both SVH and SC orders coexist,
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indicating a coexistence between SVH and SC orders for
ν = 1.97 and βJA = 60.

Instead of tuning the filling near ν = 2 at a fixed value of
|JH|/JA and driving transitions between the different phases,
we can gain complementary insights into the strong-coupling
limit by varying the ratio of interactions at a fixed ν = 2. A
finite-size scaling analysis [27] of the correlation length ratios
obtained from our T = 0 projective simulations are shown in
Fig. 2(c). At ν = 2 we find a coexistence of SVH and SC
orders between |Jc1

H |/JA = 0.295(3) and |Jc2
H |/JA = 0.342(4).

To help unify our understanding of these competing phases
and their phase transitions, let us turn next to an analytical ap-
proach that helps tie together the numerical phenomenology.

Analytical results. Given the orders we found in our
QMC computations, it is natural to address the nature of
the effective field theory for a “superspin” [28–30] that
describes the phases and possible phase transitions in the
low-energy Hilbert space; such approaches have been used
earlier in the context of orders in the cuprates [31–34]. We
introduce the Nambu spinors, �† ≡ (c†

+↑, c†
−↑, c+↓, c−↓), and

the Pauli matrices μα which act on the particle-hole sub-
space. The three-dimensional pseudospin vector operator, n ≡
(Re[
SC],−Im[
SC],
SVH), encodes the competing orders
of interest and can be expressed as bilinears of �:

n1 = 1
2�†μxτx� ≡ Re[
SC],

n2 = 1
2�†μyτx� ≡ −Im[
SC],

n3 = 1
2�†τz� ≡ 
SVH. (9)

Naively, one might expect the low-energy theory to be de-
scribed purely in terms of n, until one notices that these sets
of operators do not form a closed group. The minimal group
that contains the {nα , α = 1, 2, 3} as generators is SO(4). The
remaining three generators {Lα} act as the angular momentum
of nα and are given by

L1 = −1

2
�†μyτy� ≡ Re[
vSC],

L2 = 1

2
�†μxτy� ≡ −Im[
vSC],

L3 = 1

2
�†μz� = 1

2

( ∑
τ,σ

nτ,σ − 2

)
, (10)

where the additional order parameter is


r,vSC ≡ [cr,−↓cr,+↑ + cr,−↑cr,+↓]. (11)

The above pseudospin operators can be mapped to the spin
operators on a bipartite lattice [26,35] where the Lα represent
the uniform magnetization, while the nα are equivalent to the
staggered magnetization in the α direction of the spin model,
respectively [18].

Projecting the interactions in Eq. (2) to the lower flat bands,
we obtain the following low-energy effective Hamiltonian:

Heff =
∑
r,α

[
G

(
UαL2

α,r + Vαn2
α,r

) + μL3,r
]

+
∑
r,r′,α

Fr,r′
[
U ′

αLα,rLα,r′ + V ′
αnα,rnα,r′

]
, (12)

where the coefficients are given by

U1 = U2 = JA

5
+ 3|JH |

10
, U3 = − JA

20
+ 3|JH |

10
(13a)

V1 = V2 = −3JA

10
+ 3|JH |

10
, V3 = −3JA

10
− 6|JH |

5
(13b)

U ′
1 = U ′

2 = JA

8
, U ′

3 = 3|JH |
4

(13c)

V ′
1 = V ′

2 = −3JA

8
, V ′

3 = −JA

4
− 3|JH |

4
. (13d)

Here, μ acts as a pseudo magnetic field. Note that the
model does not have any (emergent) SO(4) symmetry, but it
nevertheless provides an organizing framework to describe the
various order-parameter fluctuations. The coefficients G and
Fr,r′ are positive and can be obtained in terms of the Wannier
functions constructed out of the lower flat-band Bloch wave
functions; their precise form is unimportant for describing the
phases and phase transitions at T = 0, which we turn to next.

When μ = 0, the effective Hamiltonian in Eq. (12) hosts
an anisotropy-tuned easy axis to easy-plane transition with
decreasing |JH|/JA, as seen in our numerical data in Fig. 2(c).
The pseudospin-flop transition has been studied theoretically
in classic papers [26,35]; a schematic phase diagram as a
function of JH/JA and T appears in Fig. 2(d). Let us now
elaborate further on the connections between the pseudospin
model and the numerically obtained phase diagram at T = 0.
For ν = 2, the uniform polarization 〈L3〉 = 0 vanishes across
the entire phase diagram. When JH/JA = 0, the competition
between the isotropic on-site term and the long-range interac-
tions generated by Fr,r′ lead to an easy-plane Neel state with
〈n1,2〉 �= 0, suggesting that the ground state is a spin-singlet
superconductor [Fig. 2(d)].

The gapped SC ground state remains stable with increasing
|JH| < |Jc1

H |, across which there appears a continuous quan-
tum phase transition to a phase with coexisting SVH and
SC orders. In the pseudospin language, for |Jc1

H | < |JH| <

|Jc2
H |, they tilt away from the xy plane, such that both the

SC order parameter 〈n1,2〉 �= 0 and SVH order parameter
〈n3〉 �= 0. Increasing |JH| beyond |Jc2

H | turns the easy-plane
anisotropy in Eq. (12) to an easy-axis anisotropy, where SC
disappears (〈n1,2〉 = 0) and only the SVH order parameter
survives 〈n3〉 �= 0. The chemical potential tuned transitions
between the SVH and SC phases can also be described within
the above picture in terms of an external magnetic-field-tuned
pseudospin-flop transition [26,35]; see Ref. [18] for a detailed
discussion of the differences from the present case.

To finally address the universality class associated with the
distinct anisotropy-tuned phase transitions [26,35] for T = 0
and ν = 2 at Jc1

H and Jc2
H , we perform a scaling collapse

analysis in Fig. 3. The onset of SVH order in the presence
of a background SC order at JH = Jc1

H (where the fermions
are already gapped) belongs in the (2 + 1)-dimensional Ising
universality class; the correlation-length critical exponent in
Fig. 3(a) is consistent with Ising criticality. Similarly, the loss
of SC at JH = Jc2

H in the absence of any gapless fermions
belongs in the (2 + 1)-dimensional XY universality class, as
can be seen from the rescaled data in Fig. 3(b).

Outlook. We have studied the effects of competing in-
travalley ferromagnetic and intervalley antiferromagnetic
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FIG. 3. Scaling collapse analysis of the anisotropy-tuned transi-
tion at T = 0 and ν = 2.0 for (a) the onset of SVH order, described
by a (2 + 1)-dimensional Ising theory, and (b) the loss of SC order,
associated with a (2 + 1)-dimensional XY transition. The RG invari-
ant tuning parameter is defined as JRG = [(JH − Jc

H)/Jc
H]L1/νRG , with

Jc
H labeled in the respective panels.

interactions—derived from a purely repulsive electronic
interaction—projected to a set of isolated topological flat
bands. The low-energy physics is described by a set of
intertwined orders involving a spin-valley Hall insulator
and superconductor near the commensurate filling of ν = 2.
Clearly, this competition also rules out the prospect of any
applicable lower bounds on the superconducting T SC

c [15],
in contrast with analogous suggestions for models with on-
site attractive interactions [16,36,37]. In the symmetry-broken
phases, we have also identified the effective field theory for
the intertwined orders, and pinned down the universal theories

for the associated phase transitions. The universal physics
near the finite-temperature multicritical point deserves a more
careful study in the future, as the normal metallic phase with-
out any symmetry-breaking orders involves gapless fermions
coupled to the critical order-parameter fluctuations.

Our findings have a number of conceptual similari-
ties with the phenomenology of correlated insulators and
superconductivity, when doped away from the commensurate
fillings, in moiré graphene. A recent moiré-inspired numer-
ical study has also highlighted the role of competing orders
for models of topological multiorbital flat bands with the
full repulsive density-density interactions [38]. It has not
escaped our attention that our model shares superficial sim-
ilarities with a model displaying skyrmion mediated pairing
as well [28–30]. However, our current model does not yield
skyrmionic excitations within a Chern sector as the cheapest
excitation. Other variations of the above model may be able
to host a quantum Hall-like ferromagnetic ground state at
integer filling and possibly a skyrmion-mediated supercon-
ducting phase, which we leave for future study. In addition,
investigating various proxies for electrical transport near the
symmetry-breaking transitions remains an exciting avenue.

The auxiliary field QMC simulations were carried out us-
ing the ALF package [39].
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