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Dual bulk-boundary correspondence in a nonreciprocal spin-orbit coupled zigzag lattice
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We unveil a relevant non-Hermitian symmetry and hence a dual bulk-boundary correspondence (BBC) from
a one-dimensional non-Hermitian Rice-Mele model including on-site dissipation, nonreciprocity, and spin-orbit
coupling. To expose this dual BBC, we present the closed-form solutions for spin-up and spin-down edge modes
and two explicit topological winding numbers, which are linked to each other to a perfect degree. We also
demonstrate the topological zero modes and their strong insensitivity to disorder in the presence of spin-orbit
coupling. We anticipate that this dual BBC may offer another route for manipulating spin currents and trigger
the research for dual topological insulators in a single zigzag lattice.

DOI: 10.1103/PhysRevB.110.L041103

As a central figure in topological band theory [1–3], the
bulk-boundary correspondence (BBC) has attracted signifi-
cant attention in diverse areas such as condensed state physics
[4,5], mechanics [6], electronics [7], acoustics [8], plasma
physics [9], and photonics [10,11]. It depicts that the existence
of gapless boundary states that are insensitive to defects and
disorder [12] can be related to the topological invariants of the
bulk, a global geometric property of Bloch wave functions cal-
culated in momentum space [10]. Such BBC principle prevails
in Hermitian systems for predicting the topological phases of
matter [13], leading to the discovery of numerous topological
insulators [14,15]. Meanwhile, the duality behind the BBC
has also sparked off new ideas for other subjects, e.g., propos-
ing the modulation instability-rogue wave correspondence for
predicting rare extreme waves in nonlinear systems [16].

Nonetheless, when the Hamiltonian inherently exhibits
non-Hermiticity [17–21], the spectra and eigenstates of the
bulk can be drastically changed under an open boundary con-
dition (OBC), owing to the presence of a non-Hermitian skin
effect [22–27]. As a consequence, the topological invariants
obtained still with a Bloch Hamiltonian may no longer predict
the boundary states, foreshadowing the breakdown of the con-
ventional BBC [28,29]. One way to overcome this difficulty
is to define a real-space invariant, based on the notion of
biorthogonal quantum mechanics, hence called biorthogonal
BBC [30,31]. Another more straightforward way is to uti-
lize the concept of generalized Brillouin zone (GBZ) [22,32–
34], which can allow the topological invariants to be cor-
rectly defined in momentum space, resulting in a so-called
non-Bloch BBC [35–38]. To date, both non-Bloch BBC and
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non-Hermitian skin effects have been experimentally con-
firmed in such physical settings as electric circuits [39],
mechanical metamaterials [40], photonic lattices [41,42], and
quantum walks [43].

In developing the formalism of BBC, the role of sym-
metry of non-Hermitian systems cannot be overemphasized
[13,18,44,45]. It has recently been demonstrated that non-
Hermiticity expands significantly the celebrated Altland-
Zirnbauer symmetry classification [46] and a total of 38
symmetry classes are identified, whereby different topological
invariants can be defined [47]. In this Letter, we unveil an
interesting symmetry that is not included in that classification,
but proper to the one-dimensional (1D) non-Hermitian Rice-
Mele (RM) model [48], which, when combining the on-site
gain and loss [49–52], nonreciprocity [33,53], and spin-orbit
(SO) coupling [54–56], does not respect any known internal
symmetries, e.g., chiral symmetry (CS). In non-Hermitian
systems, this symmetry is actually universal, despite receiving
little attention in the past. What we report here is that it
entails two topological invariants that underpin the topological
edge states in such antichiral RM model. Our results conform
to the recent experimental observation that the 1D zigzag
photonic lattices with broken CS do admit quantized Zak
phase [57].

Furthermore, we obtain the closed-form, asymptotically
exact analytic solutions for topological edge modes, along
with their parameter conditions. A so-called dual BBC is es-
tablished, by which we mean that the two topological winding
numbers can precisely predict whether or not the topological
edge modes are available for spin-up electrons and spin-down
ones, respectively. This concept can be reminiscent of the
stacked dual topology found in 3D superlattices [58–60],
despite having an entirely different origin. It is anticipated
that, when the values of both topological invariants become
nonzero, a dual topological insulator phase would appear in
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FIG. 1. (a) A schematic sketch of a 2D transversely periodic
honeycomb lattice that can be seen as a stack of 1D zigzag chains.
(b) Geometry of an open 1D tight-binding zigzag model of N cells,
with t1L,R (sky-blue lines) and t2L,R (dark-blue lines) being nonrecip-
rocal hopping amplitudes.

a 1D zigzag chain. These results fully uncover the mystery
behind the BBC, with which one can even predict the topo-
logical edge modes without the knowledge of the topology of
non-Hermitian systems [61–63].

For our studies, we consider the following Hamiltonian of
the generalized 1D non-Hermitian RM model [48]

Ĥ =
N∑

n=1

[t1Lâ†
nb̂n + t1Rb̂†

nân + (iγ + μ)(â†
nân − b̂†

nb̂n)]

+
N−1∑
n=1

(t2Râ†
n+1b̂n + t2Lb̂†

nân+1)

+
N−1∑
n=1

(−iλâ†
nσzân+1 + iλb̂†

nσzb̂n+1 + H.c.), (1)

where â†
n = (â†

n↑, â†
n↓) and b̂†

n = (b̂†
n↑, b̂†

n↓) stand for the cre-
ation operators on the sublattice A and B of the nth unit
cell, respectively, for electrons with spin up (↑) or spin down
(↓), σz is the Pauli matrix, and H.c. denotes the Hermitian
conjugate. This tight-binding Hamiltonian is the 1D version
of the Kane-Mele model [54,55] used in graphene [64] and
silicene [65] for unveiling the quantum spin Hall effect. It
thus corresponds to the 1D zigzag chain geometry spanning
across the bulk of a 2D honeycomb lattice [see Fig. 1(a)]
[66–68], obtained by Fourier transforming the latter along
the translationally invariant y direction [69]. Here, N is the
cell number of the lattice, μ ∈ R is the staggered sublattice
potential, γ ∈ R is the on-site gain and loss, λ ∈ R is the SO
coupling, and t1L,R (t2L,R) represent the nonreciprocal intracell
(intercell) hopping amplitudes [see Fig. 1(b)]. For analytical
purposes, we do not include the Rashba SO coupling effect
[70], which could render electronic spins inseparable. Actu-
ally, in that case, our analytical solutions provided here would
still work fairly well for predicting topological edge states,
as long as the Rashba SO coupling is comparatively weak
[71,72] (see Sec. VII in Supplemental Material [73]).

Performing a Fourier transformation on Eq. (1), one can
obtain the generalized Bloch Hamiltonian H(β ≡ eik ) as

H(β ) =
[H↑(λ, β ) 0

0 H↓(λ, β )

]
4×4

, (2)

where H↑(λ, β ) and H↓(λ, β ) are the traceless spin-up and
spin-down Bloch Hamiltonians, defined by

H↑(λ, β ) =
[

G(λ, β ) R+(β )

R−(β ) −G(λ, β )

]
,

H↓(λ, β ) = H↑(−λ, β ), (3)

with R+(β ) = t1L + t2R/β, R−(β ) = t1R + t2Lβ, and
G(λ, β ) = μ + iγ + iλ(β−1 − β ). This momentum-space
Hamiltonian (2) gives the entire spectrum E = {E↑} ∪ {E↓},
where E↑ and E↓ are the eigenenergies of spin-up and
spin-down electronic states, determined by

R+(β )R−(β ) + G(λσ , β )2 = E2
σ . (4)

Here, we use σ to indicate the spin up (↑) or spin down (↓),
and let λσ = λ or = −λ as σ takes ↑ or ↓. It should be noted
that under the periodic boundary condition (PBC), the energy
spectrum E can be solely determined by Eq. (4), with β = eik

and letting k run from 0 to 2π .
As one can check, the generalized RM Hamiltonian re-

spects neither the sublattice symmetry (SLS) nor the CS
[57,78], let alone the PT or anti-PT symmetry [51,79]
(see also Supplemental Material [73] for details). However,
the Hamiltonian could respect SHT(k)S−1 = −H(k) (seen
in momentum space), where S is a unitary matrix satisfy-
ing SS∗ = −1 and T means transpose. This latter symmetry
implies that, if |u(k)〉 is the right eigenstate of H(k) with
eigenenergy E (k), then S|u∗(k)〉 is the left eigenstate of H(k)
with −E (k) [47]. This represents a physically relevant sym-
metry and basically it can be realized by a combined action of
a parity operator and a particle-hole operator. Moreover, one
can prove that it is also relevant for defining the topological
invariant with line gap [73]. In many non-Hermitian systems
where SLS fails [80,81], this symmetry still works to ensure
the stable transport of topological edge states. For this reason,
we will term it SLS† to distinguish it from conventional SLS.

Owing to the SLS†, the eigenvalue equation Ĥ |ψ〉 = E |ψ〉
of the Hamiltonian (1) under OBC can be exactly solved in
real space, for both the energy spectrum E and the eigenstates
|ψ〉 [73]. Here, we only present the asymptotic analytic so-
lutions for topological edge states, along with the parameter
conditions for their existence. Specifically, for electrons with
spin σ , these topological edge states will possess two energies,

Eσ = ± i[(iμ − γ )t2Lt2R + (t1Lt2L − t1Rt2R)λσ ]√
t2Lt2R(4λ2 + t2Lt2R)

, (5)

which are exact in the thermodynamic limit N → ∞. When
inserting them back into Eq. (4), one obtains four β values,

βσ
1 = −α − K − A+

2
, βσ

2 = −α − K + A+
2

, (6)

βσ
3 = −α + K − A−

2
, βσ

4 = −α + K + A−
2

, (7)

where α = [2(iμ − γ )λσ − t1Lt2L]/(2λ2), K = [t1Lt2L +
t1Rt2R − αt2Lt2R]/

√
t2Lt2R(4λ2 + t2Lt2R), and A± =

[3α2 − 2ε − K2 ± 2(εα − α3 − κ )/K]1/2, with κ =
−[2(iμ − γ )λσ + t1Rt2R]/λ2, ε = 4Sσ − 4P − 2 − t2Lt2R/λ2,
and

P = (t1Lt2L + t1Rt2R)2

16λ2t2Lt2R
, (8)
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FIG. 2. (a) Phase diagram for topological edge
modes with different spins, for given parameters
γ = 1, μ = 2, λ = 4/5, and t2L = t2R = 2. (b)–
(d) show the OBC energy spectra, the 3D surface
plot of eigenstates, and the analytic and numeric
edge state profiles, respectively, obtained with t1L =
1, t1R = 1/2, and N = 10, corresponding to the
blue cross in the overlapped pink region in (a). In
(b), the colored directional curves denote the PBC
spectra, while the blue asterisks and black crosses
indicate the analytic spin-up edge energies E↑ and
the spin-down ones E↓, respectively. The other four
parameter points denoted by red crosses in (a) will
be shown in Fig. 3.

Sσ = [4λσ (iμ − γ ) − t1Lt2L + t1Rt2R]2

16λ2(4λ2 + t2Lt2R)
. (9)

In terms of these four β values associated to Eσ , the eigen-
functions of topological edge states in the thermodynamic
limit can be explicitly expressed as |ψe〉 = ∑4N

m=1 ψm|m〉 =
(ψ↑

1A, ψ
↑
1B, . . . , ψ

↑
NA, ψ

↑
NB, ψ

↓
1A, ψ

↓
1B, . . . , ψ

↓
NA, ψ

↓
NB)T. To be

specific, for electronic states with spin up (i.e., σ =↑), the
state components read

ψ
↑
nA =

4∑
j=1

c jφ(β↑
j )β↑n

j , ψ
↑
nB =

4∑
j=1

c jβ
↑n
j ,

ψ
↓
nA = ψ

↓
nB = 0, (10)

otherwise, for spin-down electronic states (σ =↓), these state
components should take the form

ψ
↑
nA = ψ

↑
nB = 0, ψ

↓
nA =

4∑
j=1

c jφ(β↓
j )β↓n

j ,

ψ
↓
nB =

4∑
j=1

c jβ
↓n
j , (11)

where

φ
(
βσ

j

) = R+
(
βσ

j

)
Eσ − G

(
λσ , βσ

j

) , (12)

and c j are size-dependent complex coefficients given by

c1 = g
(
φ34β

σN+1
2 + φ42β

σN+1
3 + φ23β

σN+1
4

)
, (13)

c2 = g
(
φ43β

σN+1
1 + φ14β

σN+1
3 + φ31β

σN+1
4

)
, (14)

c3 = g
(
φ24β

σN+1
1 + φ41β

σN+1
2 + φ12β

σN+1
4

)
, (15)

c4 = g
(
φ32β

σN+1
1 + φ13β

σN+1
2 + φ21β

σN+1
3

)
, (16)

with φi j = φ(βσ
i ) − φ(βσ

j ) and g being a free constant used
to normalize the eigenvector |ψe〉 such that 〈ψe|ψe〉 = 1. Note
here that, for clarity, we have arranged the former 2N compo-
nents in |ψe〉 to host electrons with spin up, while allocating
the latter 2N ones for electrons with spin down. As can be
verified, these topological edge states with eigenenergies Eσ

are available only when the inequality

|−P + Sσ ±
√

(−P + Sσ + 1)2 + 4P| �
∣∣∣∣1 + t2Lt2R

2λ2

∣∣∣∣ (17)

is satisfied, where P and Sσ are given by Eqs. (8) and (9).
We emphasize that the closed-form solutions (5), (10), and

(11) for topological edge states with spin σ are asymptot-
ically exact in the thermodynamic limit, but, however, are
also accurate enough for finite lattice size N � 5, with errors
generally below 1%. So is the parameter condition (17), which
defines the domains of topological edge states with different
spins. For illustration, we demonstrate in Fig. 2 four topolog-
ical edge states allowed in an antichiral zigzag lattice with
N = 10, for a typical set of system parameters specified by the
blue cross in the overlapped pink region of the phase diagram
in Fig. 2(a), which results from Eq. (17) for both spins. It
is clearly seen that these four edge modes, two for spin up
and two for spin down, as denoted by the red and cyan solid
circles in Fig. 2(c), respectively, exhibit excellent consistency
with numerical calculations based on Hamiltonian (1) [see
Figs. 2(b) and 2(d)]. Further, in Fig. 2(d), one can find that
the two topological edge modes associated with two E↑ (or
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FIG. 3. Dual BBC for predicting topological
edge states with different spins. The energy spectra
(left), 3D surface plot of eigenstates (middle), and
the GBZ↑ and GBZ↓ contours along with four β

↑
j

points (blue diamonds) and four β
↓
j points (black

triangles) (right). We use t1L = −3, t1R = 1 for case
I, t1L = 1, t1R = −3 for case II, t1L = 4, t1R = 1/4
for case III, and t1L = 2, t1R = 3 for case IV, corre-
sponding to parameter points I–IV in Fig. 2(a).

two E↓) have distinctly different intensity profiles, indicating
that no exceptional points take place therein. This is a natural
consequence of the non-Hermitian Hamiltonian that respects
SLS†, by which its eigenenergies come in (E ,−E ) pairs.

An inspection of these analytic solutions reveals that, in the
presence of the SO coupling (i.e., λ �= 0), the topological edge
states generally possess four energy points in the complex
plane, each of which could be separated from the energy
continuum of the bulk when N approaches infinity, as seen
in Fig. 2(b). Only when the parameter relation t1Lt2L = t1Rt2R

is met do the spin-up and spin-down edge energies coincide
(i.e., spectral degeneracy). We term these analytic solutions
topological edge states, not only because they exhibit non-
trivial localization on the boundaries [see Fig. 2(c)] and a
clear separation in energy spectrum from the bulk states [see
Fig. 2(b)], but also because they have a genuine topological
origin.

As a matter of fact, for predicting the existence of spin-
up and spin-down topological edge states, we can define two
topological winding numbers W↑ and W↓,

W↑ =
∮

GBZ↑

dβ

4π i
tr

(
σzQ

−1(λ)
dQ(λ)

dβ

)
, (18)

W↓ =
∮

GBZ↓

dβ

4π i
tr

(
σzQ

−1(−λ)
dQ(−λ)

dβ

)
, (19)

expressed, respectively, as a complex integration of rational
functions of β along the GBZ↑ or GBZ↓ contour, where Q is

a λ-dependent specific non-Hermitian matrix:

Q(λ) = λ

4β

[
0 (2β + α − K )2 − A2

+
(2β + α + K )2 − A2

− 0

]
.

(20)

We emphasize that this Q quantity results from a factorization
of det[H↑(λ, β ) − E↑] and represents a significant generaliza-
tion of the one developed for zero modes in bipartite lattice
models [33,69,82]. According to the general residue theorem
[83], the above complex contour integration equates to that
it counts whether certain values of β associated with edge
modes lie inside or outside of the GBZ. Specifically, one
can find W↑ and W↓ through two steps: First, determine the
GBZ↑ and GBZ↓ of the bulk states, which can be done either
numerically or analytically [73]; second, calculate the four βσ

j
values using Eqs. (6) and (7) for given Eσ . Then, Wσ = 1 if
only βσ

3 and βσ
4 lie inside of the GBZσ contour. Otherwise,

Wσ = 0. Only when the topological invariants are nonzero
do the topological edge states exist, which is the so-called
non-Hermitian BBC. As the system has two topological in-
variants (18) and (19) that work independently for predicting
the topological edge states, we would like to term such a BBC
as a dual BBC. Remarkably, letting |βσ

1,2| = |βσ
3,4|, one can

exactly reproduce what the existence condition (17) shows for
topological edge states (see Supplemental Fig. 3 in Ref. [73]).

To show this dual BBC, we consider the four parameter
points denoted by I–IV (red crosses) in Fig. 2(a). We first
demonstrate the energy spectra and eigenstates caused by
these parameters in Fig. 3. It is obvious that, while cases
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FIG. 4. Demonstration of dual BBC for either
(a)–(c) the proposed Hamiltonian (1) that involves
a larger SO coupling (λ = 3), or (d)–(f) the Hamil-
tonian (1) added by an off-diagonal perturbation
Ĥper, keeping other parameters the same as in Fig. 2.
In (d), the bulk energy spectra in the absence of
Ĥper, denoted by red (spin-up) and cyan (spin-down)
dots, are also plotted. In (f), the GBZ contours are
calculated from the unperturbed Hamiltonian (1).

I and III admit topological spin-up edge states only, there
exist spin-down edge states in case II and no topological edge
states in case IV, as exactly predicted by the phase diagram in
Fig. 2(a). Moreover, once the parameter points locate within
the domain, our analytic solutions for either the spin-up or
the spin-down edge states exhibit a striking agreement with
the numerical results, even though only ten cells are calcu-
lated [see the red solid circles in Figs. 3(b) and 3(h) and the
cyan solid circles in Fig. 3(e)]. Then, we calculate the GBZ↑
and GBZ↓ either numerically at N = 10 or analytically at
N = ∞, which are traced by the middle two roots of Eq. (4)
[33]. The results are shown in the rightmost column and,
meanwhile, four β

↑
j values (blue diamonds) for spin-up edge

states and four β
↓
j values (black triangles) for spin-down ones

are provided therein (some large βσ
j values are not shown).

One can find easily that for case I, W↑ = 1 and W↓ = 0, for
case II, W↑ = 0 and W↓ = 1, for case III, W↑ = 1 and W↓ = 0,
and for case IV, W↑ = 0 and W↓ = 0, once again agreeing well
with the numerical results shown in the middle column, hence
confirming our conjecture of dual BBC.

One may wonder whether such dual BBC remains when
a strong SLS†-symmetric coupling is added. To clear up
this concern, we consider two different yet SLS†-symmetric
Hamiltonians; one is the proposed Hamiltonian (1) yet involv-
ing a larger SO coupling value λ = 3, and the other is equal
to the Hamiltonian (1) plus an off-diagonal perturbed term
Ĥper = λp

∑N
n=1(â†

nσxb̂n − b̂†
nσxân) + λ∗

p

∑N−1
n=1 (−â†

n+1σxb̂n +
b̂†

nσxân+1), where λp = i/10 − √
3/10. The results are

provided with Fig. 4, using a zigzag lattice of N = 20
cells. One can clearly see that our analytical solutions for
topological edge states are in perfect agreement with their
numerical solutions, and can be predicted by the topological
invariants calculated by counting βσ

3,4 within GBZ contours,
whether the model used is the Hamiltonian (1) that has exact
asymptotic solutions [see Figs. 4(a)–4(c)] or the perturbed
one that does not admit exact solutions [see Figs. 4(d)–4(f)].
Particularly, in the latter case, it is exhibited that the bulk

states have been significantly altered by perturbation, whereas
the topological edge states remain almost unchanged.

We finally point out that, in the presence of SO cou-
pling, such topological edge states can admit zero energy
Eσ = 0, if the parameter conditions μ = 0 and γ = (t1Lt2L −
t1Rt2R)λσ /(t2Lt2R) are met simultaneously. When t1Lt2L =
t1Rt2R is further satisfied, the Kramers degeneracy E↑ = E↓ =
0 can be attained. It is worth noting that, when μ = 0,
the Hamiltonian (1) will respect the time-reversal symmetry,
by which its eigenenergies come in (E , E∗) pairs [47]. We
demonstrate in Figs. 5(a) and 5(b) the degenerate zero modes
for spin-up edge states occurring with a ten-cell zigzag lattice
and in Figs. 5(c) and 5(d) their strong immunity to disorder
when the lattice potential μ of the fifth cell is changed from
zero to one, i.e., letting μ = 1 at n = 5 (the other parameters
are kept unchanged). This is not surprising because these edge
modes are protected by the topology and the SLS† of the RM
system and thus can survive until the phase transitions take
place.

In conclusion, within the 1D non-Hermitian RM model, we
unveiled a previously overlooked yet significant symmetry,
alias SLS†, which is also relevant to the topology of non-
Hermitian systems, including those with broken CS. We then
established a dual BBC for interacting spinful electrons, by
which one can realize a robust dual topological insulator phase
in an SO-coupled zigzag lattice [84], or in a nonequilibrium
setting assisted by the Floquet band engineering technique
[85]. Moreover, our theory has enabled the study of topologi-
cal edge states without a topological analysis of the bulk band
structure, which is particularly helpful on the experimental
side. Taking into consideration that the SO coupling is the
cornerstone of the topological physics across a wide variety
of materials with broken inversion symmetry [86], this
dual BBC principle, which has an in-built SO feature, may
also offer a fresh perspective for testing some SO-related
physics such as spin-charge separation [87] and spin current
generation [88].
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FIG. 5. (a), (b) Topological zero modes occur-
ring in a ten-cell zigzag lattice, with μ = 0, γ =
4/15, λ = 4/5, t1L = 1, t1R = 1/3, and t2L = t2R =
2, and (c), (d) their robustness against disorder, by
changing the lattice potential μ of the fifth cell from
0 to 1.
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Kellner, P. Schüffelgen, M. Gehlmann, S. Döring, E. Neumann,
M. Luysberg, G. Mussler, L. Plucinski, M. Morgenstern, D.
Grützmacher, G. Bihlmayer, S. Blügel, and C. M. Schneider,
Bi1Te1 is a dual topological insulator, Nat. Commun. 8, 14976
(2017).

[59] H.-P. Xue, R. Sun, X. Yang, A. Comstock, Y. Liu, B. Ge,
J.-N. Liu, Y.-S. Wei, Q.-L. Yang, X.-S. Gai, Z.-Z. Gong, Z.-K.
Xie, N. Li, D. Sun, X.-Q. Zhang, W. He, and Z.-H. Cheng,
Dual topology of dirac electron transport and photogalvanic
effect in low-dimensional topological insulator superlattices,
Adv. Mater. 35, 2208343 (2023).

[60] A. Anirban, Dual topological insulator found in superlattice,
Nat. Rev. Phys. 5, 270 (2023).

[61] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte,
M. S. Rudner, M. Segev, and A. Szameit, Observation of a

L041103-7

https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevResearch.2.043046
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1103/PhysRevResearch.2.013280
https://doi.org/10.1103/PhysRevLett.126.216407
https://doi.org/10.1103/PhysRevResearch.4.043222
https://doi.org/10.1103/PhysRevB.108.085425
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1126/science.aaz8727
https://arxiv.org/abs/2305.17853
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41567-023-02011-9
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.121.213902
https://doi.org/10.1126/science.aay1064
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1103/PhysRevLett.125.186802
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.127.147401
https://doi.org/10.1038/ncomms14976
https://doi.org/10.1002/adma.202208343
https://doi.org/10.1038/s42254-023-00578-z


LI, HOU, WU, RUAN, CHEN, YUAN, AND NI PHYSICAL REVIEW B 110, L041103 (2024)

topological transition in the bulk of a non-Hermitian system,
Phys. Rev. Lett. 115, 040402 (2015).

[62] S. Longhi, Topological phase transition in non-Hermitian qua-
sicrystals, Phys. Rev. Lett. 122, 237601 (2019).

[63] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[64] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental
observation of the quantum Hall effect and Berry’s phase in
graphene, Nature (London) 438, 201 (2005).

[65] C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in
silicene and two-dimensional germanium, Phys. Rev. Lett. 107,
076802 (2011).

[66] Y. Liu, A. Dobrinsky, and B. I. Yakobson, Graphene edge from
armchair to zigzag: The origins of nanotube chirality? Phys.
Rev. Lett. 105, 235502 (2010).

[67] Y. Li, C. Liang, C. Wang, C. Lu, and Y. C. Liu, Gain-loss-
induced hybrid skin-topological effect, Phys. Rev. Lett. 128,
223903 (2022).

[68] S. Xia, Y. Liang, L. Tang, D. Song, J. Xu, and Z. Chen,
Photonic realization of a generic type of graphene edge states
exhibiting topological flat band, Phys. Rev. Lett. 131, 013804
(2023).

[69] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states
and topological phases in non-Hermitian systems, Phys. Rev. B
84, 205128 (2011).

[70] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,
New perspectives for Rashba spin-orbit coupling, Nat. Mater.
14, 871 (2015).

[71] H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and
A. H. MacDonald, Intrinsic and Rashba spin-orbit interactions
in graphene sheets, Phys. Rev. B 74, 165310 (2006).

[72] C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective
Hamiltonian involving spin-orbit coupling in silicene and two-
dimensional germanium and tin, Phys. Rev. B 84, 195430
(2011).

[73] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.L041103 for details of solving the RM
model in real space, the closed-form topological edge-mode
solutions, the symmetry properties of the RM Hamiltonian, two
topological invariants proposed for predicting topological edge
modes, an approach to calculating the exact GBZ, the proofs
of several typical symmetry types, the RM model with Rashba
spin-orbit (SO) coupling being included, and the relevance of

our proposed symmetry to the topological winding number,
which includes Refs. [74–77].

[74] S.-Q. Shen, Topological Insulators: Dirac Equation in Con-
densed Matters (Springer, Berlin, 2013).

[75] A. W. W. Ludwig, Topological phases: Classification of
topological insulators and superconductors of non-interacting
fermions, and beyond, Phys. Scr. T168, 014001 (2016).

[76] H. Xue, Q. Wang, B. Zhang, and Y. D. Chong, Non-Hermitian
Dirac cones, Phys. Rev. Lett. 124, 236403 (2020).

[77] L. Fu and C. L. Kane, Topological insulators with inversion
symmetry, Phys. Rev. B 76, 045302 (2007).

[78] X. Wu, L. Wang, S. Chen, X. Chen, and L. Yuan, Transi-
tion characteristics of non-Hermitian skin effects in a zigzag
lattice without chiral symmetry, Adv. Phys. Res. 2, 2300007
(2023).

[79] Q. Wang and Y. D. Chong, Non-Hermitian photonic lattices:
Tutorial, J. Opt. Soc. Am. B 40, 1443 (2023).

[80] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G.
Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Topolog-
ically protected bound states in photonic parity-time-symmetric
crystals, Nat. Mater. 16, 433 (2017).

[81] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J.
Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, and
M. Khajavikhan, Edge-mode lasing in 1D topological active
arrays, Phys. Rev. Lett. 120, 113901 (2018).

[82] S.-D. Liang and G.-Y. Huang, Topological invariance and
global Berry phase in non-Hermitian systems, Phys. Rev. A 87,
012118 (2013).

[83] T. Needham, Visual Complex Analysis, 25th Anniversary Edition
(Oxford University Press, Oxford, UK, 2023).

[84] S. Liu, H. Yin, D. J. Singh, and P. F. Liu, Ta4SiTe4: A pos-
sible one-dimensional topological insulator, Phys. Rev. B 105,
195419 (2022).

[85] M. S. Rudner and N. H. Lindner, Band structure engineering
and non-equilibrium dynamics in Floquet topological insula-
tors, Nat. Rev. Phys. 2, 229 (2020).

[86] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum
gases, Nature (London) 494, 49 (2013).

[87] C. Kim, A. Y. Matsuura, Z. X. Shen, N. Motoyama, H. Eisaki,
S. Uchida, T. Tohyama, and S. Maekawa, Observation of spin-
charge separation in one-dimensional SrCuO2, Phys. Rev. Lett.
77, 4054 (1996).

[88] W. Han, S. Maekawa, and X. C. Xie, Spin current as a probe of
quantum materials, Nat. Mater. 19, 139 (2020).

L041103-8

https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.122.237601
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.1103/PhysRevLett.105.235502
https://doi.org/10.1103/PhysRevLett.128.223903
https://doi.org/10.1103/PhysRevLett.131.013804
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1038/nmat4360
https://doi.org/10.1103/PhysRevB.74.165310
https://doi.org/10.1103/PhysRevB.84.195430
http://link.aps.org/supplemental/10.1103/PhysRevB.110.L041103
https://doi.org/10.1088/0031-8949/2015/T168/014001
https://doi.org/10.1103/PhysRevLett.124.236403
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1002/apxr.202300007
https://doi.org/10.1364/JOSAB.481963
https://doi.org/10.1038/nmat4811
https://doi.org/10.1103/PhysRevLett.120.113901
https://doi.org/10.1103/PhysRevA.87.012118
https://doi.org/10.1103/PhysRevB.105.195419
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/PhysRevLett.77.4054
https://doi.org/10.1038/s41563-019-0456-7

