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Ring structure in the complex plane: A fingerprint of a non-Hermitian mobility edge
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By Avila’s global theory, we analytically reveal that the non-Hermitian mobility edge will take on a ring
structure in the complex plane, which we name as the “mobility ring”. The universality of the mobility ring has
been checked and supported by the Hermitian limit, PT -symmetry protection, and without PT -symmetry cases.
Further, we study the evolution of mobility ring versus quasiperiodic strength, and find that in the non-Hermitian
system, there will appear multiple mobility ring structures. With cross reference to the multiple mobility edges
in the Hermitian case, we give the expression of the maximum number of mobility rings. Finally, by comparing
the results of Avila’s global theorem and self-duality method, we show that self-duality relation has its own
limitations in calculating the critical point in non-Hermitian systems. As we know, the general non-Hermitian
system has a complex spectrum, which determines that the non-Hermitian mobility edge can but exhibit a ring
structure in the complex plane.
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Introduction. In 1958, P.W. Anderson published a ground-
breaking finding that the wave function of electrons can
become exponentially localized under the influence of dis-
order, which was soon well-known as Anderson localization
[1]. In low-dimensional (1D and 2D) disordered systems, the
presence of disorder, no matter how small it is, will cause all
eigenstates in the system to be localized. That is to say, the
metal-insulator phase transition induced by change of disorder
strength does not exist in the 1D or 2D system [2–4]. However,
in the 3D case, the disorder allows the extended state and
the localized state to coexist, separated by the mobility edge
(ME) of the critical energy [5]. This means that by controlling
the strength of disorder or Fermi energy level, metal-insulator
phase transitions can be achieved in 3D disordered systems.

Unlike random disordered systems, a quasiperiodic sys-
tem, as a system between order and disorder, can give rise
to ME through controllable metal-insulator phase transition at
low dimensions [6–41]. The 1D Aubry-André-Harper (AAH)
model we study in this paper is among the most famous
quasiperiodic systems [6,7]. As is known, the standard AAH
model has a precise critical point of metal-insulator phase
transition which does not depend on eigenenergy, therefore
no ME can be expected in such systems [7]. However, recent
studies have shown that energy-dependent MEs can be in-
duced in 1D AAH models by introducing short-range dimered
hopping [8,9], long-range hopping [10–12], or manipulating
the structure of quasiperiodic potentials [13–18,42].

On the other hand, non-Hermitian Hamiltonians have gar-
nered considerable attention for their ability to effectively
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describe open or non-conservative systems. Subsequently,
novel non-Hermitian phenomena were discovered one after
another [43–89]. In general, a non-Hermitian system features
complex eigenvalues where the imaginary part corresponds
to the eigenstate’s lifetime. The difference in the eigenvalues
gives non-Hermitian systems a unique “point gap” different
from Hermitian systems, allowing for a nonzero topological
winding number even in a single-band model [63,69].

However, not all non-Hermitian systems have complex
eigenvalues. Recent research shows that if the Hamiltonian
satisfies the property of η-psedo-Hermiticity (including PT
symmetry as a special case), the eigenvalues of the system can
be guaranteed to be pure real numbers [44,45,88,90]. So far,
most studies of non-Hermitian MEs focus on systems with PT
symmetry, and their results reveal that PT -symmetry breaking
shares the same boundary as MEs [91–97]. This means that
the extended state is under the protection of PT -symmetry
with the corresponding eigenvalue being a real number, while
the localized state is in the PT -symmetry breaking phase, cor-
responding to complex eigenvalues and nontrivial topological
point gaps [91]. This one-to-one correspondence has led to
the fact that most previous studies on non-Hermitian MEs
were based on real eigenvalues. However, in most cases the
eigenvalues of non-Hermitian systems are complex numbers
rather than pure real numbers, which naturally brings the
question: how does a non-Hermitian ME act as a boundary
in the complex plane to separate the extended state from the
localized state?

In this Letter, we prove analytically that the non-Hermitian
ME always presents ring structure in the complex plane,
which we name “mobility ring (MR)”. In order to verify the
universality of MRs, we study three precisely solvable cases.
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FIG. 1. A schematic of MR in the complex plane. The extended
(localized) state is inside (outside) MR. ME is essentially a projection
of MR on the real axis.

By leveraging Avila’s global theory, which rigorously charac-
terizes the localization properties of eigenstates through the
Lyapunov exponent (LE), we obtain the analytical expression
of the corresponding ME. The results show that since LE de-
pends on both the real and imaginary parts of the eigenvalues,
MEs form a ring structure in the complex plane, which is
MR. MR acts as a clear boundary separating the extended and
localized states (see Fig. 1). The emergence of MRs means
that there is an infinite number of self-duality points in the
complex plane, suggesting that the self-duality relation is no
longer suitable for the study of MEs in the non-Hermitian
case.

Model. We consider a non-Hermitian mosaic quasiperiodic
model. The corresponding Hamiltonian reads

H =
L−1∑
j=1

J (c†
j c j+1 + H.c.) +

L∑
j=1

Vjc
†
j c j, (1)

where

Vj =
{

2λ cos(2πα j + θ + ih), j = nκ,

δ, else. (2)

c†
j (c j) creates (annihilates) a fermion on site j, and H.c.

stands for the Hermitian conjugate. J represents the nearest
neighbor hopping strength. The potential is divided into two
parts. The first part is a complex quasiperiodic potential that
exists at every κ site and is modulated by the following
parameters: λ denotes the quasiperiodic intensity, α is the
quasiperiodic parameter, and θ + ih denotes a complex phase
factor. The remaining lattices have a complex constant poten-
tial δ. Since the quasiperiodic potential periodically appears
with an interval of κ , one can consider it as a quasicell of κ

sublattices, with the system featuring N = L/κ quasicells and
n = 1, 2, . . . , N as the quasicell index, where L is the system
size. The non-Hermitian is controlled by h and δ. When κ = 1,
δ = 0, and h = 0, the model returns to the AAH model, and
the self-duality relation indicates a localization phase transi-
tion at λ = 1. When κ > 1 and δ = 0, the Hamiltonian can
describe both Hermitian (h = 0) and non-Hermitian (h > 0)
mosaic models [14,94]. It is worth noting that when δ is real,
the system exhibits PT -symmetry for θ = 0 due to Vj = V ∗

− j .
In numerical calculations, we adopt periodic boundary con-
ditions and choose an irrational number α = Fm−1/Fm, where

Fm is the mth Fibonacci number. Unless otherwise specified,
we set λ > 0, h > 0, L = Fm, and J = 1 as the unit energy.

The exact MR. LE is a key observable that reflects the
localization properties and MEs, which is defined as

γε (E ) = lim
N→∞

1

2πN

∫
ln ‖TN (θ )‖dθ, (3)

where TN = ∏N
n=1 Tn = TN TN−1 · · · T2T1, Tn is the transfer ma-

trix of a quasicell, N is the number of quasicells, and ‖ · ‖
denotes a matrix norm. In the thermodynamic limit N → ∞,
the extended state has γ = 0, while the localized state has
γ > 0. The transfer matrix of the model (1) can be written
as

Tn =
(

E − Vj −1

1 0

)(
E − δ −1

1 0

)κ−1

, (4)

where (
E − δ −1

1 0

)κ−1

=
(

aκ −aκ−1

aκ−1 −aκ−2

)
, (5)

and the aκ is defined as

aκ = 1√
E ′2 − 4

[(
E ′ + √

E ′2 − 4

2

)κ

−
(

E ′ − √
E ′2 − 4

2

)κ]

(6)

with E ′ = E − δ. Further, we employ Avila’s global theory
of one-frequency analytical SL(2,C) cocycle [98]. Let h →
+∞, then direct computation yields

Tn,ε→+∞ = e−i(2πα j+θ )eh

2

(−2λaκ 2λaκ−1

0 0

)
+ o(1), (7)

Thus, we have

κγh→+∞(E ) = ln |λaκ | + h + o(1). (8)

According to Avila’s global theory, as a function of h, γ (E )
is a convex piecewise linear function with integer slopes. For
large enough h, the slope is 0 or 1. The discontinuity of the
slope occurs when E belongs to the spectrum of Hamiltonian
H except for γh(E ) = 0, which represents the extended states.
This implies that LE for the system can only be expressed
as κγ (E ) = max{ln |λaκ | + h, 0} [94]. Since LE is an even
function for h, we further have

κγ (E ) = max{ln |λaκ | + |h|, 0} (9)

for a localized eigenstate, the localization length is � = 1/γ ,
while for an extended eigenstate, γ = 0 corresponds to the
localization length � → ∞. Thus the MEs are determined by

λeh|aκ | = 1. (10)

As we cannot guarantee real eigenvalues in non-Hermitian
systems, we let E = ER + iEI to further study MR in the
complex plane, where ER and EI are the real part and the
imaginary part of eigenvalues. When κ = 2, the exact MR
is λeh|a2| = 1, where a2 = Ec − δ. Then, one can obtain the
general expression of MEs in the complex plane

x2 + y2 = 1

(λeh)2
, (11)
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FIG. 2. (a1)–(c1) The fractal dimension � versus Re(E ) and λ, where the dashed lines represent the critical energy Ec = δR ± 1
λeh . (a2)–(c2)

� versus |a2| and λ, where the dashed line is |a2| = 1
λeh . (a3)–(c3) � of the eigenstates in complex plane, where the black dashed rings represent

the MRs given by Eq. (11) and red dashed lines are MEs obtain from Ec = δ ± 1
λeh . In numerical computation, we set h = 0, δ = 1 for (a1)–(a3),

h = 1, δ = 1 for (b1)–(b3) and h = 1, δ = 1 + i for (c1)–(c3). Throughout, L = 610 and κ = 2.

where x = ER − δR and y = EI − δI . It is a circle centered at
(δR, δI ) with radius 1/(λeh) in Re(E ) − Im(E ) plane, where
δR and δI serve as the real and imaginary parts of the δ. The
eigenstates within the circle possess γ = 0, signifying they
are extended states, while the eigenstates outside the circle
exhibit γ > 0, indicating they are localized states.

For the case of κ = 3, ME is given by λeh|a3| = 1, where
a3 = (Ec − δ)2 − 1. The corresponding analytical expression
of MR in the complex plane reads

(x2 − 1)2 + (y2 + 1)2 + 2x2y2 − 1

λ2e2h
− 1 = 0. (12)

Using the same method, one can also derive analytical expres-
sions for MEs under other values of κ .

Universality of MR. To prove the universality of MR, the
following three cases will be discussed respectively, i.e., the
Hermitian limit (h = 0, δ = 1), the PT -symmetric protection
(h = 1, δ = 1) and without PT symmetry (h = 1, δ = 1 + i)
cases.

Numerically, the localization properties can be reflected by
the fractal dimension of eigenstates, which is defined as

�(β ) = − ln ξ (β )

ln L
, (13)

where ξ (β ) = ∑L
j=1[|ψ j (β )|4/|ψ j (β )|2] denotes the inverse

participation ratio and ψ j (β ) is the probability amplitude of
the βth eigenstate at the jth site. � → 0 (1) corresponds to

localized (extended) states. The fractal dimensions � corre-
sponding to the Hermitian limit, PT -symmetry protection and
without PT -symmetry cases are plotted in the top, middle, and
bottom rows of Fig. 2, respectively. The dashed lines and rings
correspond to MEs and MRs, respectively.

First, when the imaginary part of the eigenvalue is factored
out, one can obtain the analytical expression of the critical
energy, i.e., Ec = δR ± 1

λeh . Since the eigenvalues of the Her-
mitian system are pure real numbers, the analytical results
perfectly match the numerical results in Fig. 2(a1). However,
for the non-Hermitian case, whose eigenvalues are complex
numbers, ME obtained by only calculating the real part cannot
see a good match between the analytical and numerical re-
sults. In concrete terms, though ME can indicate the extended
domain, it fails to delineate clearly the localized region. In
other words, ME can ensure that all extended states are within
the range E ∈ (δR − 1

λeh , δR + 1
λeh ), but cannot guarantee that

all localized states are just outside this range, as shown in
Figs. 2(b1) and 2(c1).

Next, we analyze what happens when one considers the
complex eigenvalue. The analytical and numerical results are
in perfect agreement [see the middle column of Fig. 2]. The
reason is that substituting |a2| = |Ec − δ| for Re(E ) is in
essence taking into account the full effect of the complex
eigenvalues, not just the effect of the real part. So, one can see
ME precisely divides the extended region (|a2| < 1

λeh ) and the
localized region (|a2| > 1

λeh ). There is, however, one drawback
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FIG. 3. � versus [Re(E ), λ] (a) and [|a3|, λ] (b), where the
dashed lines represent MEs. (c)–(e) The fractal dimension � in
the complex plane for λ = 0.2, e−1, 2. The dashed contours are
MR given by Eq. (12). Throughout, L = 987, κ = 3, h = 1, and
δ = 1 + 1i.

to this approach, since there is a modulus operation in the
process of solving ME, the ME corresponding to a negative
value becomes a positive one, so chances are that information
of the specific number of ME has been lost, which we will
discuss at length in the section of multiple MRs. It can thus
be seen that the coexistence of extended and localized states
in the non-Hermitian system cannot be fully demonstrated on
the real axis only, so it is necessary to extend the concept of
ME to the complex plane.

As shown in the rightmost column of Fig. 2, MR cannot
only separate the extended domain from the localized domain
as a boundary, but also reflect the distribution of the localized
and extended state in the complex plane. To be specific, the
inside of MR is the extended state, while the outside of MR
is the localized state. For the case of the Hermitian limit (h =
0), MR presents itself as a black dashed ring with the center
(1, 0) and the radius 1/λ, while MEs are red dashed lines at
the intersection of MR and the real axis [see Fig. 2(a3)]. It
is not difficult to find that under the Hermitian limit, since
the eigenvalues are pure real numbers, both MR and ME can
be used as boundaries to separate the extended state from the
localized state in the complex plane. However, for the non-
Hermitian case (h = 1), MR, as a circle centered at (δR, δI )
with radius 1/(λe1), can perfectly separates the extended and
localized states inside and outside the circle, whereas MEs
cannot [see Figs. 2(b3) and 2(c3)].

In a word, for the non-Hermitian system, only MR can
show the complete information of the coexistence of extended
and localized states in the complex plane.

Multiple mobility rings. When κ > 2, multiple MRs will
emerge in the non-Hermitian system. Figure 3 shows the
fractal dimension � corresponding to κ = 3 in the case with-
out PT -symmetry, where dashed lines and rings represent

the MEs and MRs given by Ec = ±
√

± 1
λeh + 1 + δR and

analytical expression (12), respectively. Here we see again
the discrepancy between the analytical and numerical MEs
caused by not counting in the imaginary part. However, when
we consider the complex spectrum, i.e., to calculate MR by
substituting |a3| = |(E − δ)2 − 1| for Re(E ), it becomes a
clear boundary for separating extended from localized states.
Note that information on the number of MEs will be lost
because of the modulus operation during calculation, which
is the price we must pay to display on one axis the influence
of both real and imaginary parts on MEs [see Figs. 3(a)
and 3(b)].

Figures 3(c)–3(e) show the changes of MR with λ. One
can see that MR well separates the extended and localized
states, and changes in the number of MR versus λ are also well
demonstrated in the complex plane. Specifically, MR takes on
an ∞ shape at the critical point (λc = e−h). When λ < λc,
there is only one MR in the complex plane, with the extended
state distributed inside MR and the localized state outside,
whereas when λ > λc, two MRs emerge in the complex plane,
with the extended state distributed inside the two rings and the
localized state outside. Comparing with multiple MEs in the
Hermitian case [14], one can draw the following conclusions:
A non-Hermitian mosaic model will have a maximum of
κ − 1 MRs.

The limitation of the self-duality method. In this part, we
will clarify the limitations of the duality relation in calculating
the critical energy in the complex plane by comparing the
critical energy obtained by Avila’s global theory and the self-
duality method. We replace potential (2) by the non-Hermitian
Ganeshan-Pixley-Das Sarma (GPD) potential [13]

Vj = iλ cos(2πα j + θ )

1 − b cos(2πα j + θ )
, (14)

where λ denotes the quasiperiodic intensity, α is the quasiperi-
odic parameter, b is a deformation parameter, and θ denotes
a global phase. We set α = (

√
5 − 1)/2, |b| < 1. It is clear

that the Hamiltonian with the potential Eq. (14) does not
have PT symmetry and when λ > 0 the system will have a
complex spectrum. The corresponding Hamiltonian can be
obtained by successive transformations with its exact self-
duality relation Ec = (±2 − iλ)/b [99]. One can obtain the
self-duality points by the hidden duality method [38–40,99].
The irrational number α can be approximated by the Fibonacci
number Fm/Fm+1, i.e., α = (

√
5 − 1)/2 for m → ∞. For the

lowest order approximation, α = 1, the eigenequation for the
Hamiltonian reads

J (ψ j−1 + ψ j+1) + iλ cos(θ )

1 − b cos(θ )
ψ j = Eψ j . (15)

By the Fourier transform, one can get its eigenvalue as

E (θ, k) = iλ cos(θ )

1 − b cos(θ )
+ 2 cos(k)

⇒ E = (bE + iλ) cos(θ ) + 2 cos(k) − 2b cos(k) cos(θ )
(16)

for 1 − b cos(θ ) 
= 0, which is self-duality under θ ↔ k
if Ec,1 = (2 − iλ)/b. Defining θ ′ = θ + π , we get Ec,2 =
−(2 + iλ)/b. This result is the same as the exact self-duality
relation. In contrast, the LE obtained by Avila’s global theory
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FIG. 4. � in the complex plane. The dashed circle denotes the
LE given by Eq. (17), whereas the two red triangles are self-duality
points obtained from the self-duality relation. Throughout, L = 610,
λ = 1, b = 0.8 and θ = 0.

is [99]

γ (E ) = max

{
ln

∣∣∣∣∣Eb + iλ ±
√

(Eb + iλ)2 − 4b2

2(1 + √
1 − b2)

∣∣∣∣∣, 0

}
.

(17)
Let E = ER + iEI , we can obtain the exact expression of MR

(bER)2

4
+ (bEI + λ)2

C2
= 1 (18)

for γ (E ) = 1, where C = [(1 + √
1 − b2)2 − b2]/(1 +√

1 − b2).
Figure 4 shows the fractal dimensions in the complex

plane, where the black dashed ring is MR obtained by Avila’s
global theory (the elliptic equation), and the red triangles are
the energy critical points obtained by the self-duality relation.
MR perfectly divides the extended and the localized regions,
and shows how the extended and the localized states distribute
in the complex plane, i.e., the extended (localized) states are
inside (outside) MR. However, the self-duality relation can
merely obtain two special critical points on MR, namely,

Im(E ) = λ/b. This result follows from the existence of an
infinite number of self-dual points in non-Hermitian systems.
That is to say, the self-duality relation is not comprehensive in
studying the MEs in the non-Hermitian system.

Conclusion. In conclusion, MEs in the non-Hermitian sys-
tem are studied. Since they exhibit a ring structure in the
complex plane, we call them a “mobility ring”. Further, we
analyze MR in various cases and find that MR is univer-
sal for the non-Hermitian system, no matter that the system
has PT symmetry or not, and whether it is reciprocal or
not [99]. In addition, by analogy with multiple MEs in the
Hermitian system, we investigate multiple MRs in complex
plane, and give the expression of the maximum number of
MRs in the mosaic model. Finally, by comparing the results
given by Avila’s global theory and self-duality relation, we
find that self-duality relation has limitations in studying the
critical energy in the complex plane. The MR does not rely on
whether the system is exactly solvable [99]. This is because
the LE in non-Hermitian systems depend on both the real
and imaginary parts of the eigenvalue. Consequently, the ME
ultimately forms a ring structure, indicating the universality
of the MR in non-Hermitian systems. Our work proposes
and comprehensively analyzes MR in non-Hermitian systems,
hopefully it will bring benefits to the research on ME theory
and non-Hermitian physics.

Note added. In completing this manuscript, we note that
a recent preprint entitled “Non-Hermitian butterfly spectra in
a family of quasiperiodic lattices”, similarly investigates the
mobility edges in non-Hermitian system [100]. Their article
is from the perspective of butterfly spectrum. In this paper, in
addition to studying the spectrum, we further discuss the prop-
erties of multiple mobility rings and clarify the limitations of
the self-duality method in non-Hermitian cases.
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