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Josephson quantum mechanics at odd parity
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A Josephson junction may be in a stable odd-parity state when a single quasiparticle is trapped in an
Andreev bound state. Embedding such junction in an electromagnetic environment gives rise to a special
quantum mechanics of the superconducting phase that we investigate theoretically. Our analysis covers several
representative cases, from the lifting of the supercurrent quench due to quasiparticle poisoning for a low ohmic
impedance of the environment, to a Schmid transition in a current-biased junction that for odd parity occurs at
four times bigger critical impedance. For intermediate impedances, the supercurrent in the odd state is higher
than in the even one.
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Introduction. The energy of a tunnel junction between two
superconducting leads depends periodically on the difference
of superconducting phases of the two, in short, on the phase.
This is the celebrated Josephson effect [1]: The phase depen-
dence of this energy gives rise to a persistent superconducting
current between the leads. Later, it has been understood
that the phase becomes a quantum-fluctuating variable if a
Josephson junction is embedded in an electromagnetic
circuit [2]. Early studies concentrated on a dissipative envi-
ronment and were essential for establishing the modern theory
of dissipative quantum mechanics [3,4]. A highlight of this
research was the prediction of the Schmid transition [5]: the
vanishing of the Josephson energy at a critical value of the
circuit impedance R, 2e2R/π h̄ ≡ α = 1. While this prediction
is theoretically indisputable, the controversy concerning its
experimental verification [6,7] may have been resolved re-
cently [8]. The further development of Josephson quantum
mechanics evolved from dissipative circuits to dissipationless
Coulomb islands. The resulting superconducting qubits [9,10]
are at the frontline of modern quantum technology
applications.

There is something to add to this well-established field. In
fact, the Josephson energy is related to Andreev bound states
(ABS) in the junction [11] and does depend on their occupa-
tion. Of the two equal-weight superpositions with respect to
the right/left leads in which a quasiparticle may be in, only
one gives rise to a bound state. Owing to parity conservation
in superconductors [12], a state with a single quasiparticle
trapped in the lowest ABS (the odd-parity ground state) is
stable despite having a bigger energy than the state without
quasiparticles (the even-parity ground state) [13]. The parity
can only be relaxed if a stray quasiparticle from a lead comes
to the junction and annihilates the trapped one. Since the con-
centration of quasiparticles in the leads is vanishingly small at
low temperatures, the lifetime of the odd-parity ground state is
macroscopically long: Lifetimes of several minutes have been

measured [14]. Moreover, a single quasiparticle trapped in a
spin-degenerate ABS eventually quenches the contribution of
this level to the Josephson energy: This is called quasiparticle
poisoning and has been observed in Ref. [15]. When spin
degeneracy is lifted, the stability of these odd states provided
the opportunity for a new kind of qubits: Andreev spin qubits,
proposed in Refs. [16,17] and realized in Ref. [18]. In re-
cent years, there has been an outburst of studies of ABS in
superconducting nanostructures, including spectroscopically
resolved ABS and odd-parity ground states in a junction [19].
This makes it relevant to extend the Josephson quantum
mechanics to the case of a circuit embedding a Josephson
junction in the odd-parity ground state.

Summary of results. In this Letter, we provide a general
description of Josephson quantum mechanics at odd parity
by considering a tunnel junction where the ABS are close
to the superconducting gap �, disregarding the weak spin-
orbit interaction, and mainly concentrating on the instructive
single-channel, single-junction case (see Fig. 1). In particular,
our setup does not include any quantum dot, nor does it
involve Coulomb blockade physics. The main difference with
the even-parity case stems from the coupling to the electro-
magnetic environment by one-electron rather than Cooper pair
transfers.

We also present a detailed analysis for three relevant cases.
(i) For low ohmic impedance, we demonstrate the incom-
pleteness of supercurrent quenching and reveal a supercurrent
jump at zero phase. We ascribe this jump to the quantum
fluctuations of the phase, which extend the phase interval
where the ABS in a given (right or left) superposition exists
beyond 2π , such that two ABS of opposite superpositions
coexist in the vicinity of phases that are multiples of 2π .
The current jump then results from the cusp in the energy of
the odd-parity ground state, when ABS cross each other. (ii)
For arbitrary ohmic impedance and phase bias, we establish
a slower suppression of the Josephson energy in the odd state
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FIG. 1. (a) The odd-parity Josephson junction. A single quasi-
particle is trapped in the lowest Andreev level separated by
2EJ sin2 ϕ

2 � � from the edge of the continuous quasiparticle spec-
trum at the superconducting energy gap �. In the bound state, the
quasiparticle is in a certain superposition, s = 1, and the antibound
state corresponding to s = −1 (dashed curve) belongs to the contin-
uous spectrum. (b), (c) The Josephson quantum mechanics at odd
parity: The odd-parity Josephson junction is embedded in a linear
electromagnetic environment with frequency-dependent impedance
Z (ω) that causes quantum fluctuations of the phase. (b) and (c) cor-
respond to phase and current bias, respectively.

than in the even one: The supercurrent in the odd state thus
becomes higher than in the even one, both remaining finite
at any α (as already shown in the even case [20]). At suffi-
ciently large impedance, both right/left superpositions form
a bound state. While their phase dependence is suppressed
upon increasing the impedance, their average binding energy
tends to a constant. (iii) For arbitrary ohmic impedance and
current bias, we encounter a Schmid transition at a higher
value of the impedance than in the even state, namely, at
α = 4. The bound states persist for both superpositions and
are degenerate for α > 4. These predictions can be tested in
forthcoming experiments.

Coupling an ABS with an electromagnetic environment. Let
us sketch the general derivation before discussing our results
for the three cases listed above: All details are provided in
the Supplemental Material (SM) [21]. At even parity, the
Hamiltonian describing a Josephson junction embedded in a
general linear environment reads [22]

He = Henv − E∗
J cos ϕ̂. (1)

Here, Henv is a Hamiltonian of noninteracting bosons, the
operator of the phase drop at the junction, ϕ̂, consists of
the phase bias ϕ and a linear superposition of environmental
bosons reproducing the frequency-dependent impedance of
the environment, Z (ω), which is assumed to vanish above
a frequency scale ��, and E∗

J is the even-state Josephson
energy. An alternative description [23] employs a path integral
over a variable ϕ(τ ) defined in imaginary time. The action that
defines the path weight reads

S =
∑

ω

|ω|
8e2Z (i|ω|) |ϕ(ω)|2 − E∗

J

∫
dτ cos ϕ(τ ), (2)

ϕ(ω) being the Fourier transform of ϕ(τ ).
To describe the odd-parity situation, we rely on the small

junction transparency to consider the combined Fock space for
one quasiparticle with energy (counted from the energy E (e)

g
of the even-parity ground state) close to �, which can tunnel

between the leads, and the environmental degrees of freedom.
We then integrate out the quasiparticle degree of freedom for
the purpose of finding a closed equation obeyed by the wave
function |�〉 of the environment. At vanishing impedance, this
gives the binding energy 	, measured from the edge of the
continuum, in the following form (see Sec. I of SM [21]):

√
	 = s

√
2EJ sin

ϕ

2
. (3)

Here, EJ is the Josephson energy associated with the lowest
ABS: EJ = E∗

J in the single-channel case, E∗
J > EJ in general,

and s = ±1 characterizes the superposition between right/left
leads. Equation (3) with s = sgn(sin ϕ

2 ) reproduces the ABS
dispersion in a short junction in the tunnel limit [24]. With the
environment, the quantum generalization of Eq. (3), derived
in Sec. II of SM [21], yields a singular-value equation that
involves square roots of Hamiltonian-like operators,(√

	 + H − s
√

2EJ sin
ϕ̂

2

)
|�〉 = 0, (4)

where H = He − E (e)
g . In addition, the energy of the odd-

parity ground state is E (o)
g = E (e)

g + � − 	.
The solution 	 of Eq. (4) can be found as the pole of a

propagator associated with the quantum dynamics described
by its left-hand side. As Eq. (4) contains the same environ-
mental degrees of freedom as in the even sector, we make use
of the imaginary-time action, Eq. (2), to define the appropriate
propagator through the Dyson equation that it solves,

G(τ, τ ′) = G0(τ − τ ′) +
∫

dτ1G0(τ − τ1)A(τ1)G(τ1, τ
′).

(5)
Here, G0(τ ) ≡ 
(τ )/

√
πτ , corresponding to the first (square-

root) term in Eq. (4), is the bare propagator that arises from
integrating out quasiparticles. The second term in Eq. (4)
is treated in all orders, similarly as in the Green’s function
treatment of a frozen disorder [25], by introducing A(τ ) ≡
s
√

2EJ sin ϕ(τ )
2 that plays the role of the disorder potential.

Ultimately, the disorder averaging is done with the weight e−S

(see Sec. III in SM [21]). The averaged propagator (denoted
with a bar) is uniform, so its Fourier components read

Ḡ(ω) = [
√

iω − 〈A〉 − �(ω)]−1, (6)

the self-energy �(ω) being a sum of diagrams involving the
correlators of A(τ ) starting from the second order. Finally, the
binding energy is found from

√
	 = 〈A〉 + �(−i	). (7)

Equations (4) and (7) hold for an arbitrary linear environment.
Below we use them to make specific predictions in the case of
a dissipative environment.

Small ohmic impedance. Let us start with the case of small
ohmic impedance, α � 1. For a concrete model, we add a ca-
pacitance and an inductance in parallel to the resistor R. This
cuts the ohmic response both at high and low frequency, ωH =
1/RC (with ωH � �) and ωL = R/L, respectively. The induc-
tance is required in order to phase bias the junction, EJe2L �
1. We concentrate on the single-channel case: E (o)

g does not
depend on phase without fluctuations. We aim to compute
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FIG. 2. (a) The odd-parity supercurrent at small impedance. The
curve labels are ωL/EJ , so we set ln(ωH/ωL ) = 5. (b) Bound states
near zero phase for s = ±1. Here, ϕc = πα

√
EJ/ωL � 1. Dashed

curves: No interaction.

the phase-dependent correction δE (o)
g (ϕ) proportional to the

fluctuations, which defines the supercurrent in the odd state.
A simple ad hoc estimation would be δE (o)

g 	 αEJ cos ϕ.
While this may be a correct scale, the answer is more involved
and interesting [see Fig. 2(a)]. We note an extra dimensionless
parameter ωL/EJ that can be large or small provided α � 1.
We see that the current in the phase interval ϕ ∈ [0, π ] is
negative: The minimum odd-parity Josephson junction energy
corresponds to ϕ = π rather than ϕ = 0. Let us note that this
π -junction behavior has a completely different origin than the
one induced by magnetic correlations [26] or a finite length of
the junction [27]. At ωL � EJ ,

I (ϕ)

2e
= −αEJ

2
ln

(
ωH

ωL

)
sin ϕ (8)

holds under the stronger condition α � 1/ ln(ωH/ωL ); the log
factor is a precursor of the renormalization of EJ at α ∼ 1 [see
Eq. (11)]. The most interesting feature present for arbitrary
ratios ωL/EJ is the current jump at ϕ = 0, its half value
being Ihj = −2παeEJ

√
EJ/ωL. At ωL � EJ , the supercur-

rent is concentrated at small ϕ 	 √
ωL/EJ and reads I (ϕ) =

−|Ihj| f (ϕ/
√

2ωL/EJ ) with f (0) = 1 and f (x) → √
2/πx at

x → ∞. The full expression for the monotonous function
f (x) is given in Sec. IV of SM [21].

The current jump is associated with the fact that perturba-
tion theory formally ceases to hold at small ϕ. However, the
answer beyond perturbations is really simple and shown in
Fig. 2(b): Namely the binding energy is shifted such that the
bound state reaches the continuum edge not at ϕ = 0, but at
ϕ = −sϕc with ϕc ≡ (|Ihj|/2e)/EJ , i.e., the binding energy is
given by

√
	 = √

EJ/2(sϕ + ϕc). The shifts being opposite
for s = ±1 implies the presence of bound states for both
superpositions in an interval |ϕ| < ϕc: This fact will become
crucial for further analysis. (A small gap asymmetry between
the leads breaks the conservation of s and broadens the current
jump; see Sec. VII in SM [21].)

Phase bias. Let us turn to the case of an arbitrary
impedance, α 	 1, under conditions of phase bias. In
this case, the low cutoff frequency is such that ωL � EJ

and does not change upon renormalization of EJ , E∗
J . The

renormalization is thus finite at any α: This implies that no
Schmid transition occurs under phase bias. While EJ = E∗

J
in the single-channel case, they renormalize differently. The

FIG. 3. (a) Critical currents at even and odd parity vs 〈〈ϕ2〉〉,
Eq. (12). The odd-parity current dominates at 〈〈ϕ2〉〉 > 4 ln 2 ≈ 2.8.
(b) The bound regimes in the odd-parity Josephson junction. A: Only
one superposition gives rise to a bound state (α = 0). B: Two bound
states in a finite phase interval [cf. Fig. 2(b)]. C: Separatrix between
B and D. D: Two 4π -periodic bound states are present at all phases.
E: The splitting of the two bound states is much smaller than their
average phase-independent energy. F: The two states s = ±1 with
phase-independent energy are degenerate.

renormalization can be computed using the relation 〈eiβϕ〉 =
eiβ〈ϕ〉e−β2〈〈ϕ2〉〉/2, where 〈〈ϕ2〉〉 = 〈ϕ2〉 − 〈ϕ〉2, valid for
Gaussian fluctuations of the phase. At even parity,

Ẽ∗
J = E∗

J e−〈〈ϕ2〉〉/2 	 E∗
J (ωL/ωH )α. (9)

Here and further on the “tilde” refers to renormalized
quantities.

To understand the renormalization at odd parity, we keep
terms up to the second order in the self-consistency equa-
tion (7),

√
	 = 〈A〉 + �(2)(−i	). (10)

The average A is phase dependent and strongly suppressed,

〈A〉 = s
√

2ẼJ sin
ϕ

2
with

ẼJ

EJ
= e− 〈〈ϕ2〉〉

4 	
(

ωL

ωH

) α
2

. (11)

The suppression of EJ is two times weaker than the one
of E∗

J in Eq. (9) for even parity. At α < 1 we can ignore
�(2) (see below). As the odd-parity energy is the difference
of even-parity and binding energies, with the renormalized
Josephson couplings of Eqs. (9) and (11), respectively, the
superconducting current in the odd state reads

I (ϕ)

2e
= (Ẽ∗

J − ẼJ ) sin ϕ = EJ
(
e− 〈〈ϕ2〉〉

2 − e− 〈〈ϕ2〉〉
4

)
sin ϕ (12)

and is bigger than that at even parity at sufficiently large phase
fluctuations [see Fig. 3(a)].

However, the second-order term �(2)(−i	) can become
important since it has a phase-independent part. This leads to
a variety of bound regimes listed in Fig. 3(b). For estimates,
we concentrate on the phase-independent terms in �(2) and,
since 	 � ωL, disregard the 	 dependence. This yields

�(2) = EJ

∫ ∞

0

dτ√
πτ

〈〈eiϕ(0)/2e−iϕ(τ )/2〉〉. (13)

The integrand at ω−1
H � τ � ω−1

L is proportional to
1/τ 1/2(ωHτ )α/2. As a consequence, the integral converges at
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the lower cutoff if α < 1 and at the upper cutoff if α > 1. The
estimations for �(2) thus read (see Sec. V in SM [21])

�(2) 	
{

ẼJ/
√

ωL, 1 − α � 1/ ln(ωH/ωL ),

EJ/
√

ωH , α − 1 � 1/ ln(ωH/ωL ).
(14)

Comparing 〈A〉 at ϕ = π and �(2), we observe that the latter
dominates for α > 2[1 + ln(ωL/EJ )/ ln(ωH/ωL )] ≡ αc > 2.
This point separates two different regimes. Now we can sum-
marize the results.

At α < αc, �(2) can be neglected in zeroth approximation.
The superconducting current is given by Eq. (12). Starting
from the case without fluctuations (regime A), we find that
the addition of small phase-independent terms in Eq. (10)
when fluctuations are weak leads to the coexistence of two
bound states corresponding to the two superpositions s = ±1
in a small interval of phases around ϕ = 0 (regime B). At
α > 1, this interval grows with increasing α until an important
transition (regime C) takes place at αc: Two bound states
are present at any phase. For α > αc, both bound states are
separated from the continuum by a gap (regime D). Thus the
odd-parity state becomes stable upon an adiabatic sweep of
the phase. The bound energies are given by

	 =
(

s
√

2ẼJ sin
ϕ

2
+ �(2)

)2
. (15)

The resulting superconducting current at a given s thus be-
comes 4π periodic, a phenomenon similar to that signifying
the presence of Majorana modes [28].

At α slightly [by 	 1/ ln(ωH/ωL ) � 1] exceeding αc, the
binding energy 	 	 E2

J /ωH � ẼJ hardly depends on the
phase and α (regime E). The remaining phase dependence
results in a strongly suppressed 4π -periodic supercurrent,

I (ϕ)

2e
	 sẼ eff

J cos
ϕ

2
, Ẽ eff

J 	
√

ẼJ	 	 EJ

√
ẼJ

ωH
. (16)

Despite being suppressed, this supercurrent parametrically
exceeds the one at even parity [see Fig. 4(a)].

Current bias. Let us now turn to the case of an arbi-
trary impedance at current bias. In contrast with the phase
bias situation, there is no built-in low-energy cutoff ωL: The
renormalization has to be cut off self-consistently by the
renormalized Josephson energy.

Let us first reproduce the Schmid transition at even parity.
The renormalized Ẽ∗

J is given by the same Eq. (9), yet ωL there
has to be estimated as Ẽ∗

J . With this,

Ẽ∗
J

E∗
J

=
(

E∗
J

ωH

) α
1−α

, (17)

such that Ẽ∗
J vanishes at the Schmid transition, α = 1.

Let us next turn to the odd-parity sector. To start with, let us
concentrate on the interval α < 1. In this case, the lower cutoff
can be unambiguously identified as ẼJ . Applying Eq. (11), we
thus obtain

ẼJ

EJ
=

(
EJ

ωH

) α
2−α

. (18)

The estimation of �(2) with the help of Eq. (14) gives
�(2) 	

√
ẼJ . In contrast with the phase-biased case, the first-

and second-order contributions are of the same order of

A AC
B-C-D

B E E FD

FIG. 4. Renormalized Josephson energies Ẽ∗
J (green) at even and

ẼJ (violet) at odd parity. Vertical dotted lines separate the bound
regimes at odd parity indicated by capital letters. Left: Phase bias [cf.
Eqs. (9), (11), and (16)]; ẼJ never vanishes. The separating regime C
occurs at α = αc. We plot Ẽ eff

J instead of ẼJ at α > αc. Right: Current
bias [cf. Eqs. (17)–(19)]; the curves illustrate the suppression of ẼJ as
α increases, and the Schmid transition where ẼJ vanishes is at α = 1
for even parity and at α = 4 for odd parity. The renormalization law
at odd parity changes at α = 1. Note the different vertical scales in
the left and right plot.

magnitude, as well as all higher orders. So in the current bias
case, the accuracy of the method does not allow to predict the
phase dependence of the energy, nor if bound states persist for
both values of s (regimes B-C-D).

However, we still may notice and use the difference in the
renormalizations of phase-dependent and phase-independent
parts of

√
	 depending on the value of α. This becomes

important at α > 1 where, in accordance with Eq. (14),
the self-energy �(2) no longer depends on the low-energy
cutoff and saturates at the value 	EJ/

√
ωH . As to the phase-

dependent part, it will further decrease with increasing α.
This brings us to regime E: the almost degenerate bound state
associated with the supercurrent described by Eq. (16). In this
case, the renormalization of EJ is cut off by Ẽ eff

J of Eq. (16),
rather than ẼJ . This yields

ẼJ

EJ
=

(
EJ

ωH

) 3α
4−α

,
Ẽ eff

J

EJ
=

(
EJ

ωH

) α+2
4−α

. (19)

Therefore ẼJ , Ẽ eff
J vanish at α = 4 [see Fig. 4(b)]. This is

the new Schmid transition point for half of the Cooper
pair charge, indeed corresponding to 4π periodicity in
phase of the supercurrent. At α > 4, the phase-independent
bound state is completely degenerate with respect to s
(regime F). Recalling the quasiparticle spin, we thus pre-
dict the realization of fourfold degeneracy for the trapped
quasiparticle.

Conclusion. We have formulated the Josephson quantum
mechanics for a junction in the odd-parity state. We concen-
trated on the single-channel case and predicted the lifting
of the supercurrent quench due to quasiparticle poisoning
at small impedance. Furthermore, we have addressed the
case of arbitrary impedance both at phase and current bias.
The supercurrent at odd parity is less suppressed by quan-
tum fluctuations and may dominate over the one at even
parity. The presence of various bound regimes complicates
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the renormalization. For current bias, we predict a Schmid
transition at α = 4 and fourfold degenerate bound states at
higher impedances. Quasiparticle poisoning is ubiquitous in
Andreev devices. Therefore our results call for revisiting the
role of the electromagnetic environment on the currently much
studied Andreev and Majorana qubits.

Acknowledgments. Y.V.N. acknowledges support from the
Université Grenoble Alpes for an extended stay in Grenoble
during which most of the presented work was performed.
M.H. and J.S.M. acknowledge funding from the Plan France
2030 through the Project NISQ2LSQ ANR-22-PETQ-0006
and FERBO ANR-23-CE47-0004.

[1] B. Josephson, Possible new effects in superconductive tun-
nelling, Phys. Lett. 1, 251 (1962).

[2] A. J. Leggett, Macroscopic quantum systems and the quan-
tum theory of measurement, Prog. Theor. Phys. Suppl. 69, 80
(1980).

[3] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[4] U. Weiss, Quantum Dissipative Systems, Series in Modern Con-
densed Matter Physics (World Scientific, Singapore, 1999).

[5] A. Schmid, Diffusion and localization in a dissipative quantum
system, Phys. Rev. Lett. 51, 1506 (1983).

[6] A. Murani, N. Bourlet, H. le Sueur, F. Portier, C. Altimiras, D.
Esteve, H. Grabert, J. Stockburger, J. Ankerhold, and P. Joyez,
Absence of a dissipative quantum phase transition in Josephson
junctions, Phys. Rev. X 10, 021003 (2020).

[7] D. Subero, O. Maillet, D. S. Golubev, G. Thomas, J. T.
Peltonen, B. Karimi, M. Marín-Suárez, A. L. Yeyati, R.
Sánchez, S. Park, and J. P. Pekola, Bolometric detection of co-
herent Josephson coupling in a highly dissipative environment,
Nat. Commun. 14, 7924 (2023).

[8] R. Kuzmin, N. Mehta, N. Grabon, R. A. Mencia, A.
Burshtein, M. Goldstein, and V. E. Manucharyan, Observation
of the Schmid-Bulgadaev dissipative quantum phase transition,
arXiv:2304.05806.

[9] Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engi-
neering with Josephson-junction devices, Rev. Mod. Phys. 73,
357 (2001).

[10] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit
quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).

[11] C. W. J. Beenakker, Universal limit of critical-current fluctua-
tions in mesoscopic Josephson junctions, Phys. Rev. Lett. 67,
3836 (1991).

[12] D. V. Averin and Y. V. Nazarov, Single-electron charging of a
superconducting island, Phys. Rev. Lett. 69, 1993 (1992).

[13] Here, we use the quasiparticle picture, where many-body states
are formed of excitations with positive energies on top of the
superconducting condensate.

[14] D. J. van Woerkom, A. Geresdi, and L. P. Kouwenhoven, One
minute parity lifetime of a NbTiN Cooper-pair transistor, Nat.
Phys. 11, 547 (2015).

[15] M. Zgirski, L. Bretheau, Q. Le Masne, H. Pothier, D. Esteve,
and C. Urbina, Evidence for long-lived quasiparticles trapped
in superconducting point contacts, Phys. Rev. Lett. 106, 257003
(2011).

[16] N. M. Chtchelkatchev and Y. V. Nazarov, Andreev quantum
dots for spin manipulation, Phys. Rev. Lett. 90, 226806 (2003).

[17] C. Padurariu and Y. V. Nazarov, Theoretical proposal for super-
conducting spin qubits, Phys. Rev. B 81, 144519 (2010).

[18] M. Hays, V. Fatemi, D. Bouman, J. Cerrillo, S. Diamond, K.
Serniak, T. Connolly, P. Krogstrup, J. Nygård, A. L. Yeyati,
A. Geresdi, and M. H. Devoret, Coherent manipulation of an
Andreev spin qubit, Science 373, 430 (2021).

[19] R. Aguado, A perspective on semiconductor-based supercon-
ducting qubits, Appl. Phys. Lett. 117, 240501 (2020).

[20] F. W. J. Hekking and L. I. Glazman, Quantum fluctuations in
the equilibrium state of a thin superconducting loop, Phys. Rev.
B 55, 6551 (1997).

[21] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.L020504 for the details of the deriva-
tions, which includes Refs. [29–31].

[22] A. O. Caldeira and A. J. Leggett, Influence of dissipation on
quantum tunneling in macroscopic systems, Phys. Rev. Lett. 46,
211 (1981).

[23] G. Schön and A. Zaikin, Quantum coherent effects, phase
transitions, and the dissipative dynamics of ultra small tunnel
junctions, Phys. Rep. 198, 237 (1990).

[24] G. Catelani, S. E. Nigg, S. M. Girvin, R. J. Schoelkopf, and
L. I. Glazman, Decoherence of superconducting qubits caused
by quasiparticle tunneling, Phys. Rev. B 86, 184514 (2012).

[25] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Meth-
ods of Quantum Field Theory in Statistical Physics (Dover, New
York, 1975).

[26] L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Supercon-
ducting system with weak coupling to the current in the ground
state, JETP Lett. 25, 290 (1977).

[27] P. D. Kurilovich, V. D. Kurilovich, V. Fatemi, M. H. Devoret,
and L. I. Glazman, Microwave response of an Andreev bound
state, Phys. Rev. B 104, 174517 (2021).

[28] L. Fu and C. L. Kane, Superconducting proximity effect and
Majorana fermions at the surface of a topological insulator,
Phys. Rev. Lett. 100, 096407 (2008).

[29] A. I. Larkin and Y. N. Ovchinnikov, Density of states in inho-
mogeneous superconductors, Sov. Phys. JETP 34, 1144 (1972).

[30] M. V. Feigel’man and M. A. Skvortsov, Universal broadening
of the Bardeen-Cooper-Schrieffer coherence peak of disor-
dered superconducting films, Phys. Rev. Lett. 109, 147002
(2012).

[31] S. K. Yip, Supercurrent and noise in point contacts between two
different superconductors, Phys. Rev. B 68, 024511 (2003).

L020504-5

https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1143/PTP.69.80
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.51.1506
https://doi.org/10.1103/PhysRevX.10.021003
https://doi.org/10.1038/s41467-023-43668-3
https://arxiv.org/abs/2304.05806
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.69.1993
https://doi.org/10.1038/nphys3342
https://doi.org/10.1103/PhysRevLett.106.257003
https://doi.org/10.1103/PhysRevLett.90.226806
https://doi.org/10.1103/PhysRevB.81.144519
https://doi.org/10.1126/science.abf0345
https://doi.org/10.1063/5.0024124
https://doi.org/10.1103/PhysRevB.55.6551
http://link.aps.org/supplemental/10.1103/PhysRevB.110.L020504
https://doi.org/10.1103/PhysRevLett.46.211
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1103/PhysRevB.86.184514
http://jetpletters.ru/ps/1410/article_21163.shtml
http://jetpletters.ru/ps/1410/article_21163.shtml
http://jetpletters.ru/ps/1410/article_21163.shtml
http://jetpletters.ru/ps/1410/article_21163.shtml
https://doi.org/10.1103/PhysRevB.104.174517
https://doi.org/10.1103/PhysRevLett.100.096407
http://www.jetp.ras.ru/cgi-bin/e/index/e/34/5/p1144?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/34/5/p1144?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/34/5/p1144?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/34/5/p1144?a=list
https://doi.org/10.1103/PhysRevLett.109.147002
https://doi.org/10.1103/PhysRevB.68.024511

