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The iron-based superconductor FeSe isovalently substituted with S displays an abundance of remarkable
phenomena that have not been fully understood, at the center of which are apparent zero-energy excitations
in the superconducting state in the tetragonal phase. The phenomenology has been generally consistent with
the proposal of the so-called ultranodal states where Bogoliubov Fermi surfaces (BFSs) are present. Recently,
nuclear magnetic resonance measurements have seen unusually large upturns in the relaxation rate as temperature
decreases to nearly zero in these systems, calling for theoretical investigations. In this paper, we calculate the
spin susceptibility of an ultranodal superconductor including correlation effects within the random phase ap-
proximation. Although the noninteracting mean-field calculation rarely gives an upturn in the low-temperature
relaxation rate within our model, we found that correlation strongly enhances scattering between coherent parts
of the BFS, resulting in robust upturns when the interaction is strong. Our results suggest that, in addition to the
presence of BFSs, correlation and multiband physics also play important roles in the low-energy excitations of
the system.
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Introduction. Iron-based superconductors have been draw-
ing lots of research interest for almost two decades since their
discovery, for their relatively high Tc, simple structure, and the
interplay between rich phenomena including nematicity, mag-
netization, and nontrivial topology [1]. Among all families
of iron-based superconductors, the chalcogenide 11 material
FeSe has a distinct phase diagram where a nematic transition
can occur without accompanying magnetic order [2–7]. The
parent compound FeSe shows a nematic transition at ∼90 K, a
superconducting (SC) transition at 9 K, and no magnetic order
under ambient pressure. Upon applying hydrostatic pressure,
the nematicity is suppressed, and antiferromagnetic (AFM)
order develops. The AFM order in FeSe under pressure should
resemble that observed in iron pnictides and is likely a stripe
order with in-plane magnetic moments [1,8–10].

On the other hand, S-substituted FeSe does not show strong
evidence for long-ranged magnetic order but exhibits peculiar
changes in its SC states across the nematic quantum critical
point (QCP) at ∼0.17 sulfur substitution. For x > 0.17, the
normal state of FeSe1−xSx is tetragonal, established by various
measurements of the electronic structure [2,11,12], and the
transport properties show non-Fermi liquid behavior near the
QCP [13]. The SC state shows curiously large zero-energy
density of states (DOS), which has so far been evidenced
by specific heat and thermal transport measurements [14],
scanning tunneling microscopy (STM) [15], angular-resolved
photoemission spectroscopy (ARPES) [16], and most re-
cently, by nuclear magnetic resonance (NMR) studies [17].

*Contact author: yifucao@ufl.edu

Possible origins of such residual DOS in the SC states
of the heavily S-substituted FeSe has been discussed in
Refs. [16,17]. Impurity effects or coexistence of spatially
separated SC and normal phases are excluded because the
samples are clean and homogeneous, as seen from quantum
oscillation [2] and STM experiments [15]. For measurements
done under external field such as the NMR measurements,
another possible explanation for the observed residual DOS is
the Volovik effect [18,19]. However, the Volovik effect cannot
account for the order of magnitude difference in the relaxation
rate across samples with different substitution levels but the
same external field. It has been suggested [20–22] that the
so-called ultranodal SC state, which by definition hosts Bo-
goliubov Fermi surfaces (BFSs), is responsible for the large
residual DOS in these systems.

Ultranodal states are SC states with extended gap nodes
that, in contrast with usual point nodes or line nodes in
three dimensions, have the same dimension as the underlying
normal state Fermi surface. Such extended nodes are called
BFSs [23–28]. The existence of BFSs does not necessarily
require nontrivial topology, as is the case in Ref. [29], but
they are topologically protected by a Z2 invariant if the SC
state possesses inversion symmetry. In a multiband spin- 1

2
superconductor, BFSs can arise from an interband nonunitary
triplet pairing term or from a magnetic order that breaks time-
reversal symmetry and may [20] or may not [22,29] preserve
the inversion symmetry. It has also been shown [22] that the
nonunitarity of the interband triplet pairing can be induced by
driving the system close to a magnetic instability, in which
case the magnetic moment of the nonunitary triplet pair aligns
with the fluctuating magnetic order.
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The existence of a BFS explains well the residual DOS in
the tetragonal Fe(Se,S), as seen from specific heat or STS ex-
periments (see, however, Ref. [30] for an alternative picture)
as well as the possible C4 symmetry breaking in the SC phase,
as seen in the ARPES experiment [16]. However, it has not
been fully understood how the ultranodal scenario can fit the
recent NMR data presented in Ref. [17].

The NMR measurements in Ref. [17], performed on
FeSe1−xSx at several S-substitution levels across the nematic
QCP with in-plane applied field and tempe rature down to
100 mK, show not only finite values of 1/(T1T ) at zero tem-
perature for the x = 0.18 and 0.23 samples but also unusual
upturns as temperature decreases toward zero. While the for-
mer can be understood fairly straightforwardly as yet another
signature of the zero-energy residual DOS in these materials,
the latter requires a more sophisticated understanding. In this
letter, we study the models for BFS systems discussed in
Refs. [20–22] to further calculate the spin fluctuations in the
ultranodal states. We compare our calculations of 1/(T1T )
to the experimental data and show that the upturn is likely
due to the interplay between strong magnetic fluctuation and
multiband physics in such systems.

Model. To obtain BFSs with relevance for the Fe(Se,S)
system, we rely on the electronic structure having two hole
pockets (or incipient hole pockets) with small splitting at the
� point. The electron pockets at the X and Y points are not
relevant for the low-temperature upturn in 1/(T1T ) driven by
the existence of BFSs since we expect that any reasonable
interband pairing strength involving the electron bands would
not be strong enough to create BFSs near the electron pockets.
Therefore, we consider a minimal two-band mean field model,
corresponding to the two hole bands at the � point, with intra-
band spin-singlet pairing and interband nonunitary spin-triplet
pairing adopted from previous works [20–22]:

H =
∑
k,σ,i

εikσ c†
ikσ cikσ −

∑
k,i

�i(k)(c†
ik↑c†

i−k↓ + H.c.)

−
∑
k,σ

�σσ (k)(c†
1kσ c†

2−kσ + H.c.). (1)

Here, i = 1, 2 is the band index. Seeking qualitative results
at low temperatures, we make the assumption that all gaps
correspond to a single Tc and follow a BCS-like tempera-
ture dependence, where the key feature is that the deviation
from the T = 0 value is exponentially or power-law small
at low temperature. Also, for simplicity, we consider a tight-
binding model with only nearest-neighbor hopping and εikσ =
2(cos kx + cos ky) − μi. We have set the nearest-neighbor
hopping parameter t = 1 and adopt it as our unit of energy
throughout the calculations below.

We calculate the spin susceptibility:

χuv (q, t ) = iθ (t )
∑

q′
〈[Su(q, t ), Sv (q′, 0)]〉, (2)

where Su(q, t = 0) = ∑
i,k,α,β c†

ikασ u
αβcik+qβ is the total spin

operator summed over the two bands, and u, v = x, y, z. The
spin-quantization axis (z axis of the Pauli matrices) denotes
the direction of the magnetic moment of our nonunitary triplet
pair [22], which breaks the spin-rotational symmetry of the

ultranodal state and makes the z direction inequivalent to
the x, y directions. Depending on the angle between the z
direction and the applied magnetic field, all components of
χuv might contribute to the longitudinal relaxation time T1

[31]. We focus on two configurations: The external field �B
is either parallel or perpendicular to the ẑ direction when
calculating T1, and all the other configurations should give
results in between these two configurations. For �B ‖ ẑ,

1

T1
∝ T lim

ω→0

∑
q

Im χ+/−(q, ω)

ω
, (3)

where +/− denotes x ± iy. Similarly, for �B ‖ x̂, Eq. (3) is still
valid, except +/− now denotes y ± iz.

To this end, we first find the Nambu Green’s function
Gk(ω) by diagonalizing the Nambu Hamiltonian corre-
sponding to Eq. (1). The Nambu basis we use is ψk =
[c1k↑, c1−k↓, c2−k↑, c2k↓, c†

1k↑, c†
1−k↓, c†

2−k↑, c†
2k↓]T . With the

eigenvalues Elk and the eigenvector matrix Uk of the Nambu
Hamiltonian, the Nambu Green’s function can be expressed as

Gk(ω) = U †
k diag

(
1

ω − E1k
, . . . ,

1

ω − E8k

)
Uk. (4)

At this point, we would like to also define the 8 × 8 Nambu
spin matrices �u ≡ diag[σ u, σ u,−(σ u)T ,−(σ u)T ], com-
posed of 2 × 2 Pauli matrices on their diagonal blocks. The
bare spin-spin correlation function in the Matsubara repre-
sentation is Cuv (q, iνm) = − 1

2
1
β

∑
iωn

∑
k Tr[�uGk+q(iωn +

iνm)�vGk(iωn)], where νm is a bosonic frequency. Substi-
tuting in Eq. (4) and performing the Matsubara sum and the
analytic continuation to the real axis, we obtain first the bare
density-density bubble in the quasiparticle band space:

χ
(0)
ll ′mm′ (q, ω) = −

∑
k,r,s

UrlkU ∗
sl ′k+qU ∗

rmkUsm′k+q

× f (Esk+q) − f (Erk )

Esk+q − Erk − ω − i0+ . (5)

Then the zz component of the spin susceptibility can be writ-
ten as

χ (0)zz(q, ω) = 1

2

∑
l,m

�z
ll�

z
mmχ

(0)
llmm(q, ω), (6)

and for the other components u, v = x, y, we have

χ (0)uv (q, ω) = 1

2

∑
l,m

�u
l l̄�

v
m̄mχ

(0)
l l̄mm̄

(q, ω), (7)

where l̄ denotes the Nambu index that corresponds to the
time-reversed lth operator in the Nambu basis. For example,
1̄ = 2 and 8̄ = 7. From Eqs. (6) and (7), we see that two types
of χ

(0)
ll ′mm′ are particularly important, namely, the llmm and

l l̄mm̄ types. Accordingly, let us define two types of coherence
factors:

Wll (rk, sk′) ≡ UrlkU ∗
slk′ , (8)

Wll̄ (rk, sk′) ≡ UrlkU ∗
sl̄k′ , (9)

where rk is a composite label referring to the Bogoliubov
quasiparticle at momentum k in the rth quasiparticle band.
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They will be useful when we analyze the structure of the BFSs
later.

We can further investigate using a random phase approx-
imation (RPA) the effect of a residual interaction in the
particle-hole channel. We consider an interaction of the Hub-
bard type:

HU = 1

2

∑
r,i

Unir↑nir↓

= 1

16

∑
k,k′,q

∑
l,m,l ′,m′

�ll ′mm′ψ
†
lkψl ′k−qψ

†
m′k′ψmk′+q. (10)

In the last step, we have rewritten the interaction using the
Nambu basis and defined a coupling tensor � that does not
depend on the momentum transfer q. The nonzero elements of
� are �ll l̄ l̄ = U and �l l̄ l l̄ = −U for l = 1, 2, . . . , 8. As shown
in the Supplemental Material [32], it is sufficient to consider
only the 8 × 8 llmm matrix blocks (with ll being the row
index and mm being the column index) of χ

(0)
ll ′mm′ and �ll ′mm′ ,

which we denote as χ̂ (0) and �̂, for calculating χ (RPA)zz. For
χ (RPA)uv with u, v = x, y, it is sufficient to consider only the
8 × 8 l l̄mm̄ blocks of χ

(0)
ll ′mm′ and �ll ′mm′ , which we denote as

χ̃ (0) and �̃. The RPA density-density bubble is related to the
bare bubble through

χ̂ (RPA)(q, ω) = χ̂ (0)(q, ω)[Î + �̂χ̂ (0)(q, ω)]−1; (11)

χ̃ (RPA)(q, ω) = χ̃ (0)(q, ω)[Ĩ + �̃χ̃ (0)(q, ω)]−1. (12)

The sign convention for the above equation is also explained
in detail in the Supplemental Material [32]. Here, we note only
that the usual RPA sign emerges in the more standard spin
basis. The RPA spin susceptibility is

χ (RPA)zz(q, ω) = 1

2

∑
l,m

�z
ll�

z
mmχ̂

(RPA)
llmm (q, ω), (13)

χ (RPA)uv (q, ω) = 1

2

∑
l,m

�u
l l̄�

v
m̄mχ̃

(RPA)
l l̄mm̄

(q, ω),

u, v = x, y (14)

by analogy to Eqs. (6) and (7) with χ (0) → χ̂ (RPA) or χ̃ (RPA).
Results. We numerically calculated the spin susceptibil-

ity of the ultranodal states for the model Hamiltonian. To
summarize the result, we found that the bare susceptibility
calculation always gives rise to nonzero residual 1/(T1T ) at
zero temperature when BFSs are present, as expected due to
the zero-energy residual DOS. However, the bare 1/(T1T )
rarely increases as temperature decreases near T = 0, un-
less van Hove singularities of the Bogoliubov quasiparticle
bands are tuned to the Fermi level, contributing to a large
zero-energy peak in the DOS. On the other hand, if we con-
sider the correlation effects using the RPA calculation, certain
scattering between coherent spots/segments on the BFSs can
get strongly enhanced, resulting in an upturn in 1/(T1T ) as
temperature decreases, even when the zero-energy DOS is not
peaked or when the BFSs are not strongly nested. Below, we
discuss in detail these results.

In Figs. 1 and 2, we show in parallel two examples of
having upturns in 1/(T1T ) at low temperature as a result of
correlations, the existence of BFSs, and multiband effects

combined. Figure 1 corresponds to a scenario where the in-
traband singlet �i(k) is taken to be a nodal s wave with
accidental nodes along the 45◦ directions, and the interband
triplet pairing �↑↑(k) is isotropic. Figure 2 corresponds to
the C2 symmetric scenario discussed in Ref. [22], where the
interband triplet pairing �↑↑(k) is assumed to be a p wave,
and the intraband singlet pairing �i(k) is taken to be isotropic
for simplicity. A BFS then forms only when �↑↑ is suffi-
ciently large.

In both cases, we have set �↓↓(k) = 0. In Fig. 1, the bare
susceptibility already gives rise to upturns in the 1/(T1T )
[panels (c) and (d) cyan curve, each corresponds to different
orientations of the external field]. This is because the van
Hove singularity (band extremum corresponding to where the
SC gap opens) of the Bogoliubov band has been tuned at the
Fermi level by changing the interband order parameter, and
a peak in the quasiparticle DOS exists at exactly zero energy
[Fig. 1(a)]. We found that upturns in the bare 1/(T1T ) at low
temperature seem to always be associated with such peaks at
zero energy in the DOS. Although such peaks in the DOS are
not desired, as they are fine-tuned and not consistent with the
spectroscopic data [15], they are not required once we include
correlations. This can be seen in Figs. 2(a)–2(d), where the
DOS is not peaked at zero energy, and the bare 1/(T1T ) curve
does not have an upturn, while the RPA curve close to mag-
netic instability does. The qualitative difference between the
U = 0 curve and the U � Uc(0) curve in Figs. 2(c) and 2(d)
is unusual since normally one would expect, from its simplest
form for the normal metal as in Eq. (S.22) in the Supplemental
Material [32], the RPA susceptibility to be enhanced further
where the bare susceptibility is already large.

To better understand this unusual behavior, we analyze
here the major contribution to the upturns in Figs. 1(c) and
2(c) from χ zz (blue shaded area) and provide in the Supple-
mental Material [32] the same analysis for the contributions
from χ yy = χ xx [pink or yellow shaded area in panel (c)
or (d)]. We first divide the BFSs into several segments, as
shown by the color scheme in Figs. 1(b) and 2(b); within each
color, the scattering that preserves the spin and band is much
stronger than across different colors. This is done by treating
the k points on the BFS as vertices of weighted undirected
graphs with weights given by linear combinations of the eight
ll-type coherence factors Wll defined in Eq. (8) and employing
the Leiden algorithm for community detection [33,34]. We see
that the parts of the BFS that follow the shape of the normal
Fermi surfaces [red and blue in Figs. 1(b) and 2(b)] are well
separated from the rest of the BFSs in terms of non-spin-flip
scattering processes. By examining the eigenvectors, we con-
firm that the red (blue) BFSs are mainly of the inner (outer)
band character and have relatively small intraband spin-singlet
particle-hole mixing, while the green BFSs feature significant
interband spin-triplet particle-hole mixing and moderate in-
traband spin-singlet particle-hole mixing. Then in Figs. 1(e),
1(f) and 2(e), 2(f), we plot the zz component of the bare spin
susceptibility as in Eq. (6) at zero temperature, and in panels
(g) and (h) we show the RPA spin susceptibility in Eq. (13)
at U � Uc(0) and zero temperature. We identify the important
q vectors as the red and green arrows connecting segments
of BFSs with the same color shown in Figs. 1(b) and 2(b).
From panel (e), we first see that the real part of the bare
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FIG. 1. (a) Zero temperature density of states (DOS) for the two-band model in Eq. (1), with μ1 = 3.5, μ2 = 3.2, and �1(k) = �2(k) =
0.06| cos 2θk|, where θk is the angle of k on the two-dimensional (2D) Fermi surface. �↑↑(k) = 0.15, �↓↓(k) = 0 at T = 0. (b) Normal (black)
and Bogoliubov (colored) Fermi surfaces. Within the same color of the Bogoliubov Fermi surface (BFS) the coherent scattering amplitudes
are larger than between points on BFSs with different color (see main text Sec. III). Arrows show some of the dominant scattering processes
as seen from panels (e)–(h). (c) Normalized 1/(T1T ) below Tc assuming ẑ perpendicular to the applied magnetic field. Cyan and blue curves
calculated from bare and random phase approximation (RPA) susceptibility near a magnetic instability, respectively. Red dots are experimental
data taken from Ref. [17]. The pink and blue shaded areas represent contributions from Im χ yy and Im χ zz, respectively. Tc is taken to be 0.08.
The critical U , defined as the lowest U where any of the RPA susceptibility χ̃

(RPA)
ll ′mm′ (q, ω) component diverges for any q vector, is determined

from the normal and Bogoliubov band structure, and Uc(Tc ) = 10.8, Uc(0) = 9.6. (d) Normalized 1/(T1T ) below Tc assuming ẑ parallel to the
applied magnetic field. The yellow and green shaded areas represent contributions from Im(χ xx + χ yy ) and Re χ xy, respectively. Note that the
contribution from Re χ xy at low T is negative. (e)–(h) Real and imaginary parts of the spin susceptibility at T = 0. The arrows are the same as
in (a). One can see that there is a shift of the dominant contribution from the red arrow to green arrow as U increases. The color bar maxima
are 0.7, 0.03, 8.5, and 9 for (e)–(h), respectively.

susceptibility is the largest at the q vectors connecting the red
part of the BFSs but is not strongly peaked at any particular
q vector. The latter observation is an indication of no strong
nesting between the the BFSs. Secondly, by comparing panels
(e) and (f) with panels (g) and (h) in Figs. 1 and 2, we see
that, although the q vectors that connect the green part of
the BFSs are only subdominant in the bare susceptibility, they
become the dominant q vectors near the magnetic instability.
This shift of the dominant q vectors as the interaction U
increases within an RPA calculation can only be explained by
nontrivial multiband effects embedded in the coherence factor
Wll , which is consistent with the unusual change in the shape
of the normalized 1/(T1T ) curve as U increases. Since this
multiband effect can be seen in both the C4 and C2 examples
as from Figs. 1 and 2, we claim that, although the param-
eter set we chose to demonstrate the effects of fine-tuning

corresponded to a C4 symmetric BFS, the upturn in 1/(T1T )
from the RPA calculations should be generically present in
both C4 and C2 cases irrespective of rotational symmetry with-
out fine-tuning.

In case the external field fully polarizes the magnetic mo-
ment of the nonunitary triplet pair so that �B ‖ ẑ, χ zz will not be
responsible for the longitudinal relaxation at all. Nevertheless,
as seen in Figs. 1(d) and 2(d), there will still be a minor
upturn in 1/(T1T ) due to contributions from χ xx = χ yy. They
share some key features with χ zz, as discussed in the previous
paragraph (see Supplemental Material [32]): First, there can
be shifts of the dominant q vector as U increases. Second, only
those q vectors connecting coherent parts of the BFS, which
usually carry interband character, contribute significantly to
the susceptibility at T = 0. Therefore, the low-temperature
upturns in Figs. 1(d) and 2(d) have the same origin as in panel
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FIG. 2. Same as Fig. 1 but with a different set of parameters: μ1 = 3.7, μ2 = 3.2, �1(k) = �2(k) = 0.05, �↑↑(k) = 0.3 cos θk,
�↓↓(k) = 0, Tc = 0.1, Uc(Tc ) = 10.8, and Uc(0) = 10.1. The color bar maxima are 0.7, 0.026, 35, and 11 for (e)–(h), respectively.

(c), namely, it is due to the existence of BFSs, correlation, and
multiband physics.

Conclusions. To summarize, we have calculated the spin
susceptibilities for the ultranodal states in a minimal two-band
model, where the interband nonunitary spin-triplet pairing
is responsible for the BFSs. We found that the existence of
BFSs in such models naturally gives rise to finite residual
value in 1/(T1T ) at zero temperature but does not necessarily
produ ce the large upturns at low temperature, as seen in the
experiments [17] on the Fe(Se,S) system, in a noninteracting
calculation. We then studied the effect of correlations within
RPA in the ultranodal state. By adding a Hubbard interaction
in the particle-hole channel while not changing the preas-
sumed pairing gaps, we see that the spin susceptibilities at
q vectors connecting coherent segments/spots on the BFS
get strongly enhanced at low temperature when the interac-
tion is strong, resulting in upturns in 1/(T1T ) irrespective of
the presence or absence of upturns in the bare calculation.
These spots have strong interband character, as indicated from
their position on the BFSs, and do not have particularly large
contribution to the spin susceptibilities at weak interaction.
The 1/(T1T ) calculated from the spin susceptibilities close to
the AFM instability shows robust upturns at low temperature
for all orientations of external field. Although the upturn is
the smallest when the Cooper pair moment aligns with the

external field, we expect that spin-orbit coupling or strong
AFM fluctuations could drive the system away from the
perfectly polarized configuration. Therefore, we conclude
that the experimentally observed upturn in 1/(T1T ) can be
explained as a combined effect of the presence of BFSs,
interband physics, and correlation.

Our theory is primarily applicable to the tetragonal phase
of FeSe1−xSx with x > 0.17 at ambient pressure. For the
nematic phase with x < 0.17 at ambient pressure and the
tetragonal phase with x < 0.17 under pressure [35], the low-
temperature 1/(T1T ) seems to have a Korringa behavior,
i.e., constant in temperature, with smaller but finite resid-
ual values. Our calculation of 1/(T1T ) is consistent with
these data, assuming weak correlation or small BFSs, but
whether the ultranodal scenario can apply to these situa-
tions requires a more careful and comprehensive study in
the future.
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